
Fabric: A Retrospective on Evolving SDN

Martín Casado
Nicira

Teemu Koponen
Nicira

Scott Shenker
ICSI†, UC Berkeley

Amin Tootoonchian
University of Toronto, ICSI†

Abstract

MPLS was an attempt to simplify network hardware while improving
the flexibility of network control. Software-Defined Networking
(SDN) was designed to make further progress along both of these
dimensions. While a significant step forward in some respects, it
was a step backwards in others. In this paper we discuss SDN’s
shortcomings and propose how they can be overcome by adopting
the insight underlying MPLS. We believe this hybrid approach will
enable an era of simple hardware and flexible control.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design

General Terms
Design

Keywords
Network architecture

1 Introduction
The advent of the Internet, and networking more generally, has been
a transformative event, changing our lives along many dimensions:
socially, societally, economically, and technologically. While
the overall architecture is an undeniable success, the state of the
networking industry and the nature of networking infrastructure is a
less inspiring story. It is widely agreed that current networks are too
expensive, too complicated to manage, too prone to vendor-lockin,
and too hard to change. Moreover, this unfortunate state-of-affairs
has remained true for well over a decade. Thus, while much of the
research community has been focusing on “clean-slate” designs of
the overall Internet architecture, a more pressing set of problems
remain in the design of the underlying network infrastructure. That
is, in addition to worrying about the global Internet protocols, the
research community should also devote effort to how one could
improve the infrastructure over which these protocols are deployed.

This infrastructure has two components: (i) the underlying
hardware and (ii) the software that controls the overall behavior
of the network. An ideal network design would involve hardware
that is:
†International Computer Science Institute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

• Simple: The hardware should be inexpensive to build and
operate.

• Vendor-neutral: Users should be able to easily switch
between hardware vendors without forklift upgrades.

• Future-proof: The hardware should, as much as possible,
accommodate future innovation, so users need not upgrade
their hardware unnecessarily.

The ideal software “control plane” coordinating the forwarding
behavior of the underlying hardware must meet a single but broad
criterion:

• Flexible: The software control plane should be structured so
that it can support the wide variety of current requirements
(such isolation, virtualization, traffic engineering, access
control, etc.) and, to the extent possible, be capable of meeting
future requirements as they arise.

Today’s networking infrastructure does not satisfy any of these
goals, which is the cause of significant pain for network operators.
In fact, in terms of impact on user experience, the inadequacies in
these infrastructural aspects are probably more problematic than the
Internet’s architectural deficiencies.

The inability to meet these goals is not for lack of trying:
the community has repeatedly tried new approaches to network
infrastructure. Some of these attempts, such as Active Networking
[22], focused more on flexibility than practicality, while others,
such as ATM [7], had the opposite emphasis; out of a long list of
ephemeral and/or ineffective proposals, by far the most successful
approach has been MPLS [19]. MPLS is now widely deployed
and plays a crucial role in VPN deployment and traffic engineering.
While originally decried by some as an architectural abomination,
we will argue later that MPLS embodies an important insight that
we must incorporate in future network designs.

However, MPLS did not meet all the goals of an ideal network, so
more recently the community has made another attempt at reaching
networking nirvana: Software-Defined Networking (SDN) [10, 13,
14, 17]. There has been a staggering level of hype about SDN, and
some knee-jerk opposition; the shallowness of the discussion (which
occurs mostly in trade magazines and blogs) has largely overlooked
SDN’s more fundamental limitations.

In this paper we discuss these limitations and explain how SDN,
by itself, would fall short of the goals listed above. We then describe
how we might create a better form of SDN by retrospectively
leveraging the insights underlying MPLS. While OpenFlow has been
used to build MPLS LSRs [12], we propose drawing architectural
lessons from MPLS that apply to SDN more broadly. This modified
approach to SDN revolves around the idea of network fabrics1 which
introduces a new modularity in networking that we feel is necessary

1We use this term in a general sense of a contiguous and coherently
controlled portion of the network infrastructure, and do not limit its
meaning to current commercial fabric offerings.

85

if we hope to achieve both a simple, vendor-neutral, and future-proof
hardware base and a sufficiently flexible control plane.

We hasten to note that fabrics are already well established in the
academic and commercial arenas (see, for example, [2, 11, 16]).
However, while it would be easy to dismiss what we write here as
“nothing new”, the direction we propose for SDN is quite different
from what is being pursued by current ONF standardization efforts
and what is being discussed in the academic SDN literature. Thus,
our paper should be read not as a deep technical contribution but as
a “call to arms” for the SDN community to look backwards towards
MPLS as they plan for SDN’s future.

We begin this paper (Section 2) by reviewing the basics of
traditional network design, MPLS, and SDN. We then, in Section
3, introduce a hybrid approach that combines SDN and MPLS. We
end with a discussion of the implications of this approach.

2 Background on Network Designs
2.1 Overview
Network infrastructure design is guided by network requirements
and network interfaces. Network requirements come from two
sources: hosts and operators. Hosts (or, more accurately, the users of
that host) want their packets to travel to a particular destination, and
they may also have QoS requirements about the nature of the service
these packets receive en route to that destination. Network operators
have a broader set of requirements — such as traffic engineering,
virtualization, tunneling and isolation — some of which are invisible
and/or irrelevant to the hosts. As we observe below, the control
mechanisms used to meet these two sources of requirements are
quite different.

Like any system, networks can be thought of in terms of inter-
faces; here we use that term not to refer to a formal programmatic
interface, but to mean more generally and informally places where
control information must be passed between network entities. There
are three relevant interfaces we consider here:

• Host — Network: The first interface is how the hosts inform
the network of their requirements; this is typically done in
the packet header (for convenience, in the following we will
focus on L3, but our comments apply more generally), which
contains a destination address and (at least theoretically) some
ToS bits. However, in some designs (such as IntServ), there is
a more explicit interface for specifying service requirements.

• Operator — Network: The second interface is how operators
inform the network of their requirements; traditionally, this
has been through per-box (and often manual) configuration,
but SDN (as we discuss later) has introduced a programmatic
interface.

• Packet — Switch: The third interface is how a packet identifies
itself to a switch. To forward a packet, a router uses some
fields from the packet header as an index to its forwarding
table; the third interface is the nature of this index.

We now turn to how the original Internet, MPLS, and SDN deal
with requirements and implement these interfaces.

2.2 Original Internet
In the original Internet design, there were no operator requirements;
the goal of the network was to merely carry the packet from
source to destination (for convenience, we will ignore the ToS bits),
and routing algorithms computed the routing tables necessary to
achieve that goal. At each hop, the router would use the destination

address as the key for a lookup in the routing table; that is, in our
conceptual terms, every router would independently interpret the
host requirements and take the appropriate forwarding action. Thus,
the Host-Network and Packet-Switch interfaces were identical, and
there was no need for the Operator-Network interface.

2.3 MPLS

MPLS introduced an explicit distinction between the network edge
and the network core. Edge routers inspect the incoming packet
headers (which express the host’s requirements as to where to deliver
the packet) and then attach a label onto the packet which is used for
all forwarding within the core. The label-based forwarding tables in
core routers are built not just to deliver packets to the destination,
but also to address operator requirements such as VPNs (tunnels) or
traffic engineering. MPLS labels have meaning only within the core,
and are completely decoupled from the host protocol (e.g., IPv4 or
IPv6) used by the host to express its requirement to the network.
Thus, the interface for specifying host requirements is still IP, while
the interface for packets to identify themselves is an MPLS label.
However, MPLS did not formalize the interface by which operators
specified their control requirements. Thus, MPLS distinguished
between the Host-Network and Packet-Switch interfaces, but did
not develop a general Operator-Network interface.

2.4 SDN

In contrast to MPLS, SDN focuses on the control plane. In particular,
SDN provides a fully programmatic Operator-Network interface,
which allows it to address a wide variety of operator requirements
without changing any of the lower-level aspects of the network.
SDN achieves this flexibility by decoupling the control plane from
the topology of the data plane, so that the distribution model of the
control plane need not mimic the distribution of the data plane.
While the term SDN can apply to many network designs with
decoupled control and data planes [3, 5, 6, 9, 20], we will frame this
discussion around its canonical instantiation: OpenFlow.2

In OpenFlow each switch within the network exports an interface
that allows a remote controller to manage its forwarding state.
This managed state is a set of forwarding tables that provide a
mapping between packet header fields and actions to execute on
matching packets. The set of fields that can be matched on is
roughly equivalent to what forwarding ASICs can match on today,
namely standard Ethernet, IP, and transport protocol fields; actions
include the common packet operations of sending the packet to a
port as well as modifying the protocol fields. While OpenFlow is
a significant step towards making the control plane more flexible,
it suffers from a fundamental problem that it does not distinguish
between the Host-Network interface and the Packet-Switch interface.
Much like the original Internet design, each switch must consider
the host’s original packet header when making forwarding decisions.
Granted, the flexibility of the SDN control plane allows the flow
entries, when taken collectively, to implement sophisticated network
services (such as isolation); however, each switch must still interpret
the host header.3

This leads to three problems:

• First, it does not fulfill the promise of simplified hardware.
In fairness, OpenFlow was intended to strike a balance

2We note that there has been a wealth of recent work on SDN,
including [1, 4, 8, 15, 18, 21, 23, 24, 25], which extends SDN in
one or more directions, but all of them are essentially orthogonal to
the issues we are discussing here.
3One could, of course, use SDN to implement MPLS. However,
each switch must be prepared to deal with full host headers.

86

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN
3.1 Overview
In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

87

Primitive Description
Attach(P) Attach a fabric port P to the fabric.

Send(P, pkt) Send a packet to a single fabric port.
Send(G, pkt) Send a packet to a multicast group G.

Join(G, P) Attach a port to a multicast group G.
Leave(G, P) De-attach a port from a multicast group G.

Table 1: Fabric service model. Note that the ToS bits in the packet
for QoS within the fabric are not included above.

point for a fabric service model. Generally, a backplane supports
point-to-point communication, point-to-multipoint communication,
and priorities to make intelligent drop decisions under contention.
In our experience, this minimal set is sufficient for most common
deployment scenarios. More complex network functions, such as
filtering, isolation, stateful flow tracking, or port spanning can be
implemented at the edge. Table 1 summarizes this high-level service
model offered by the fabric.

3.3 Fabric Path Setup
Another consideration is path setup. In the “wild” two methods are
commonly used today. In the datacenter, a common approach is
to use a standard IGP (like OSPF) and ECMP to build a fabric. In
this case, all paths are calculated and stored in the fabric. MPLS,
on the other hand, requires the explicit provisioning of an LSP by
the provider. The primary difference between the two is that when
all forwarding state is precalculated, it is normally done with the
assumption that any point at the edge of the fabric can talk to any
other point. On the other hand, provisioned paths provide an isolated
forwarding context between end points that is dictated by network
operator (generally from the provider edge).

We believe that either model works in practice depending on the
deployment environment. If both the edge and the fabric are part
of the same administrative domain, then precalculating all routes
saves operational overhead. However, if the edge and fabric have a
customer-provider relationship, then an explicit provisioning step
may be warranted.

3.4 Addressing and Forwarding in the Fabric
As we have described it, a forwarding element in the fabric differs
from traditional network forwarding elements in two ways. First,
they are not required to use end-host addresses for forwarding,
and second, they are only responsible for delivering a packet to
its destination(s), and not enforcing any policy. As a result, the
implementation of the fabric forwarding element can be optimized
around relatively narrow requirements. Two current approaches
exemplify the options available:

• One option would be to follow MPLS and limit network
addresses to opaque labels and the forwarding actions to
forward, push, pop and swap. This would provide a very
general fabric that could be used by multiple control planes to
provide either path-based provisioning or destination-based
forwarding with label-aggregation.

• Another option would be to limit the packet operations to a
destination address lookup with a longest prefix match with
ECMP-based forwarding. It is unlikely that this would be
suitable for path-based provisioning, but it would likely result
is a simpler control plane and higher port densities.

Our preference is to use labels similar to MPLS because it
supports a more general forwarding model. However, the main
point of this paper is that the SDN architecture should incorporate

the notion of a fabric, but SDN need not be concerned with the
specifics of the fabric forwarding model (indeed, that is the point of
having a fabric!). Because the fabric can evolve independently of
the edge, multiple forwarding models can exist simultaneously.

3.5 Mapping the Edge Context to the Fabric
The complexity in an edge/fabric architecture lies in mapping the
edge context to network addresses or paths. By “mapping” we
simply mean figuring out which network address or label to use
for a given packet. That is, when a packet crosses from the edge
to the fabric, something in the network must decide with which
fabric-internal network address to associate with the packet. There
are two primary mechanisms for this:

Address translation. Address translation provides the mapping by
swapping out addresses in situ. For example, when the packet
crosses from the edge to the network, the edge addresses are
replaced with fabric internal addresses, and then these addresses are
translated back into appropriate edge addresses at the destination.
The downside of this approach is that it unnecessarily couples the
edge and network addressing schemes (since they would need to be
of the same size, and map one-to-one with each other).

Encapsulation. A far more popular, and we believe more general,
approach to mapping an edge address space to the fabric-internal
address space is encapsulation. With encapsulation, once a packet
crosses from the edge to the network, it is encapsulated with another
header that carries the network-level identifiers. On the receiving
side, the outer header is removed.

In either case (address translation or encapsulation), a lookup
table at the edge must map edge addresses to network addresses to
get packets across the fabric. However, unlike the fabric forwarding
problem, this lookup may include any of the headers fields that are
used by the edge. This is because more sophisticated functions such
as filtering, isolation, or policy routing (for example, based on the
packet source) must be implemented at the edge.

There are many practical (but well understood) challenges in
implementing such a mapping that we will not cover in this paper.
These include the control plane (which must maintain the edge
mappings), connectivity fault management across the fabric, and the
impact of addressing to basic operations and management.

4 Questions and Implications
Isn’t this just another approach to layering? To some extent,
one could view the edge and the core as different layers, with the
edge layer running “over” the core layer; to that extent this is indeed
just another approach to layering. And layering provides some of
the same benefits we claim: it decouples the protocols in different
layers (thereby increasing innovation) and allows for different layers
to have different scopes (which is important for scaling). However,
current dataplane layering can be thought of as “vertical”, making
distinctions based on how close to the hardware a protocol is, and
each layer goes all the way to the host. When a layer is exposed to
the host, it becomes part of the host-network interface.

What we are proposing here is more of a “horizontal” layering,
where the host-network interface occurs only at the edge, and the
general packet-switch interface exists only in the core. This is a very
different decoupling than provided by traditional layering. We not
only want to decouple one layer from another, we want to decouple
various pieces of the infrastructure from the edge layer entirely.

What does this mean for OpenFlow? This approach would
require an “edge” version of OpenFlow, which is much more general

88

than today’s OpenFlow, and a “core” version of OpenFlow which is
little more than MPLS-like label-based forwarding. One can think
of the current OpenFlow as an unhappy medium between these two
extremes: not general enough for the edge, and not simple enough
for the core.

One might argue that OpenFlow’s lack of generality is appropri-
ately tied to current hardware limitations, and that proposing a more
general form of OpenFlow is doomed to fail. But at present much
edge forwarding in datacenters is done in software by the host’s
general-purpose CPU. Moreover, the vast majority of middleboxes
are now implemented using general-purpose CPUs, so they too could
implement this edge version of OpenFlow. More generally, any
operating system supporting OpenvSwitch or the equivalent could
perform the necessary edge processing as dictated by the network
controller. Thus, we believe that the edge version of OpenFlow
should aggressively adopt the assumption that it will be processed
in software, and be designed with that freedom in mind.

Why is simplicity so important? Even if one buys the arguments
about the edge needing to become more flexible (to accommodate
the generality needed in the host-network interface) and able to
become more flexible (because of software forwarding), this doesn’t
imply that it is important that the core become simpler. There are two
goals to simplicity, reduced cost and vendor-neutrality, and the latter
is probably more important than the former. Even if the additional
complexity were not a great cost factor, if one is striving for vendor-
neutrality then one needs an absolutely minimal set of features. Once
one starts adding additional complexity, some vendors will adopt it
(seeking a competitive advantage on functionality) and others won’t
(seeking a competitive advantage on cost), thereby lessening the
chance of true vendor-neutrality. We believe this is likely to happen
with the emerging OpenFlow specifications, but would not apply to
simple label-switching boxes.5

What does this mean for networking more generally? If indeed
we arrive at a point where the edge processing is done in software
and the core in simple hardware, then the entire infrastructure
becomes much more evolvable. Consider the change from IPv4
to IPv6; if all IP processing were done at the edge in software, then
simple software updates to hosts (and to the relevant controllers)
would be sufficient to change over to this new protocols. While we
started the paper focusing on infrastructure over architecture, this is
one way in which an improved infrastructure would help deal with
architectural issues.

Isn’t all this obvious? Yes, we think so. But we also think it is
important, and is not being sufficiently addressed within the SDN
community. We hope that HotSDN will be a forum for a discussion
of these topics.

References
[1] Beacon: A java-based OpenFlow control platform.

http://www.beaconcontroller.net.
[2] Brocade VCS Fabric. http://www.brocade.com/

downloads/documents/white_papers/
Introducing_Brocade_VCS_WP.pdf.

[3] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and K. van der Merwe. Design and Implementation of a
Routing Control Platform. In Proc. of NSDI, 2005.

[4] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford.
A NICE Way to Test OpenFlow Applications. In Proc. of
NSDI, 2012.

5Of course, vendors will always compete in terms of various
quantitative measures (e.g., size of TCAM, amount of memory),
but the basic interfaces should be vendor-neutral.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking Control of the Enterprise. In
Proc. of SIGCOMM, 2007.

[6] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: A Protection
Architecture for Enterprise Networks. In Proc. of Usenix
Security, 2006.

[7] M. de Prycker. Asynchronous Transfer Mode: Solution for
Broadband ISDN. Ellis Horwood, 1991.

[8] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: a Network
Programming Language. In Proc. of SIGPLAN ICFP, 2011.

[9] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean
Slate 4D Approach to Network Control and Management.
SIGCOMM CCR, 35(5):41–54, 2005.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. SIGCOMM CCR, 38, 2008.

[11] Juniper QFabric. http://juniper.net/QFabric.
[12] J. Kempf et al. OpenFlow MPLS and the Open Source Label

Switched Router. In Proc. of ITC, 2011.
[13] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,

M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In Proc. of OSDI, 2010.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM CCR,
38(2):69–74, 2008.

[15] A. K. Nayak, A. Reimers, N. Feamster, and R. J. Clark.
Resonance: Dynamic Access Control for Enterprise Networks.
In Proc. of SIGCOMM WREN, 2009.

[16] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-tolerant Layer 2 Data Center
Network Fabric. In Proc. of SIGCOMM, 2009.

[17] B. Pfaff, J. Pettit, T. Koponen, M. Casado, and S. Shenker.
Extending Networking into the Virtualization Layer. In Proc.
of HotNets, 2009.

[18] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent
Updates for Software-Defined Networks: Change You Can
Believe In! In Proc. of HotNets, 2011.

[19] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol
Label Switching Architecture. RFC 3031, IETF, 2001.

[20] S. Shenker. The Future of Networking, the Past of Protocols.
http://www.youtube.com/watch?v=YHeyuD89n1Y.

[21] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
Production Network Be the Testbed? In Proc. of OSDI, 2010.

[22] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture. In Proc. of DANCE, 2002.

[23] Trema: Full-Stack OpenFlow Framework in Ruby and C.
http://trema.github.com/trema.

[24] A. Voellmy and P. Hudak. Nettle: Taking the Sting Out of
Programming Network Routers. In Proc. of PADL, 2011.

[25] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
Flow-based Networking with DIFANE. In Proc. of
SIGCOMM, 2010.

89

http://www.beaconcontroller.net
http://www.brocade.com/downloads/documents/white_papers/Introducing_Brocade_VCS_WP.pdf
http://www.brocade.com/downloads/documents/white_papers/Introducing_Brocade_VCS_WP.pdf
http://www.brocade.com/downloads/documents/white_papers/Introducing_Brocade_VCS_WP.pdf
http://juniper.net/QFabric
http://trema.github.com/trema

	Introduction
	Background on Network Designs
	Overview
	Original Internet
	MPLS
	SDN

	Extending SDN
	Overview
	Fabric Service Model
	Fabric Path Setup
	Addressing and Forwarding in the Fabric
	Mapping the Edge Context to the Fabric

	Questions and Implications

