
Fathom: A Browser-based Network Measurement Platform

Mohan Dhawan
∗

Rutgers University
mdhawan@cs.rutgers.edu

Justin Samuel
UC Berkeley

jsamuel@cs.berkeley.edu

Renata Teixeira
_

CNRS & UPMC
renata.teixeira@lip6.fr

Christian Kreibich
ICSI & UC San Diego
christian@icir.org

Mark Allman
ICSI

mallman@icir.org

Nicholas Weaver
ICSI & UC San Diego

nweaver@icsi.berkeley.edu
Vern Paxson

ICSI & UC Berkeley
vern@cs.berkeley.edu

ABSTRACT
For analyzing network performance issues, there can be great utility
in having the capability to measure directly from the perspective of
end systems. Because end systems do not provide any external pro-
gramming interface to measurement functionality, obtaining this
capability today generally requires installing a custom executable
on the system, which can prove prohibitively expensive. In this
work we leverage the ubiquity of web browsers to demonstrate the
possibilities of browsers themselves offering such a programmable
environment. We present Fathom, a Firefox extension that imple-
ments a number of measurement primitives that enable websites or
other parties to program network measurements using JavaScript.
Fathom is lightweight, imposing < 3.2% overhead in page load
times for popular web pages, and often provides 1 ms timestamp
accuracy. We demonstrate Fathom’s utility with three case studies:
providing a JavaScript version of the Netalyzr network characteri-
zation tool, debugging web access failures, and enabling web sites
to diagnose performance problems of their clients.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General; C.4
[Performance of Systems]: Measurement techniques; D.2.8
[Software Engineering]: Metrics—performance measures

General Terms
Design, Measurement, Performance, Security

Keywords
Network troubleshooting, network performance, end-host network
measurement, web browser, browser extension

∗This work was done while the author was visiting ICSI.
_This work was done while the author was visiting UC Berkeley
& ICSI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’12, November 14–16, 2012, Boston, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-XXXX-X/12/11 ...$15.00.

1 Introduction
Network measurements from the perspective of end systems often
play a vital role both for researchers who want to develop general
insight into how the Internet functions, and for practitioners aim-
ing to diagnose individual performance issues. To gain insight into
network operation, researchers traditionally either (i) beg acquain-
tances to install a custom measurement tool, or (ii) use or instan-
tiate infrastructure to conduct the measurements (e.g., PlanetLab).
Neither of these options scales to supporting broad measurement
of the network’s edge, limiting the scope of the insight we can ob-
tain. Practitioners, on the other hand, have less interest in develop-
ing general knowledge about networked systems and more interest
in understanding the performance of their own systems, including
understanding why their users experience suboptimal performance.
While systems developed by the research community for general
measurement may aid practitioners in small ways, these systems
do not run on regular users’ end systems and hence do not offer
help with specific measurement or debugging of user problems.

While researchers and practitioners come to the need for mea-
surement of user end systems from opposite ends of the spectrum—
i.e., one looking for broad, general results, and the other seek-
ing specific information—both find obtaining such measurements
problematic due to the lack of general support in end systems.
While getting users to install programs can suffice for particular,
limited situations, the approach does not scale up: one cannot rely
upon users repeatedly conducting such installations as a building
block for facilitating measurement. One difficulty in this regard
concerns users not wanting to continually undergo the hassle of the
process. Another difficulty is the challenge that implementors face
in developing portable executables that run correctly across a wide
range of system configurations. A third issue is one of safety: such
installations, whether for standalone binaries or native code that
extends an existing system, generally require privileged access and
trust in the behavior of the introduced program.

In this work we aim to overcome these difficulties by minimiz-
ing the impediments to writing and installing measurement pro-
grams across a large number of end systems. Our vehicle for do-
ing so is Fathom, a browser-based extensible measurement plat-
form. Fathom provides a measurement-oriented API that standard
JavaScript loaded from any web page can tap into to facilitate em-
pirical observation.

We argue that building a measurement platform into the web
browser hits a sweet spot for both deployability and flexibility, thus
providing Fathom with the potential to flourish where other mea-

surement systems have floundered. The ubiquity of web browsers,
and the central role they play for a vast array of disparate network
activities, provide an unparalleled scaling potential that holds great
promise for benefiting common measurement and troubleshooting
scenarios (§ 2). Like other measurement platforms, Fathom re-
quires users to install a piece of software, a step that generally
presents a significant hurdle to widespread adoption. However, the
user only has to do so once to enable a vast range of measure-
ments. By bundling useful Fathom applications with the platform
itself (most notably, a connectivity debugger that works even in
complete absence of connectivity), we provide users an immediate
incentive for installation.

We begin by framing desiderata for a browser-based measure-
ment platform (§ 3), which guide both Fathom’s design and its im-
plementation. Our design (§ 4) includes a set of APIs covering a
wide range of measurement and troubleshooting applications, sig-
nificantly expanding the capabilities of in-page JavaScript code. To
ensure safety, we equip Fathom with a security model that balances
user approval, permission management, and code-signing (§ 4.2
and § 4.3). Consideration of possible implementation strategies
motivates our decision to implement Fathom as a JavaScript-only
extension for the Firefox browser, paying close attention to the
constraints imposed by modern-day browser environments (§ 5).
We demonstrate that careful design of a JavaScript-driven mea-
surement platform enables experimenters to conduct measurements
with modest overhead for the user (§ 6.1) and high accuracy (§ 6.2).
We report on additional experiences gained using Fathom in three
different use cases (§ 7). We discuss portability and adoption in-
centives (§ 8), and close with a survey of related browser extension
work and measurement platforms (§ 9).
Contributions: Fathom explores the feasibility of building a
generic network measurement and troubleshooting platform into
modern browsers. We view our contribution as developing a re-
alization of broad capability that the community has been working
towards for a number of years. Fathom builds on the lessons of
previous efforts and reflects a promising, practical approach that (i)
fosters innovation via open-endedness, as opposed to implement-
ing a particular tool; (ii) provides unparalleled access to the edge
via the ubiquity of browsers; (iii) enables novel analyses supported
via passive collection of context and active experimentation; (iv)
combines existing security primitives in a novel way to safely ex-
pand in-page JavaScript capabilities.

Fathom is open source and we invite interested readers to
visit http://fathom.icsi.berkeley.edu to download
the platform and provide feedback.

2 Motivating Scenarios
We begin by sketching examples of measurement efforts that bene-
fit from both an end system vantage point and a large footprint. The
list here is far from exhaustive; our design is general, and hence
adaptable to a range of other tasks, too.
Web performance debugging: With a browser-based vantage
point website operators can significantly improve their ability to
diagnose slow load times. Along those lines, Google’s analytics
code recently started collecting basic page rendering times [24].
This captures facts, but cannot provide troubleshooting assistance,
for which page authors currently lack critical information. The
web pages’ isolation from the host system here works against the
developer, preventing access to helpful indicators such as system
load and I/O characteristics. For example, the Google Maps fo-
rum [19] shows discussions whereby Google engineers explicitly
ask users to quantify the “slowness” of page loads, including an-
cillary system-level information such as CPU and network activity.

By allowing Google engineers access to a measurement platform
in the user’s browser they could directly extract the required in-
formation. Researchers can also leverage this capability to better
understand web performance and complexity (e.g., [7, 10]) both at
scale and across sites.
Web access failures: Similar to the performance debugging case,
a browser-based platform can also directly assist users in diagnos-
ing website failures. In this scenario, the browser could provide a
“diagnose” button that launches measurements to identify common
causes of access failures (e.g., loss of connectivity or DNS issues).
While web failures have been studied in a passive fashion [1, 42],
giving users a way to conduct real-time assessment offers the po-
tential to both (i) better diagnose the problem with contemporane-
ous active measurements and (ii) inform users what might be done
to fix the problem (or at least who to ask to fix the problem).
Local network debugging: Poor performance can also stem from
issues in the local network and hence combining external- and
local-network measurements can help pinpoint the location of the
problem [10]. Further, when multiple local systems use the mea-
surement platform we can discover this—e.g., using multicast DNS
or UPnP—and coordinate the vantage points for a richer analysis
of the failure.
ISP performance: A wide range of tools perform active measure-
ments from end systems to a controlled server, including speed
tests [4], general performance diagnostics [20, 28, 31], traffic tam-
pering [46], and traffic shaping detectors [12, 25]. While each of
these tools performs custom tests, they share the basic need to con-
duct active probing from end systems.
Large-scale topology mapping: Many efforts within the research
community over the years have tried to understand the Internet’s
topology by conducting traceroute(-like) measurements from mul-
tiple vantage points [8, 44, 47]. A browser-based platform would
facilitate such studies from a breadth of vantage points currently
not practical.

3 Platform Design Goals
We identify the broad design goals for an end-system based mea-
surement platform as follows:
Rich measurement capabilities: The examples in § 2 show that
we require support for both passive and active observations. Pas-
sive measurements provide precise and continuous understanding
of the activity in the browser, ranging from system-level infor-
mation such as CPU load, memory availability, and traffic load,
to browser-level activity such as HTTP session tracking and fine-
grained page-level activity (e.g., DOM1 updates and event loop ac-
tivity). Note that this enables far broader analyses than available
to in-browser JavaScript debuggers (e.g., Firebug). While network
problems may often manifest in passive measurements, their root
cause frequently reveals itself only using active probing. We there-
fore require a wide range of network I/O primitives, reaching as far
down in the networking stack as feasible.
Extensibility: As sketched in § 2, we strive for a general measure-
ment facility rather than providing a simple interface to ready-made
measurements. Therefore, instead of providing APIs for specific
measurements, the platform should provide APIs that support the
implementation of as wide an array of measurements as possible.
Security and privacy: While Fathom strives to maximize utility to
practitioners and experimenters, the platform must not compromise
the privacy of the user (e.g., expose browsing history). Addition-

1Document Object Model, a browser-independent tree abstraction
representing a web page.

(1) var fathom = window.fathom;
(2) var DATA = "Hello world";
(3) var ADDR = "226.0.0.2", PORT = 23456;

(4) fathom.socket.multicast.open(socketCB);

(5) function socketCB(sock) {
(6) if (sock && !sock[’error’]) {
(7) fathom.socket.multicast.send(sendCB,

sock, DATA, ADDR, PORT);
(8) }
(9) }

(10) function sendCB(result) { ... }

Figure 1: Asynchronous multicast network output in Fathom.

ally, the platform must not allow for the abuse of host or network
resources.
Measurement accuracy: We require the measurement platform to
accurately track time and the outcome of network I/O events. Pre-
cise timing supports the ability to both understand when an event
happened and to schedule future events.
Low system overhead: We desire the platform’s runtime overhead
to be as low as possible for two reasons: (i) high overhead can
alter test results for intensive experiments (e.g., bandwidth mea-
surements) and (ii) the platform resides in a user’s application and
hence we do not want to unduly impact the user’s browsing activity.
Portability: Measurement code should work portably on any im-
plementation of the platform. This implies that measurement code
should execute without requiring compilation to different execution
environments.

Fathom’s design (§ 4) addresses the first three goals and its im-
plementation (§ 5) the remaining goals.

4 Fathom
We design Fathom to provide a rich set of APIs for measure-
ments. Since Fathom significantly expands the capabilities of in-
page JavaScript code, it requires a carefully thought-out security
and privacy model.

4.1 API design

Fathom’s APIs remain conceptually independent of the underly-
ing platform implementation and cover a broad range of network
I/O capabilities as well as means to obtain system information and
historical performance baselines. Our case studies (§ 7) and devel-
opment experience drove the design.

To make its services available to in-page JavaScript code,
Fathom creates a new JavaScript object, registers its APIs as meth-
ods on this object as requested by the measurement code (see § 4.3),
and adds it to the page’s window object as window.fathom.
Web application code can invoke these APIs to perform both pas-
sive and active measurements on the end system. To do so, the
caller provides a callback function which Fathom will invoke when
the result of the call becomes available. This approach provides
natural asynchronicity in the presence of potentially blocking net-
work I/O. Fathom passes a single object to the callbacks. A set
of properties on the object conveys error codes and return values.
Figure 1 shows an example of sending data over a multicast socket.
Fathom currently provides four main API families (listed in Ta-
ble 1):
fathom.socket provides socket management. These func-

tions export low-level socket functionality and serve as the basis
for active measurements, including opening TCP and UDP sock-
ets, setting socket options, and performing both blocking and non-
blocking I/O operations.

fathom.proto supplies clients and servers for common
application-layer protocols including DNS, multicast DNS, HTTP,
and UPnP.
fathom.system realizes controlled access to system-

provided tools and information to invoke select services on the
host that can provide information otherwise unavailable or incon-
venient to re-implement. Fathom sanitizes the call arguments, han-
dles onerous output parsing, and returns results to the caller while
abstracting platform specifics. Examples in this family include the
host’s ping and traceroute implementations. In contrast to other
runtime plugins such as Java (see § 5.1), Fathom’s API never al-
lows invocation of arbitrary system commands.

Lastly, fathom.utils collects additional helpful APIs, par-
ticularly access to aggregate statistics for passively collected
data (metrics.*) and configuration settings for the browser
(browser.*), such as proxy configuration.
fathom.utils.metrics.* performs low-level system

sampling and monitors the browser’s HTTP activity. Fathom cur-
rently conducts passive data collection in three domains: each web
page, the browser itself, and the host’s system and network resource
usage. For web pages, collection includes socket connection times,
DNS resolution times, HTTP response times and goodput, as well
as the trigger times for DOMContentLoaded and Load page
events.2 From the browser, it collects its overall memory use as
well as network transmission statistics. Finally, from the host sys-
tem it collects CPU load, memory use and availability, per-process
load, and network interface statistics including packet/byte coun-
ters, transmission errors, and—for wireless links—signal strength
and noise levels. Per-page CPU load proves tricky to measure.
Fathom can expose any browser specific performance measurement
API [37] to web pages to measure JavaScript overhead, but authors
would still need to instrument their code for reliable profiling. Fur-
thermore, the CPU load induced by active embedded objects such
as Flash manifests outside of the browser.

Fathom keeps a history of these metrics to provide baseline per-
formance metrics for the pages. JavaScript code using Fathom
can then obtain aggregate statistics of these data points in order
to diagnose detected anomalies in the document loading process.
Fathom stores browser and system metrics in client-side persistent
storage, while the web page metrics end up in the site’s HTML5
localStorage facility. This separation of storage for the base-
line metrics enables websites to selectively retain or discard col-
lected datasets for individual browsing sessions, reduces Fathom’s
persistent storage requirements, and minimizes information leak-
age across different origins.

Since Fathom monitors the browser’s entire HTTP activity, web
pages not requiring Fathom’s capabilities will also incur an over-
head in page load times. To exclude any added overhead, we pro-
pose that sites that require Fathom’s diagnostic capabilities could
explicitly request them. To signal to the server that the client sup-
ports Fathom, Fathom adds an X-Fathom header in the HTTP re-
quest for each page. Web sites that wish to enable diagnostic mea-
surements for the page and its additional resources echo this header
in their response. Via local browser configuration the user can re-
quest passive data collection for sites as needed.
Comparison: Flash and Java constitute the main competitors to
Fathom, so it behooves us to compare their capabilities directly.
Fathom’s network I/O capabilities subsume Flash’s, with the ex-
ception of the latter’s built-in multimedia streaming capabilities.

2When downloading a page’s DOM has finished, the browser trig-
gers a DOMContentLoaded event. When the page’s additional
components (such as images) have finished downloading as well,
the browser triggers a Load event.

Availability in Default
API JavaScript Flash Java Applet1 policy (§ 4.3)
fathom.socket.tcp.* G# G#2 U3 / SM→U
fathom.socket.udp.* # # U3 / SM→U
fathom.socket.broadcast.* # # U
fathom.socket.multicast.* # G# U

fathom.proto.dns.* # # 4 –
fathom.proto.http.* G# SM→U
fathom.proto.mdns.* # # 4 U
fathom.proto.upnp.* # # 4 U
fathom.system.getActiveInterfaces() # # U
fathom.system.getResolvers() # # U
fathom.system.getRoutingTable() # # G#5 U
fathom.system.doTraceroute() # # G#5 –
fathom.system.doPing() # # G#5 –

fathom.utils.browser.* G#6 G#6 G#6 U
fathom.utils.timer.* –
fathom.utils.metrics.* # # # U

JavaScript & DOM access G#7 G#8 –

1 Given signed code and trust confirmed by
the user, i.e., unconstrained host access with
user-level privileges.

2 No support for listening sockets.
3 For listening sockets.
4 If implemented by the experimenter.
5 By directly calling system binaries in OS-

specific locations.
6 Implicitly or partially; for example, XML-

HttpRequest connections transparently
inherit browser proxy settings. In Flash,
socket connections do not inherit, others do.

7 By abusing the getURL function; no access
to return values.

8 JavaScript–Java interaction via LiveConnect;
details depend on platform and implementa-
tion.

Table 1: Primary Fathom namespaces and APIs. Due to lack of space, we show select individual functions only for the system
family of calls, given its diversity. The final column indicates input mechanisms required by the default client policy (see § 4.3):
“U” symbolizes that a capability requires user input, “SM→U” means that server manifests suffice to permit the capability while
their absence necessitates user input, and “–” indicates permission without additional confirmation. Fathom by design provides full
access to JavaScript functions and the DOM without the need of an additional API; we include the ability here to compare to other
platforms.

In particular, Fathom supports listening sockets, UDP, protocol-
specific APIs, as well as controlled access to host commands and
historical performance baselines. With Java, the situation depends
on the execution context: without host-specific customization, un-
trusted applets only allow a limited set of network I/O APIs and
require communication with the applet’s origin server. As pointed
out in § 5.1, signed and trusted applets (as well as Java applica-
tions) provide an over-privileged environment that supports all of
Fathom’s capabilities, without abstracting from platform specifics
and without reliable DOM interaction. Table 1 summarizes the re-
spective capabilities.

4.2 Privacy

Our first goal is to ensure Fathom does not allow measurements to
exfiltrate sensitive information from a user’s browser or host. To
do so, Fathom’s design mandates that its network I/O stack oper-
ates independently of the browser’s stack. Hence, any state the
browser would normally associate with a connection is unavail-
able to Fathom. For example, when Fathom script code running
in a web page from site a.com issues HTTP connections to site
b.com, such connections do not transmit current session cook-
ies for b.com even though the user might currently be logged in
to that site in a separate tab. This mechanism effectively defeats
classic attacks leveraging same-origin violations, such as cross-
site scripting (XSS) or cross-site request forgery (CSRF). Like any
JavaScript code, Fathom scripts can only access host-local state (in-
cluding cookies) for the site the script originated from (a.com, in
this case).

By providing websites with the ability to collect additional
client-side data in the form of both active and passive measure-
ments, Fathom increases the ability for websites to fingerprint
visitors [15]. In addition, clients using anonymizing proxies ex-
pose themselves to additional de-anonymization risks due to web
pages having access to TCP and UDP sockets that can bypass the
browser’s proxy settings, as well as communicating with local net-

work services (such as the local DNS resolver) that may expose
identifying information. Current tools for obtaining anonymity
or resisting fingerprinting try to automate disabling or changing
sensitive browser functionality [45], but require vigilance on the
user’s part. Thus, it seems reasonable to expect developers of such
technologies (or users employing it) to consider disabling Fathom
as needed. Additionally, when the browser has a proxy setup,
Fathom’s default policy (see below) could disallow active measure-
ment except through the proxy or by explicit agreement of the user.
Doing so would also reduce the chances of fingerprinting through
arbitrary active communication.

The storage of local data about a user’s browsing history is
another important privacy concern. Most popular browsers have
adopted private browsing modes that, when enabled, aim to elimi-
nate the local storage of information that could later reveal a user’s
browsing history [2]. Additionally, users expect that “clearing their
history” removes all data the browser keeps that one could use to
infer their history—behavior that Fathom conforms with.

4.3 Security

We next discuss Fathom’s model for controlling scripts such that
the platform has adequate protection against facilitating active at-
tacks. We note that in the limit any communication we allow
can become part of a distributed attack, but the same applies to
browsers without Fathom [29, 50]. We strive to provide enough
control that Fathom does not exacerbate the situation significantly.
In our present design, Fathom sets its security posture for a given
script based on the following inputs:
I.1: Client Policy. Once users have installed Fathom, they may
tune the client policy by customizing a general local security pol-
icy that comes with Fathom. This policy specifies the conditions
under which Fathom makes API calls available to scripts. For
groups of APIs, the policy defines which destinations they may
access, whether they require permission to execute, and the form
of that permission. Permission forms include user confirmation,

Resource Schema Description
http://*.google.com:* fathom.http.*APIs may contact

any *.google.com name on arbitrary
ports

://{upnp}: any API can contact hosts found via
fathom.upnp.* calls

udp://10.1/16:53,5353 fathom.udp.* APIs may contact
hosts within 10.1/16 on the DNS and
mDNS ports

Table 2: Example resource schemas in Fathom script manifests.

script manifests, and code signing, with multiple forms possible in
order to indicate priorities. Users can adjust this policy at any time.
Table 1 shows the default policies for the various API groups.
I.2: User Confirmation. Fathom can directly ask users whether
it should allow some activity at script run time. We do not con-
sider this a particularly appealing mechanism because (i) framing
questions in a way users will understand is challenging, and (ii)
a system that overly interferes with a user’s workflow may lead
users to disable Fathom, or train them to grant permission requests
blindly [16]. (Note that Fathom’s status icon in the browser’s tool-
bar always indicates to the user when a web page employs Fathom
APIs.)
I.3: Script Manifests. Each Fathom script includes a script mani-
fest that succinctly declares desired resources. Fathom ensures that
in-page JavaScript code can only access resources declared in the
manifest, subject to the effective client policy. Currently, these re-
sources include Fathom APIs and active measurement targets. APIs
and their permissible targets get expressed in tandem in resource
schemas of the following form:

[API _subset] : //[destinations] : [ports]

A resource schema requests access to certain destinations and
ports for a subset of the Fathom API. Similar to import state-
ments in other languages, Fathom supports API aggregation, al-
lowing authors to request access to specific functions (e.g., to
fathom.proto.dns.query()) or to all routines in a fam-
ily (e.g., fathom.proto.dns.*). Destinations come in three
forms: (i) domains with wildcarding (such as *.a.com), (ii) IP
address ranges (e.g., 192.168/16), and (iii) derived IP addresses
(e.g., {upnp}), covering cases where one Fathom API returns an
address that the author wants to subsequently pass to another API,
but which the script author cannot specify in advance.3 Table 2
shows examples of Fathom resource schemas.

Fathom enforces resource schemas by initially only making a
single API function available: fathom.init(). This func-
tion receives the script manifest (in JSON form), and subsequently
hooks only the requested APIs into the window.fathom object.
Scripts thus have no way to access APIs they did not request.
I.4: Server Manifests. In addition to script manifests, we allow
targets to explicitly control permissible incoming traffic via server
manifests. These manifests reside at a well-known location on web
servers, currently /fathom.json. Server manifests can whitelist
connectivity for scripts originating from specific domains or IP ad-
dresses. Users can configure their client policy to allow APIs to
proceed without prompting whenever server manifests permit inter-

3For example, UPnP’s discovery phase produces IP addresses to
which the script may want to connect via HTTP in order to retrieve
a device’s service profile. Resource schemas allow precise expres-
sion of such dependencies, in contrast to broad notions such as “lo-
cal network.” Fathom tracks hostnames and IP addresses returned
by its APIs.

action with the given destination. This scenario forms the default
for most APIs initiating connections.
I.5: Code Signing. Finally, experimenters can sign Fathom scripts
cryptographically to express authorship. Such signatures provide
two key benefits. First, signatures establish an identity behind
Fathom code, which allows users to reason about scripts in terms of
their trust in the author, instead of (or in addition to) making judg-
ments based on the resources the script intends to use (API calls
and targets). This trust in authorship likely proves easier for non-
technical users to understand. Second, signed code allows users
to configure permissions at the granularity of author identities in-
stead of script origin. Furthermore, Fathom can identify scripts ab-
stractly, across origins, and even when users save Fathom-bearing
pages to disk.
Examples: With the above inputs Fathom can derive effective poli-
cies for each arriving script at run time. For instance, Fathom can
let an arriving script proceed without user prompting if (i) the client
policy (I.1) permits execution without prompting for the API re-
sources the script requests (via its script manifest, I.3) and (ii) the
desired destination agrees via a server manifest (I.4), given (iii) this
server manifest actually exists and indeed agrees. In a more simple
scenario, if a script bears the signature (I.5) of an author whom the
user added to their local whitelist indicating full trust in the code,
then the script will execute without any prompting.

By design, policy inputs can come into conflict. The client policy
resolves such cases. Consider a script that declares (via I.3) its
need to use fathom.socket.tcp.* to open a connection to a
given target that has agreed to such communication (via I.4). If the
user’s client policy (I.1) requests prompting for permission to use
fathom.socket.tcp.* then Fathom will prompt the user (via
I.2) before running the code regardless of the server’s consent and
any possible signing.

Our hope is that with more extensive experience, a subset of in-
puts will emerge that proves sufficient, since fewer mechanisms
would simplify explication and maintenance of the security frame-
work. Moreover, expanded user experience will allow us to better
understand how Fathom’s input mechanisms can accommodate the
users’ potentially limited awareness of the implications of the dif-
ferent permission levels.
Comparison: Fathom’s security model borrows from the Java and
Flash platforms, with careful consideration of current browsers’
same-origin policies. Like Java, we employ code signing and pro-
vide user consent as a means to enable functionality, but in contrast
to Java’s carte blanche permissions after user consent to signed
code (§ 5.1), Fathom retains precise API-level control and allows
neither execution of arbitrary binaries nor file system access. Like
Flash, we employ server manifests to establish an explicit con-
sent signal for the Fathom core that permits cross-site connec-
tions [33]. Script manifests exist in several technologies, includ-
ing Java, Flash, and Android apps, as well as Firefox and Chrome
extensions. However, our notion of resource schemas renders re-
source control more explicit than any of these technologies.

5 Implementation
Web browsers are complex systems, hence the design of a browser-
based measurement platform requires careful thought. We first dis-
cuss the implementation choices within the browser, and then we
describe our prototype of Fathom, which we implement as a Fire-
fox extension.

5.1 Implementation space

To maximize ease of adoption, we would like Fathom to depend
on the browser’s architecture as little as possible while still imple-

Rich Accuracy Portability
Technology APIs Browser OS
Standard JS 7 Low 3 3
Extension (JS) 3 Good 7 3
Plugin (runtime) 3 High 7 7
Plugin (custom) 3 High 7 7
Browser 3 High N/A 7

Table 3: Design space for a browser-based platform. Note:
the accuracy of JavaScript-based extensions depends upon the
underlying extension API.

menting the design discussed above. In the following, we discuss
several points along this design space. Table 3 summarizes the ca-
pabilities of each approach.
Standard JavaScript: While it is possible to implement some
types of measurements in JavaScript (see discussion in § 7.1), the
lack of low-level socket interfaces and access to host properties,
leaves this approach suboptimal. Additionally, measurement accu-
racy would require careful implementation as timer accuracy de-
pends heavily on browser architecture and load.
Browser extensions: Extensions enhance the functionality of the
web browser and allow implementation of measurement tasks in
portable JavaScript, platform-dependent C/C++, or both. The
API richness available to JavaScript extensions varies considerably
across browsers. Those extensions execute with browser privileges
and have access to most system resources, including the network
and file systems, and remain portable across different operating sys-
tems for a particular browser. Since most modern browsers compile
JavaScript to native code using JIT compilers, extensions do not
impose any significant performance overhead. JavaScript exten-
sions present good candidate vehicles for realizing a measurement
platform, assuming sufficient API richness and accuracy. C/C++
extensions increase measurement capability at the expense of porta-
bility.
Runtime plugins: In this category, Java, Flash, and Silverlight
technologies allow developers to implement experiments and eas-
ily distribute them to users who have the required runtime plugin
installed. Indeed, Java is a popular choice for measurement ex-
periments due to its rich APIs and performance, but it comes with
crucial shortcomings that largely also apply to the Flash platform.
First, Java’s sandboxing keeps execution effectively fully separate
from the containing web page. By contrast, measurement code
that executes within a web page can directly interact with current
web applications. Second, the runtimes’ security policies tend to
prohibit activities that could aid network measurements (such as
traceroute or ping invocations). Java’s code-signing feature
provides a way to work around this limitation: after the user ac-
cepts an initial dialog presenting the code author’s identity, even
self-signed applets may access arbitrary runtime APIs and thus
behave like host-native applications with full user privileges, in-
cluding permission to create and delete files or contact arbitrary
network locations. While no doubt useful in principle, this carte
blanche ability far exceeds the permissions required to implement
measurement and troubleshooting code. Third, the availability of
the runtime presents a limiting factor, as virtually no modern web
sites use Java applets.4 Fourth, even when installed, code porta-
bility remains uncertain. For example, JavaScript interaction from
plugin code remains highly platform-dependent, and the Android
operating system supports only an API-limited dialect of Java.
4OSX and Windows no longer include a Java runtime by default,
while several recent critical security incidents relating to Java [17,
26, 35] further erode users’ willingness to install the platform.

Custom plugins: We could develop our own native measurement
plugin in C/C++. While enabling great performance and host ac-
cess, portable interaction with the browser remains uncertain. For
example, Microsoft recently dropped support for the cross-browser
NPAPI [53] in its browsers. Sandboxing technologies like NaCl
[55] and Xax [13] allow the execution of native applications within
the browser without compromising on performance, but their sand-
boxed environment respects the browser’s security policies and dis-
ables application code from performing TCP/IP or UDP network-
ing, or even local file I/O.
Browser changes: One could build the entire platform into an
open-source browser, which would provide ideal feature support.
This approach would present a substantial development effort and
would likely find little immediate support from browser vendors.
While not immediately feasible, if a general purpose measure-
ment platform proves useful—especially to web site operators—the
functionality could be moved into browsers in the future.

After considering the major browsers and the design space
sketched above, we chose to implement our prototype of Fathom
as a JavaScript-only extension for the Firefox browser. Several as-
pects informed this choice: (i) Firefox enjoys great popularity and
exists on a wide range of different platforms; (ii) its XPCOM inter-
face provides a rich API to extensions; (iii) as we describe further
below, this API allows us to perform low-level socket I/O directly
from JavaScript. The latter currently sets Firefox apart from other
browsers, for which we would need to implement at least parts of
Fathom in native code. The extension realizes the design details
outlined in § 4 and currently consists of 3,200 lines of JavaScript.

5.2 Firefox’s architecture
Before describing Fathom’s architecture in detail, we briefly ex-
plain the major components of the Firefox browser relevant to
Fathom’s design. Firefox’s DOM subsystem creates an abstract
representation of the visited web pages, which the rendering en-
gine uses for layout and page imaging. A single, shared JavaScript
engine parses and interprets both web page and extension code, the
browser’s UI thread. While the browser restricts web page code to
stringent security policies, the extension code runs with browser-
level privileges. The network engine implements application-layer
network protocols such as HTTP and FTP. To do this, it employs
the Netscape Portable Runtime (NSPR), Mozilla’s platform-neutral
API for low-level network I/O and libc-like functions. The XP-
COM subsystem implements a number of core architecture facil-
ities such as threads and memory management. It also exposes
these features to the JavaScript runtime. Furthermore, it includes
js-ctypes [40], a JavaScript wrapper to the ctypes library, allowing
extensions implemented in JavaScript to call functions in shared C
libraries.

5.3 Architectural challenges
Firefox’s architecture poses a number of challenges for extension
development, particularly given the design goals for a network
monitoring platform as we outlined in § 3.

First, without the js-ctypes wrapper, we could not perform
socket-level I/O from JavaScript and would need to resort to native
code. Even given js-ctypes, implementation of some socket APIs
requires handling platform dependent data types (such as union-
based network address structures) which creates a challenge for
achieving a truly OS-neutral Fathom. We overcame this problem
by providing sufficient padding in the relevant JavaScript datatypes
to accommodate varying union sizes on different platforms.

Second, despite low-level socket access, ICMP responses and
raw sockets remain unavailable. Thus, Fathom cannot provide ac-
cess to packet-level traces, which would be useful for detailed diag-

Fathom Firefox

fathom object
& APIs

DOM
Rendering

Engine

JavaScript Engine

Network
Engine

NSPR

XPCOM

js-ctypes

Socket workers

FathomScripts

Active/passive
measurement

scripts

NetworkStorageShell

Figure 2: Fathom’s architecture in Firefox. Fathom augments
the browser’s XPCOM subsystem with measurement capabil-
ities and extends each web page’s DOM with a fathom ob-
ject and associated measurement APIs. Worker threads enable
asynchronous API implementation.

nosis. Fathom overcomes the problem by leveraging access to the
browser’s command execution API to directly invoke select ser-
vices on the host, like ping or traceroute and sidestep this architec-
tural challenge.

Third, JavaScript executing as part of a web page or browser
extensions accesses the objects on the web page from the browser’s
UI thread. Call blocking or long-running functions while executing
in this thread would render the entire browser’s UI unresponsive.

Fourth, while Firefox extensions can use a threading mecha-
nism called Chrome Workers5 [39], these threads do not follow the
standard OS model of a shared address space with synchroniza-
tion primitives. Instead, a message-passing system similar to Web
Workers exclusively manages communication with worker threads,
imposing additional latency.6

Fifth, to conserve system resources, recent Firefox versions
clamp callback timer accuracy for in-page JavaScript to low pre-
cision when the user is viewing a page in a different tab. This
clamping can add further function call latency.

5.4 Fathom’s architecture

Figure 2 shows the schematic architecture of Fathom running in
Firefox. Once installed, the extension creates a component in the
XPCOM subsystem that performs two main tasks. First, it in-
stalls measurement scripts that handle data collection for passive
in-browser measurement. Second, it provides measurement and
network I/O APIs to in-page JavaScript. We next discuss the main
implementation decisions of Fathom’s prototype.
Asynchronous API callflow: As mentioned in § 5.3, in-page and
extension JavaScript code as well as the application’s UI thread
share a single thread of execution. Since Fathom likewise consists
of JavaScript code, its focus on network I/O requires careful API
design on our part to avoid the possibility of rendering the entire
application unresponsive. In order to invoke potentially blocking

5“Chrome” here refers to a privilege level within the Firefox
browser, not to the Google Chrome web browser.
6While XPCOM exports an interface to manage OS-level threads,
we opted for Chrome Workers as they provide a natural, Web
Worker-like asynchronous interface and also give thread safety
guarantees.

Webpage Fathom

re
cv
()

post()

post()
callback()

udp.recv()

NSPR

PR_Recv()

Main
Thread

Socket
Worker

Figure 3: Asynchronous callflow in Fathom between the main
thread and a socket worker, for a recv() invocation on a UDP
socket.

I/O calls without delaying the rest of the browser and without suf-
fering delays due to browser load, Fathom performs all such calls
in independently executing Chrome Worker threads and uses asyn-
chronously invoked user-provided callbacks when I/O operations
complete. Fathom allocates these worker threads on per-socket
granularity as socket workers. Firefox’s event management on such
threads thus ensures that I/O operations queue up and get processed
as I/O progresses. Figure 3 illustrates the callflow.
Timer throttling: The throttling of frequently executing timer
callbacks in background tabs, as mentioned in § 5.3, could affect
measurements implemented in inactive in-page JavaScript code.
For example, a measurement in a background tab that invokes
the fathom.socket.udp.receive() API call in a callback
invoked periodically via JavaScript’s setInterval() mecha-
nism, Firefox would clamp the timeout at 1000ms, perhaps sig-
nificantly slowing down and affecting the measurement. As a
workaround, Fathom users can package an entire measurement into
a single function (with nested state and functions) and provide the
source of that function—a FathomScript—to Fathom (JavaScript’s
toSource() feature makes this easy). Fathom then launches
a low-privileged Web Worker, prepares it such that it offers the
Fathom API, and proceeds to execute the function in the Worker.
This guarantees independence from in-page timer clamping. Script
authors need only be aware of this feature in special cases requiring
the use of low-latency I/O inside Fathom (see § 7.1).
Maintaining baseline measurements: For passive measurements,
the current implementation of Fathom samples browser and sys-
tem information every 5 seconds and makes the last 2,000 sam-
ples available to all web pages. Each sample takes approximately
450 bytes. While the Fathom implementation stores a sliding win-
dow with the last 20 user sessions per domain for baseline met-
ric measurements, all the parameters of the baseline metrics are
configurable. We plan to evaluate different techniques for keeping
baseline measurements in our future work.
Security model: Our present implementation supports all of the
approaches outlined in § 4.3 other than code-signing, which we
anticipate adding in the near future. While Firefox already sup-
ports signing JavaScript code [38], we have opted not to employ the
mechanism directly in Fathom, due to technical shortcomings.7 We
do, however, follow Firefox’s approach of signing the JavaScript
code of an entire web page, including scripts it pulls in additionally,
which provides protection against runtime page modifications.
Controlling resource consumption: Our design incorporates

7Firefox requires bundling the required files into a JAR file, re-
quires a jar: protocol handler for the download, insists on spe-
cific Content-Type header MIME values, and uses a rather sim-
plistic dialog to convey signer identity to the user.

tracking Fathom’s resource usage—e.g., number of open connec-
tions or amount of data transmitted and received in the last time
unit. Currently we do not restrict resource usage, which is con-
sistent with other runtime plugins such as Flash and Java. As we
accrue experience with Fathom we may decide exposing resource
usage policy to users and/or developers as it becomes necessary.
In the current implementation, if a user judges that a given experi-
ment is overloading her system, she can simply close the web page.
Given how simple it is for users to stop measurement pages, exper-
imenters have a strong incentive to use system’s resources consci-
entiously.

6 Performance Evaluation
We evaluate Fathom’s performance using two metrics—overhead
on web browsing and timing accuracy. We conduct all experiments
with Firefox v7.0.1 on a 2.20GHz Intel Core2 Duo machine with
2GB RAM, running Ubuntu 10.04, and connected to a 100 Mbps
local network.

6.1 Overhead

We evaluate Fathom’s page load overhead for eight popular web
sites (CNN, Craigslist, ESPN, Google Maps, New York Times,
Slashdot, Yahoo! and YouTube) with diverse JavaScript complex-
ity and number of HTTP requests. For each site, we compare
the time interval between initiating a page load and the firing of
the Load event in a Fathom-enhanced browser against a normal
browser. The Load event fires at the end of the page loading
process when all page components have rendered. To obtain the
ground truth, we enhance the browser with a lightweight extension
that captures only the page load times. We also compare Fathom’s
overhead with that of Firebug [36], a popular browser extension to
debug web page performance. Firebug performs extensive diag-
nostic measurements, which increase the page load time. We use
Firebug as a reference and not as a direct comparison.

We perform 50 page loads for each benchmark and record the
timestamp values for the Load event and the clock-time spent
within Fathom’s code for collecting the metrics. To measure the
worst case performance overhead Fathom imposes, we conduct all
experiments on a browser with a warm cache. Table 4 shows the
average absolute load times and Fathom’s relative overhead for the
benchmarks. The count of HTTP requests, scripts, and images in-
dicates the range between the minimum and the maximum number
of requests of each type until the page finishes loading. Requests
that start after the page has loaded are not included in these num-
bers, as Fathom’s activity for such requests will not affect the load
time.

Overall, Fathom imposes 1–3% overhead for all the benchmarks.
We note that as the number of HTTP requests increase, the average
execution time within Fathom also increases. We expect this behav-
ior, because Fathom observes all HTTP activity to collect passive
measurements. We also observe that with the increase of HTTP re-
quests, Fathom does not always incur a corresponding increase in
the absolute overhead. This is because Fathom’s overhead is not
additive. Since we implement Fathom in JavaScript, its execution
will only block the single-threaded JavaScript interpreter, while the
rest of the browser can continue loading the page. Thus, Fathom’s
overhead gets masked in part by network latency and the browser’s
parallelism during the document loading process.

6.2 Accuracy

Network measurement platforms require accurate timestamps and
timers. Fathom leverages the browser’s JavaScript API to record
timestamps and the XPCOM API to implement a timer. As with all

No browsing Passive browsing Active browsing
Avg. Stdev. Avg. Stdev. Avg. Stdev.

Send (ms) 0.52 0.29 0.54 0.28 0.52 0.39
Recv (ms) 0.41 0.33 0.50 0.75 0.54 0.89

Table 5: Difference in timestamps from Fathom and tcpdump
for sent and received packets under different browsing condi-
tions.

measurement, competing activity (browser, host and network) can
affect accuracy of timestamps and firing of timers.
Timestamp accuracy: We measure the accuracy of Fathom’s time-
stamps by sending probe packets between two machines on the
same local network and recording timestamps for those packets in
Fathom and via packet capture with tcpdump on the same ma-
chine. Since the timestamps from Fathom and tcpdump stem
from the same clock, the difference between the timestamps for
each packet are due to the time required to traverse the network
stack between the interface and the browser.

We test timestamp accuracy under different browsing conditions
with a train of 106 probe packets with a payload of 200 bytes each.
In the “no browsing” scenario, there is no other browsing activ-
ity in progress. For the “passive browsing” scenario, we load four
web sites (CNN, Google Maps, NYTimes and YouTube) in separate
browser tabs and send the probe train after the sites finish loading.
For the “active browsing” scenario, we send the probe train while
simultaneously loading the same four sites in other tabs.

Table 5 shows the results of the experiment. The “send” row
indicates the difference in timestamps from the time Fathom dis-
patches the probe to the resulting timestamp from tcpdump. Sim-
ilarly, the “recv” row indicates the delay from the timestamp given
by tcpdump to its arrival in Fathom. In all the browsing sce-
narios we find the accuracy of the timestamps in Fathom—which
inherit the XPCOM granularity of 1 ms—to be within 1 ms of the
tcpdump reported event time. Further, the standard deviation for
all experiments is also below 1 ms. In the passive and active brows-
ing scenarios, Fathom’s receive timestamp accuracy remains lower
than in the “no browsing” case, but the accuracy is still less than
1 ms.

We next explore Fathom’s timestamp accuracy under heavy
cross-traffic on the host. We repeat the experiment for 10 probe
trains of 10 packets while performing an iperf [21] transfer with 4
TCP connections between two hosts on the same local network. In
this experiment, the average difference in the “send” timestamps in-
creases to 729 ms. This test represents a worst-case scenario when
users fully utilize their network; the heavy concurrent network traf-
fic from iperf completely fills the egress queue, which prevents
timely transmission of Fathom-generated probes.
Timer: We measure the accuracy of Fathom’s timer by testing how
precisely it can dispatch 200-byte probes at 200 ms intervals. We
use the timer to send 51 probe trains of 100 probes each and mea-
sure the average (µ) and standard deviation (σ) for the observed
intervals between consecutive probes. Since the accuracy for XP-
COM timers is 1 ms, a σ of more than 1 ms would mean that the
timer loses precision. We study timer accuracy in four scenarios:
(i) no browsing, (ii) passive browsing, as described above (and for
which asynchronous activity due to both ads and scripts can lead to
concurrent activity), (iii) active browsing, as described above, and
(iv) CPU stress case, where we emulate a competing process in the
host that overloads the CPU.

For the no-browsing and stress tests, we find the mean timer in-
terval to be within 1 ms of the expected value of 200 ms. Further,
for both cases the 5th percentile was 199 ms and the 95th per-

Avg. load Avg. Fathom Avg. Firebug Avg. execution time Avg. Fathom Avg. Firebug
Benchmark # HTTP # Scripts # Images time (ms) load time (ms) load time (ms) within Fathom (ms) overhead(%) overhead (%)
Craigslist 4 2 0 512 517 532 9 1.1 4
YouTube 28–34 2–3 17–23 869 896 957 37 3.1 10
Google Maps 39–40 7–8 26–28 1233 1268 1585 60 2.9 29
Yahoo 49–58 4–5 31–43 1168 1180 1747 42 1.0 50
Slashdot 35–60 2–12 22–30 2381 2414 4083 51 1.4 71
ESPN 85–89 7–8 61–63 1761 1805 2325 96 2.5 32
CNN 89–104 6–9 22–59 1458 1504 2263 174 3.1 55
NY Times 115–125 23–26 77–80 1144 1159 1798 91 1.3 57

Table 4: Average page load overhead of Fathom for popular web pages over 50 runs.

centile was 201 ms. For the passive and active scenarios, we use
10 probe trains of size 10, with probes sent at 200 ms intervals. In
the passive-browsing scenario, the average lies within 2 ms of the
expected, the 5th percentile was 1 ms, and the 95th percentile was
267 ms. For the active browsing scenario, the average lies within
33 ms of the expected, the 5th percentile was 12 ms, and the 95th

percentile was 669 ms. This large drop in accuracy compared to the
no-browsing and stress experiments occurs because multiple tabs in
the same browser window share the same browser runtime.

To sum up, Fathom often achieves 1 ms timestamp accuracy,
but the accuracy of timestamping sent packets degrades under both
heavy network traffic and concurrent tabs within the browser. The
degradation in timing accuracy due to competing activity is a well-
known difficulty when measurements are running in shared envi-
ronments like end-systems. For example, it is well-known that
measurements running in PlanetLab will suffer due to concurrent
activity [48]. Measurement scripts that use Fathom should be aware
of these issues and perform extra tests to verify the accuracy of their
experiments. For example, scripts can invoke Fathom APIs to re-
quest CPU load and network cross-traffic on the host to test existing
operating conditions.

7 Case Studies
In this section, we demonstrate Fathom’s utility by implementing
three example usage cases that together exercise different aspects
of its API: providing a JavaScript version of ICSI’s Netalyzr test-
suite, debugging web access failures, and enabling Google Maps to
diagnose poor web page performance. Our goal is to illustrate how
Fathom can support disparate measurement needs.

7.1 Netalyzr

We test Fathom’s suitability as a platform for conducting a wide
range of active measurements by reproducing many of the tests
present in our Netalyzr testsuite [28]. Netalyzr relies on a Java
applet for its client-side tests, so supporting this range of measure-
ments can serve as a litmus test for Fathom’s flexibility. We devel-
oped a Fathom-powered JavaScript version of the suite,8 focusing
in particular on tests not feasible in standard JavaScript.
API requirements: In the following, we consider Netalyzr’s full
set of test categories and discuss Fathom’s significance in the tests.

Address-based tests: This category primarily investigates
whether the client resides behind a NAT, and if so, how the NAT
renumbers the client-side address and port numbers. It requires the
equivalent of getsockname(), i.e., access to the local address
and port of a socket. Standard JavaScript does not provide these,
but Fathom’s TCP APIs do.

UDP and TCP port reachability: Tests in this category measures
the extent to which the client can communicate freely on approx-
imately 30 ports used by standard protocols. For TCP, standard
JavaScript APIs can approximate these tests somewhat clumsily,

8http://netalyzr.fathom.icsi.berkeley.edu

while for UDP no mechanisms exist. Fathom provides raw TCP
and UDP access, making these tests easy.

Access link properties: Netalyzr leverages Java’s raw UDP
access to implement basic latency testing, upstream/downstream
bandwidth measurement, and in-path buffer size measurements.
Standard JavaScript APIs provide no equivalent functionality, but
Fathom’s UDP access allowed us to realize the tests.

HTTP functionality & correctness: These tests determine the
presence of HTTP proxies and, if found, the use of caching and
caching correctness. The JavaScript XMLHttpRequest API is in-
sufficient to implement Netalyzr’s proxy tests as it provides in-
adequate control over raw message headers and browser caching.
Fathom’s TCP APIs allow us to realize these tests.

DNS functionality & correctness: This category broadly cov-
ers DNS feature support tests, lookup performance measurements,
lookup result correctness, and tests for known security problems.
While standard JavaScript APIs can use the success status of HTTP
requests as an implicit signal of success for the underlying DNS
lookup, one cannot obtain the actual IP address resulting from the
request, which virtually all tests in this category require. Fathom’s
DNS API allows us to conduct these tests.

IPv6 support: This category includes reachability tests to IPv6-
only servers as well as performance comparisons to servers reach-
able over IPv6 as well as IPv4. As the address family effectively
remains abstracted, standard JavaScript can handle these tests via
URL requests from the servers in question.
API usability: The Java-to-JavaScript porting effort also allow
us to compare programming paradigms. JavaScript’s basic single-
threaded execution model with callback-driven asynchronicity dif-
fers substantially from Java’s lightweight threading model. Ac-
cordingly, restructuring the client’s overall execution flow required
significant reworking of the basic design, while porting the tests
themselves felt quite straightforward. Netalyzr’s tests execute in
individual threads using I/O that may block, with a main thread
monitoring test durations. In writing our JavaScript version, we re-
structured each test into a larger set of individual functions chained
together via callbacks invoked by Fathom upon I/O progress. The
main test sequence likewise leverages test completion callbacks.
We implemented the Fathom-driven Netalyzr subset in two weeks,
the majority of which went into replicating the overall test execu-
tion, reporting harness, and GUI. Each test took on the order of an
hour to port.
Fathom bandwidth tests: Netalyzr’s testsuite includes measure-
ments of the available send and receive bandwidths. We implement
two versions of the bandwidth test:

• In-Fathom. To estimate the maximum possible send/receive
rate that Fathom can achieve, we invoke NSPR’s UDP
send/recv APIs within a tight loop to saturate the available
network bandwidth. Since executing a tight loop increases CPU
load, we repeat the experiment and invoke the NSPR send

Send / Payload Iperf In-Fathom (Mbps) Web page (Mbps)
Receive (bytes) (Mbps) Loop Callback Loop Callback

Send 0 13.60 6.64 2.42 1.66 0.75
1024 93.90 92.35 81.41 49.48 24.51

Recv 0 4.89 4.55 0.79 0.84 0.02
1024 93.70 73.36 52.85 22.63 1.69

Table 6: Fathom’s send/receive data rates for different pay-
loads.

API within a setTimeout with delay 0, which enables other
events in the event queue to get processed.
• Web page. To get an estimate of the send/receive traffic that

JavaScript on a web page can achieve, we perform the same
tests but invoking Fathom’s socket send/recv APIs, both
within a loop and using a timer.

We perform all tests between a laptop and a desktop connected
over a 100 Mbps Ethernet and compare them with the speed
achieved by iperf. We determine the maximum available send
bandwidth using a Fathom client and an iperf server. We deter-
mine the maximum available receive bandwidth using a Fathom-
based server and an iperf client. Table 6 shows the results. We
observe that under the In-Fathom category, using the NSPR APIs
we get much higher traffic rates than the web pages using Fathom’s
APIs. We expect this, since NSPR APIs are synchronous, while
due to the asynchronous nature of Fathom APIs every additional
callback in the call sequence affects the bandwidth rates.

We also observe that send rates increase as the payloads increase
and match iperf send rates at high payload size. But the maximum
achievable receive rate did not exceed 73.4 Mbps. Although we
could not experimentally verify the cause of the imbalance in the
send and receive rates, the discrepancy could arise due to the js-
ctypes library used for Fathom’s socket APIs. We suspect js-ctypes,
which does not benefit from JavaScript’s JIT optimizations [18, 6],
may pose a significant performance bottleneck.

A natural way to improve the send/receive bandwidths is to par-
allelize the tests. We tried using HTML5 Web Workers, which
spawn OS-level threads to concurrently perform the bandwidth
tests. We observed that the reported bandwidth did not increase
when running the test in a tight loop. We attribute this to a lim-
itation of the Workers, which cannot access the page’s JavaScript
namespace, including the window object. Workers, thus, cannot
access Fathom APIs defined on the window.fathom object. All
accesses to Fathom APIs must require another level of indirection
using the asynchronous message passing postMessage API be-
tween the Worker thread and the main UI thread (which has ac-
cess to the window.fathom object). This indirection limits the
achieved bandwidth.

To enable better bandwidth tests from a web page, script authors
should therefore implement bandwidth tests via FathomScripts (re-
call § 5.4), as they obviate the message passing overhead.

Summary: Our implementation of key Netalyzr tests that prove
difficult or infeasible to realize in standard JavaScript (local net-
work configuration, UPnP probing, DNS features, and particu-
larly UDP-based latency and bandwidth tests) confirm Fathom’s
versatility. For tests leveraging low-level APIs, particularly
fathom.socket.*, the coding effort compares to that re-
quired in Java, while tests that could leverage Fathom’s APIs (e.g.
fathom.proto.upnp.*) instead of needing full protocol im-
plementations required a fraction of the code.

7.2 Web access failure debugging

While troubleshooting suites such as Netalyzr work well when the
user has access to sufficient connectivity to download and run the
testsuite, such an approach fails in the presence of more funda-
mental connectivity problems. Indeed, a frequent request we re-
ceive from Netalyzr users is to expand the connectivity tests in that
direction, particularly in Netalyzr’s command-line interface. For
such scenarios, we developed a “Debug my connection” measure-
ment application. We include this script as a built-in part of the
Fathom distribution (which provides an immediate incentive for
users to install Fathom), but emphasize that we implement it solely
in JavaScript using the existing Fathom API. The script is currently
400 LOC.
Implementation: We structure the connectivity debugger by start-
ing at the host’s link-level network interface configuration and
progressing upward through the protocol stack, identifying and
reporting problems at each layer. The test begins by obtain-
ing basic system usage statistics from Fathom’s usage baseline,
including memory usage and process load. Using fathom.
system.getActiveIntefaces(), we detect whether the
system actually connects to any network. If so, we report re-
cent link quality and throughput counters for the active interfaces,
as reported by fathom.system.getNetworkUsage(), and,
again using the baseline counters, report on cross traffic originat-
ing from outside of the browser. We then move up to the net-
work layer and test the availability of a default route in the sys-
tem’s routing table, as well as IP-level connectivity (via fathom.
system.doPing()) to the gateway and DNS resolver(s) (via
fathom.system.getResolvers()), and relevant browser-
level configuration settings such as proxies (via fathom.utils.
browser.getProxyConfig()). Moving up to the transport
level, we attempt retrieval of an image from www.google.com,
and the test completes.

At each stage, we report on the outcome of the tests involved. In
the current version, users click on a “Debug my connectivity” but-
ton provided in the browser toolbar in order to initiate diagnosis,
but we envision hooking the connectivity debugger into relevant
parts of the browser in order to automatically provide contextual
information to the user. For example, upon failing DNS lookups,
we can automatically test the DNS configuration, and for unavail-
able servers we can test whether the user experiences a full outage
or one just affecting the destination site.
Collaborative debugging: We can further troubleshoot possible
connectivity problems in the local network by leveraging Fathom’s
rendezvous and server-side abilities. In particular, we can leverage
Fathom’s UPnP and zeroconf capabilities (via fathom.proto.
{mdns,upnp}.*) as follows. First, using UPnP we can try to lo-
cate UPnP-enabled gateway devices. If available, such devices can
report uplink type, upstream/downstream throughput counters, and
other information [51]. Second, using UPnP and Zeroconf we can
locate other Fathom-enabled devices. Since Fathom supports lis-
tening sockets, we can then engage in both local and remote latency
and throughput tests. Correlating the resulting numbers allows us
to pinpoint packet loss problems.

To test this approach, we have implemented a Fathom-powered
web application in 320 lines of code that lets two Fathom instances
detect each other using UPnP and initiate probes to measure uni-
directional loss and latency between each pair of Fathom-enabled
nodes. The script then compares these values with historic val-
ues of loss rates and delays for the local networks, obtained from
Fathom’s passive data collection. Values greater than expected
cause the application to report poor local network performance.
Crucially, in order to conduct this testing the user neither needs to

Figure 4: Diagnosis logic when the page load failed (top) vs.
when it succeeded (bottom).

understand command-line tools that might serve similar purposes,
nor orchestrate the testing procedure manually. Currently, the web
application consists of stand-alone web pages. Integrating its func-
tionality into the debug button forms part of our future work.

7.3 Web services debugging: Google Maps

Fathom substantially expands the ability of web site developers to
understand the context and impediments that affect the way their
pages render in the client’s browser. Fathom’s API enables a range
of potential measurements of interest in this context, such as pin-
pointing of loss in the home or backbone [11], system and I/O load
on the client’s device, and network connectivity configurations that
hamper performance (e.g., via slow HTTP proxies). In the follow-
ing, we demonstrate Fathom’s utility in troubleshooting client-side
issues for web services by playing the role of the developer for
Google Maps. We make two modifications to the Google Maps web
page code. First, we embed a diagnostic script that uses Fathom
APIs to obtain results for passive and active measurements. Sec-
ond, we provide a debug button on the Google Maps page, which
enables a user to initiate execution of the debug script. In the spe-
cial case when the button itself does not render (because page load-
ing failed), users can employ Fathom’s connectivity debugger as
explained in the previous section.
Implementation: The debug script first verifies if the Load event
for the Google Maps web page fired, confirming full page load.
Figure 4 illustrates the decision logic Fathom follows for failures
(top) and successes (bottom) of page load attempts. If the load
time—i.e., the time elapsed between the first HTTP request and
when the Load event fires—resembles9 the corresponding baseline
value, then the algorithm reports a normal load and terminates.

If the load time turns out far smaller than the baseline value, the
baseline metric does not apply to the current scenario. Possible
causes include changing content size, page caching, and improving
network conditions (such as when the user moved to a faster net-

9We say that a value is similar to the corresponding baseline value
if it lies within ±2 σ of the baseline value.

work). Fathom tracks all HTTP-level metrics for the last 20 user
sessions. Using DOM localStorage, it makes the results avail-
able to all scripts of the same origin. We then average these values
to generate baseline values for Google Maps. As a result, the debug
script can identify the problem by checking if the amount of down-
loaded content for the web page reduced substantially, if the data
rate for individual resources in the web page improved, and also if
the browser fetched a web page resource entirely from the cache.

If the load time far exceeds the baseline, it could indicate a net-
work impediment or a host problem. To distinguish between the
two cases, the debug script examines the content time, i.e., the time
elapsed to download the content of the web page. A content time
less than or equal to the baseline indicates that a problem with the
host machine or the browser slowed down the rendering. Such a
condition could also arise if the user explicitly stops the loading of
the web page and then invokes the debug script. Our debug script
uses fathom.system.* APIs to determine resource utilization.
If content time proves larger than the baseline, the problem most
likely resides in the network. We debug slow networks as discussed
in the previous section.
Emulating Google Maps: Since we did not have access to Google
Maps servers, we modified the site’s JavaScript code at runtime.
When visiting the Google Maps page, we inject the debug script
and the Fathom debug button using Greasemonkey [30]. Our debug
script uses Fathom APIs to implement all diagnostic cases shown
in Figure 4.

We implemented Fathom’s Google Maps debug script in
640 lines. It imposes no observable runtime overheads. The bulk of
the script implements parsing routines to interpret responses from
fathom.system.* as well as statistical utilities to compute av-
erage and standard deviation for metric values. Fathom’s system,
network, and browser-level APIs directly provide all values except
for cross-traffic, which we measure using a combination of APIs:
cross-traffic at the host is the fraction of HTTP traffic observed
by the browser over the TCP-level traffic approximated from the
link-level network measurements. In order to estimate cross-traffic
given only transport level information from the browser, Fathom
must also account for the effect of framing. To do so, Fathom as-
sumes all link-level traffic to be TCP and subtracts the per-packet
overhead from the traffic counters (in bytes) to get approximate
transport level TCP traffic. It then compares this value against the
TCP traffic values available from the browser.

We used our debug script and performed 10 trials of loading the
Google Maps home page with packet loss of 10, 20, 30 and 50
percent and packet delays of 0.5, 1.0, 1.5 and 2.0 seconds. We
emulate packet loss and delays with netem. In each case, before
starting the experiments, we loaded the Google Maps home page
repeatedly to allow Fathom to calculate the starting baseline metrics
using 20 normal sessions.

While the page load time increased in the presence of packet
loss rates up to 20%, the content download time remained within
two standard deviations. Higher packet loss rates severely affected
the goodput and the page took much longer to load. We observed
that for all packet delays (starting from 0.5 seconds), the debug
script indicated load times larger than two standard deviations and
the content download time also increased. In all cases, the debug
script identified a change in the network operating conditions. As
the number of completed connection trials increased, more sam-
ples fell into the range of two standard deviations and so Fathom
could include the HTTP metric values from the newer sessions.
The debug script thus adjusted the baseline correspondingly, with
the result that some of the later trials reported normal operating
conditions.

8 Discussion
Portability: While Fathom currently works only in Firefox, we
envision broadening support to other browsers and environments.
The Android version of Firefox shares the desktop version’s archi-
tecture and thus required only minor Fathom compatibility work.10

In Chrome [3], the implementation would require a combination
of content scripts for hooking the API into window, an extension
core for mediation between web page and OS,11 and a native bi-
nary for all remaining functionality, including invocation of com-
mands on the host. Fathom’s callback-driven API would map well
to Chrome’s architecture. Internet Explorer and Safari prove tricky;
the former will require the development of a browser helper object,
while the latter’s limited extension JavaScript API requires falling
back to a plugin component.
Incentives for adoption: Fathom provides strong incentives for
end-users, researchers and website operators. For end-users,
Fathom’s built-in troubleshooting capabilities provide an immedi-
ate incentive to install the platform, as a means to help debug con-
nectivity problems that users would otherwise need to solve man-
ually. Our experience with Netalyzr shows that there is in fact a
desire for such debugging tools among a set of users who will re-
turn to the Netalyzr site to run its set of diagnostics, and who see
fit to leave feedback [27]. As Fathom can support troubleshooting
tasks both in the presence of fundamental connectivity problems
(which preclude the use of website-driven services such Netalyzr)
as well as with the ease of visiting a webpage when connectiv-
ity permits, we believe this incentive holds at least as strongly for
Fathom as it does for Netalyzr. For researchers, Fathom’s appeal
lies in the fact that it does not require manual installation of code
specific to their experiments; once the user has installed Fathom,
any Fathom-driven experiment will work with the convenience of
visiting a web page, lowering barrier-to-entry for both users and
experimenters. For site operators, similar incentives apply: once
users have installed Fathom, both they and the site operators bene-
fit from increased understanding of performance impediments.
Support for long-running measurements: Quite often experi-
menters may need to execute long running measurement tasks, such
as when studying the evolution of network topology [8, 47] or the
dynamics of network performance [5]. Fathom’s browser-based
nature prompts the question of how long users normally view a
particular page before moving on, closing its tab, or closing the
browser’s window altogether. One dataset collected by the Mozilla
TestPilot project and recording browsing behavior of 2,000 Fire-
fox users [41] provides limited insight into this aspect: in general
web surfing, 20% of browser windows remain open for at least
an hour, 7% for more than a day.12 With the aid of gentle re-
minders to users of experiments still actively running in a tab or
window, Fathom should thus be able to provide a reasonable level
of longer-term data collection. Fathom’s current implementation
does support execution of such long running tasks if the measure-
ment script is invoked within a FathomScript (recall in § 5.4). This
mechanism would allow independence from user interaction with
the web page (and thus immunize the experiment from potentially
reduced scheduling priorities or other service degradations imposed
by the browser when a tab does not have focus), but it would still
require the end-user to keep the measurement tab open. This is

10Fathom for the Android platform is available on http://
fathom.icsi.berkeley.edu.

11This could leverage Chrome’s upcoming support for TCP
and UDP sockets in extensions, see http://developer.
chrome.com/trunk/apps/app_network.html.

12The dataset’s collection was limited to one week and thus forms a
lower bound for longer-running window instances.

because Fathom controls resource consumption by deallocating all
requested resources when the corresponding browser tab/window
is closed. Also, Fathom currently does not save any measurement
state in the event of browser or system shutdown. We anticipate
introducing a special API for experimenters to launch experiments
that can run in the background to avoid tying the longevity of a
measurement task to a browser tab. This approach will provide in-
dependence from accidental tab closures but requires more careful
thought regarding the resource management of long-running mea-
surement tasks. For example, we must consider (i) what experiment
state and resources must be preserved across browser or system re-
boots, and (ii) the security implications of running a background
task and providing it with access to host and web resources.

9 Related Work
We divide related work in three main areas: browser-based ap-
proaches to profile page performance, server-based measurement
platforms, and efforts that piggyback measurements with applica-
tions already running on end systems.
Browser-based page performance profiling. A number of
browser-based approaches help page developers benchmark and
debug web page performance. The Firebug [36] extension and the
dynaTrace [14] application break down the time to load pages, but
these measurements are only accessible from the browser, not the
web page itself. As a result, web page developers cannot remotely
execute tests from real users’ browsers. The Boomerang JavaScript
library [54] overcomes this obstacle and, like Fathom, gives web
pages a vantage point directly from the end-system. Janc et al.
combined JavaScript and Flash to measure throughput and jitter
in HTTP downloads [22, 23]. Neither effort strives to provide a
generic API. While the forthcoming NavigationTiming API [52]
standardizes latency measurements by providing timestamps for
fixed events during a page’s loading cycle, it does so only for the
page itself, not embedded components. Fathom furthermore adds
the ability to contrast passive timing collection with active mea-
surements. Rivet [34], another recent effort, leverages reflection
and dynamic characteristics of JavaScript to implement a remote
debugger for web applications. As a regular JavaScript library,
Rivet does not fundamentally add functionality to JavaScript in web
pages. Unlike Fathom, Rivet therefore cannot enable additional
passive or active measurement tasks.
Measurement platforms. Researchers often use PlanetLab [9]
as a measurement platform. More recently, Google launched M-
Lab [32] as another measurement platform. Both PlanetLab and
M-Lab are based on well-connected servers, and not on end sys-
tems as is Fathom. Scriptroute [49] added the capability for any
Internet user to run measurements using scripts in a sandboxed,
resource-limited environment in PlanetLab. We share Scriptroute’s
goal of building a community platform for network measurements.
However, our focus on taking measurements directly from end sys-
tems brings new challenges in particular: portability across operat-
ing systems and small performance overhead.
Piggybacking measurements with applications. Dasu [5] is a
Vuze plugin that analyzes BitTorrent traffic to characterize ISP per-
formance. Because Dasu piggybacks on BitTorrent, it has a large
user base. BitTorrent’s frequent use for sharing pirated content,
however, can make its use problematic from a policy perspective.
We instead opt for deploying measurements on the web browser,
which is even more ubiquitous than BitTorrent. The Measurement
Manager Protocol (MGRP) [43] is an in-kernel service that runs
on end systems to reduce overhead for active measurement tools.
MGRP allows measurement tools to send probe trains where appli-

cation packets piggyback on measurement probes. Neither MGPR
nor Dasu provide a programmable measurement platform.

10 Conclusion
In this paper, we describe Fathom, a browser extension that uses
web browser APIs to build a measurement platform. Fathom pro-
vides a programmable interface for writing and launching measure-
ments from the convenience of the web browser. We have imple-
mented a Fathom prototype for the Firefox web browser. Our eval-
uation shows that it can achieve timestamp accuracies of 1 ms, and
generally has runtime overheads of < 3.2% for popular websites.
We also demonstrate its utility in three case studies: providing a
JavaScript version of the Netalyzr network characterization tool,
debugging of web access failures, and enabling web sites to diag-
nose performance problems of their clients.

Acknowledgements: We thank the anonymous reviewers and our
shepherd, KC Claffy, for their comments and feedback on the pa-
per. This work was supported in part by the National Science Foun-
dation under grants CNS-0831535 and CNS-1111672. Any opin-
ions, findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We also thank Comcast
and Google for their support.

11 References
[1] S. Agarwal, P. Mohan, N. Liogkas, and V. Padmanabhan.

Webprofiler: cooperative diagnosis of web failures. In Proc.
COMSNETS, 2010.

[2] G. Aggrawal, E. Bursztein, C. Jackson, and D. Boneh. An
analysis of private browsing modes in modern browsers. In
Proc. USENIX Security, 2010.

[3] A. Barth, A. Felt, P. Saxena, and A. Boodman. Protecting
browsers from extension vulnerabilities. In Proc. NDSS,
2010.

[4] S. Bauer, D. Clark, and W. Lehr. Understanding broadband
speed measurements. MITAS project white paper, 2010.

[5] Z. S. Bischof, J. S. Otto, M. A. Sánchez, J. P. Rula, D. R.
Choffnes, and F. E. Bustamante. Crowdsourcing ISP
characterization to the network edge. In Proc. ACM
SIGCOMM Workshop on Measurements Up the Stack, 2011.

[6] Bugzilla. https://bugzilla.mozilla.org/show_
bug.cgi?id=687306.

[7] M. Butkiewicz, H. V. Madhyastha, and V. Sekar.
Understanding website complexity: Measurements, metrics,
and implications. In Proc. IMC, 2011.

[8] K. Chen, D. R. Choffnes, R. Potharaju, Y. Chen, F. E.
Bustamante, D. Pei, and Y. Zhao. Where the sidewalk ends:
Extending the Internet AS graph using traceroutes from P2P
users. In Proc. CoNEXT, 2009.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An overlay
testbed for broad-coverage services. ACM SIGCOMM
Computer Communication Review, 33(3), July 2003.

[10] H. Cui and E. Biersack. Trouble shooting interactive web
sessions in a home environment. In Proc. ACM SIGCOMM
Workshop on Home Networks, 2011.

[11] L. DiCioccio, R. Teixeira, M. May, and C. Kreibich. Probe
and Pray: Using UPnP for Home Network Measurements. In
Passive and Active Measurement Conference (PAM), Vienna,
Austria, March 2012.

[12] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi,

R. Mahajan, and S. Saroiu. Glasnost: Enabling end users to
detect traffic differentiation. In Proc. USENIX NSDI, 2010.

[13] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applications on
the web. In Proc. USENIX OSDI, 2008.

[14] dynaTrace Software. Diagnose and prevent AJAX
performance issues. http://ajax.dynatrace.com/.

[15] P. Eckersley. How unique is your web browser? In Proc.
Privacy Enhancing Technologies Symposium (PETS), 2010.

[16] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and
D. Wagner. How to Ask For Permission. In Proc. USENIX
Workshop on Hot Topics in Security, 2012.

[17] FireEye. Zero-day season is not over yet.
http://blog.fireeye.com/research/2012/
08/zero-day-season-is-not-over-yet.html.

[18] A. Giammarchi. An introduction to js-ctypes.
http://webreflection.blogspot.com/2011/
09/introduction-to-js-ctypes.html.

[19] Google. Google Maps help forum.
http://www.google.com/support/forum/p/
maps/thread?tid=24f446d4cc24d07a.

[20] Internet2. Network Diagnostic Tool (NDT). http://www.
internet2.edu/performance/ndt/.

[21] Iperf. http://iperf.sourceforge.net/.
[22] A. Janc. Nettest.

http://code.google.com/p/nettest/.
[23] A. Janc, C. Wills, and M. Claypool. Network performance

evaluation in a web browser. In Proc. IASTED PDCS, 2009.
[24] S. Kambala. Speed metrics in Google Analytics.

http://googlecode.blogspot.com/2011/12/
speed-metrics-in-google-analytics.html.

[25] P. Kanuparthy and C. Dovrolis. ShaperProbe: End-to-end
detection of ISP traffic shaping using active methods. In
Proc. IMC, 2011.

[26] A. Kingsley-Hughes. Flashback Malware Worth Up To
$10,000 A Day To Criminals. http://www.forbes.
com/sites/adriankingsleyhughes/2012/05/
01/flashback-malware-worth-up-to-10000-
a-day-to-criminals/, May 2012.

[27] C. Kreibich, N. Weaver, G. Maier, B. Nechaev, and
V. Paxson. Experiences from Netalyzr with engaging users in
end-system measurement. In Proc. ACM SIGCOMM
Workshop on Measurements Up the Stack, 2011.

[28] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the edge network. In Proc. IMC,
2010.

[29] V. Lam, S. Antonatos, P. Akritidis, and K. Anagnostakis.
Puppetnets: misusing web browsers as a distributed attack
infrastructure. In Proc. ACM CCS, 2006.

[30] A. Lieuallen, A. Boodman, and J. Sundström.
Greasemonkey. http://www.greasespot.net/.

[31] M. Mathis, J. Heffner, P. O’Neil, and P. Siemsen. Pathdiag:
Automated TCP diagnosis. In Proc. PAM, 2008.

[32] Measurement Lab.
http://www.measurementlab.net/.

[33] D. Meketa. Policy file changes in Flash Player 9 and Flash
Player 10.
http://www.adobe.com/devnet/flashplayer/
articles/fplayer9_security.html.

[34] J. Mickens. Rivet: Browser-agnostic Remote Debugging for
Web Applications. In Proc. USENIX ATC, pages 30–38,
2012.

[35] Mitre.org. Cve-2012-4681.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=2012-4681.

[36] Mozilla. Firebug. http://getfirebug.com/.
[37] Mozilla. Perfmeasurement.jsm. https://developer.

mozilla.org/en/JavaScript_code_modules/
PerfMeasurement.jsm.

[38] Mozilla. Signed Scripts in Mozilla.
http://www.mozilla.org/projects/
security/components/signed-scripts.html.

[39] Mozilla Developer Network. ChromeWorker.
https://developer.mozilla.org/en/DOM/
ChromeWorker.

[40] Mozilla Developer Network. js-ctypes.
https://developer.mozilla.org/en/js-
ctypes.

[41] Mozilla TestPilot. Tab Switch Study.
https://testpilot.mozillalabs.com/
testcases/tab-switch-study.

[42] V. N. Padmanabhan, S. Ramabhadran, S. Agarwal, and
J. Padhye. A study of end-to-end web access failures. In
Proc. CoNEXT, 2006.

[43] P. Papageorge, J. McCann, and M. Hicks. Passive aggressive
measurement with MGRP. In Proc. ACM SIGCOMM, 2009.

[44] V. Paxson. End-to-end routing behavior in the Internet. Proc.
ACM SIGCOMM, 1996.

[45] M. Perry. Torbutton design documentation. https://
www.torproject.org/torbutton/en/design/.

[46] C. Reis, S. Gribble, T. Kohno, and N. Weaver. Detecting
in-flight page changes with web tripwires. In Proc. USENIX
NSDI, pages 31–44, 2008.

[47] Y. Shavitt and E. Shir. DIMES: Let the Internet measure
itself. ACM SIGCOMM Computer Communication Review,
35(5), 2005.

[48] J. Sommers and P. Barford. An active measurement system
for shared environments. In Proc. IMC, 2007.

[49] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
public Internet measurement facility. In Proc. USENIX
Symposium on Internet Technologies and Systems, 2003.

[50] J. Ullrich. Javascript DDoS Tool Analysis.
http://isc.sans.org/diary/Javascript+
DDoS+Tool+Analysis/12442.

[51] UPnP Forum. Internet Gateway Device (IGD) V 2.0.
http://upnp.org/specs/gw/igd2.

[52] W3C. Navigation timing, editor’s draft november 14th, 2011.
https://dvcs.w3.org/hg/webperf/raw-file/
tip/specs/NavigationTiming/Overview.html.

[53] Wikimedia Foundation, Inc. Netscape Plugin Application
Programming Interface.
http://en.wikipedia.org/wiki/NPAPI.

[54] Yahoo! Exceptional Performance Team. This, is boomerang.
http://yahoo.github.com/boomerang/doc/.

[55] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm,
S. Okasaka, N. Narula, N. Fullagar, and G. Inc. Native
Client: A sandbox for portable, untrusted x86 native code. In
Proc. IEEE S&P, 2009.

	1 Introduction
	2 Motivating Scenarios
	3 Platform Design Goals
	4 Fathom
	4.1 API design
	4.2 Privacy
	4.3 Security

	5 Implementation
	5.1 Implementation space
	5.2 Firefox's architecture
	5.3 Architectural challenges
	5.4 Fathom's architecture

	6 Performance Evaluation
	6.1 Overhead
	6.2 Accuracy

	7 Case Studies
	7.1 Netalyzr
	7.2 Web access failure debugging
	7.3 Web services debugging: Google Maps

	8 Discussion
	9 Related Work
	10 Conclusion
	11 References

