
Flush: A Reliable Bulk Transport Protocol for Multihop Wireless
Networks

Sukun Kim†, Rodrigo Fonseca†, Prabal Dutta†, Arsalan Tavakoli†

David Culler†, Philip Levis�, Scott Shenker†‡, and Ion Stoica†

†Computer Science Division ‡ICSI �Computer Systems Lab
University of California, Berkeley 1947 Center Street Stanford University

Berkeley, CA 94720 Berkeley, CA 94704 Stanford, CA 94305

Abstract
We present Flush, a reliable, high goodput bulk data trans-

port protocol for wireless sensor networks. Flush provides
end-to-end reliability, reduces transfer time, and adapts to
time-varying network conditions. It achieves these proper-
ties using end-to-end acknowledgments, implicit snooping
of control information, and a rate-control algorithm that op-
erates at each hop along a flow. Using several real network
topologies, we show that Flush closely tracks or exceeds the
maximum goodput achievable by a hand-tuned but fixed rate
for each hop over a wide range of path lengths and varying
network conditions. Flush is scalable; its effective bandwidth
over a 48-hop wireless network is approximately one-third of
the rate achievable over one hop. The design of Flush is sim-
plified by assuming that different flows do not interfere with
each other, a reasonable restriction for many sensornet ap-
plications that collect bulk data in a coordinated fashion, like
structural health monitoring, volcanic activity monitoring, or
protocol evaluation. We collected all of the performance data
presented in this paper using Flush itself.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol architecture

General Terms
Design, Reliability

Keywords
Wireless Sensor Networks, Transport, Interference

1 Introduction
This paper presents the design and implementation of

Flush, a reliable, high-goodput, bulk data transport protocol
for wireless sensor networks. Flush is motivated by the data
transfer needs of sensornet applications like structural health
monitoring, volcanic activity monitoring, and bulk data col-
lection [20, 30, 14]. Some of these applications cover large
physical extents, measured in kilometers, and have network
depths that range from a few to over forty hops. The Golden
Gate Bridge structural health monitoring project [14] is one
such example: 64 nodes (46 hops) span 4,200 feet and must

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’07, November 6–9, 2007, Sydney, Australia.
Copyright 2007 ACM 1-59593-763-6/07/0011 ...$5.00

operate continuously for weeks. Power concerns and chal-
lenging radio environments can make using smaller diam-
eter networks built from higher-power radios unappealing.
While delivery of bulk data to the network edge may sound
simple, the nature of wireless communication brings sev-
eral challenges for efficient and reliable delivery in multi-
hop networks: links are lossy [28], inter-path interference is
hard to cope with [12, 22], intra-path interference is hard
to avoid [31], and transient rate mismatches can overflow
queues. These challenges make naı̈ve or greedy approaches
to multihop wireless transport difficult.

Inter-path interference occurs when two or more flows in-
terfere with each other. Designing multihop wireless trans-
port protocols that are both interference-aware and have con-
gestion control mechanisms is difficult in the general case. In
this work we greatly simplify the problem by assuming that
different flows do not interfere with each other. We ensure
this by having the sink schedule transfers from each node
one at a time, in a round-robin fashion. Collecting data se-
quentially from nodes, rather than in parallel, does not pose
a problem for collecting bulk datasets if the overall comple-
tion time is the critical metric, like in our target applications.
Ignoring inter-path interference allows us to focus on maxi-
mizing bandwidth through optimal use of pipelining.

Intra-path interference occurs when transmissions of the
same packet by successor nodes prevent the reception of
the following packet from a predecessor node. If the packet
sending rate is set too high, persistent congestion occurs and
goodput suffers – a condition that is potentially undetectable
by single-hop medium access control algorithms due to hid-
den terminal effects. If the packet sending rate is set too
low, then channel utilization suffers and data transfers take
longer than necessary. The optimal rate also depends on the
route length and link quality. Since in a dynamic environ-
ment, some of these factors may change during the course of
a transfer, we show that no static rate is optimal at all hops
and over all links. This suggests that a dynamic rate control
algorithm is needed to estimate and track the optimal trans-
mission rate.

Flush achieves its goals with a combination of mecha-
nisms. It uses a simple, sink-initiated control protocol to
coordinate transfers, with end-to-end selective negative ac-
knowledgments and retransmissions to provide reliability.
In the transfer phase, Flush finds the available bandwidth
along a path using a combination of local measurements and
a novel interference estimation algorithm. Flush efficiently

351

communicates this rate to every node between the bottleneck
and source, allowing the system to find and maintain the
maximum rate that avoids intra-path interference. On long
paths, Flush pipelines packets over multiple hops, maximiz-
ing spatial reuse.

To be viable in the sensornet regime, a protocol must have
a small memory and code footprint. As of early 2007, typical
motes have 4KB to 10KB of RAM, 48KB to 128KB of pro-
gram memory, and 512KB to 1MB of non-volatile memory.
This limited amount of memory must be shared between the
application and system software, limiting the amount avail-
able for message buffers and network protocol state. Flush
has a small memory and code footprint, and can operate with
relatively small forwarding queues on all nodes.

We have implemented Flush in TinyOS [10] and evalu-
ated it using a 100-node Mirage testbed [2, 5] as well as an ad
hoc, 79-node outdoor network. The results show that Flush’s
rate control algorithm closely tracks or exceeds the max-
imum effective bandwidth sustainable using an optimized
fixed rate. Furthermore, Flush’s performance improvements
scale to very long routes: our experimental results include
results from a 48-hop network. On the MicaZ platform, our
implementation of Flush requires just 629 bytes of RAM and
6,058 bytes of ROM.

We describe the Flush protocol in Section 2 and our im-
plementation in Section 3. In Section 4 we compare Flush to
standard routing protocols as well as to fixed rate algorithms,
and distinguish the contributions that layer 3 and layer 4 con-
gestion control have on goodput. In Section 5 we present and
address some open concerns. Section 6 places Flush in the
context of the large prior literature on transport reliability,
rate optimization, congestion control, and flow control, and
Section 7 we present our concluding thoughts.

2 Flush
Flush is a receiver-initiated transport protocol for moving

bulk data across a multihop, wireless sensor network. Flush
assumes that only one flow is active for a given sink at a time.
The sink requests a large data object, which Flush divides
into packets and sends in its entirety using a pipelined trans-
mission scheme. End-to-end selective negative acknowledg-
ments provide reliability: the sink repeatedly requests miss-
ing packets from the source until it receives all packets suc-
cessfully. During a transfer, Flush continually estimates and
communicates the bottleneck bandwidth using a dynamic
rate control algorithm. To minimize overhead and maximize
goodput, the algorithm uses no extra control packets, obtain-
ing necessary information by snooping instead.

Flush makes five assumptions about the link layer below
and the clients above:

• Isolation: A receiver has at most one active Flush flow.
If there are multiple flows active in the network they do
not interfere in any significant way.

• Snooping: A node can overhear single-hop packets des-
tined to other nodes.

• Acknowledgments: The link layer provides efficient
single-hop acknowledgments.

• Forward Routing: Flush assumes it has an underlying
best-effort routing service that can forward packets to-
ward the data sink.

• Reverse Delivery: Flush assumes it has a best-effort

delivery mechanism that can forward packets from the
data sink to the data source.

The reverse delivery service need not route the packets; a
simple flood or a data-driven virtual circuit is sufficient. The
distinction between forward routing and reverse delivery ex-
ists because arbitrary, point-to-point routing in sensornets is
uncommon and unnecessary for Flush.

2.1 Overview
To initiate a data transfer, the sink sends a request for a

data object to a specific source in the network using the un-
derlying delivery protocol. Naming of the data object is out-
side of the scope of Flush, and is left to an application run-
ning above it. After a request is made, Flush moves through
four phases: topology query, data transfer, acknowledgment,
and integrity check.

The topology query phase probes the depth of a target
node to tune the RTT and compute a timeout at the receiver.
During the data transfer phase, the source sends packets to
the sink using the maximum rate that does not cause intra-
path interference. Over long paths, this rate pipelines pack-
ets over multiple hops, spatially reusing the channel. Sec-
tion 2.3 provides intuition on how this works, and describes
how Flush actively estimates this rate. The initial request
contains conservative estimates for Flush’s runtime param-
eters, such as the transmit rate. When it receives the request,
the data source starts sending the requested data packets, and
nodes along the route begin their dynamic rate estimation.
On subsequent requests or retransmissions, the sink uses es-
timated, rather than conservative, parameters.

The sink keeps track of which packets it receives. When
the data transfer phase completes, the acknowledgment
phase begins. The sink sends the sequence numbers of pack-
ets it did not receive back to the data source. Flush uses
selective negative rather than positive acknowledgments be-
cause it assumes the end-to-end reception rate substantially
exceeds 50%. When it receives a NACK packet, the source
retransmits the missing data.

This process repeats until the sink has received the re-
quested data in total. When that occurs, the sink verifies the
integrity of the data. If the integrity check fails, the sink dis-
cards the data and sends a fresh request. If the check suc-
ceeds, the sink may request the next data object, perhaps
from another node. Integrity is checked at the level of both
packets and data objects.

To minimize control traffic overhead, Flush bases its es-
timates on local data and snoops on control information in
forwarded data packets. The only explicit control packets are
those used to start a flow and request end-to-end retransmis-
sions. The overhead of these control packets are amortized
even further by the large data size of target applications.
Flush is miserly with packet headers as well: three 1-byte
fields are used for rate control and one field is used for the
sequence number. The use of few control packets and small
protocol headers helps to maximize data throughput, reduc-
ing transfer time. Section 3 describes a concrete implemen-
tation of the Flush protocol.

2.2 Reliability
Flush uses an end-to-end reliability protocol to be ro-

bust to node failures. Figure 1 shows a conceptual session of
the protocol, where the data size is 9 packets, and a NACK
packet can accommodate at most 3 sequence numbers. In the

352

2 4 5

4 9

2, 4, 5

4, 9

4, 9

Source Sink

Figure 1. NACK transmission example. Flush has at most
one NACK packet in flight at once.

data transfer stage, the source sends all of the data packets,
of which some are lost (2, 4, 5, and 9 in the example), ei-
ther due to retransmission failures or queue overflows. The
sink keeps track of all received packets. When it believes that
the source has finished sending data, the sink sends a single
NACK packet, which can hold up to 3 sequence numbers,
back to the source. This NACK contains the first 3 sequence
numbers of lost packets, 2, 4, and 5. The source retransmits
the requested packets. This process continues until the sink
has received every packet. The sink uses an estimate of the
round-trip time (RTT) to decide when to send NACK packets
in the event that all of the retransmissions are lost.

The sink sends a single NACK packet to simplify the end-
to-end protocol. Having a series of NACKs would require
signaling the source when the series was complete, to pre-
vent interference along the path. The advantage of a series of
NACKs would be that it could increase the transfer rate. In
the worst case, using a single NACK means that retransmit-
ting a single data packet can take two round-trip times. How-
ever, in practice Flush experiences few end-to-end losses due
to its rate control and use of link layer acknowledgments.

In one experiment along a 48-hop path, deployed in an
outdoor setting, Flush had an end-to-end loss rate of 3.9%.
For a 760 packet data object and room for 21 NACKs per
retransmission request, this constitutes a cost of two extra
round trip times – an acceptable cost given the complexity
savings.

2.3 Rate Control
The protocol described above achieves Flush’s first goal:

reliable delivery. Flush’s second goal is to minimize transfer
time. Sending packets as quickly as the data link layer will
allow poses problems in the multihop case. First, nodes for-
warding packets cannot receive and send at the same time.
Second, retransmissions of the same packet by successive
nodes may prevent the reception of the following packets,
in what is called intra-path interference [28]. Single-hop
medium access control algorithms cannot solve the problem
because of the hidden terminal effect. Third, rate mismatches
may cause queues further along the path to overflow, leading
to packet loss, wasted energy, and additional end-to-end re-
transmissions.

Flush strives to send packets at the maximum rate that
will avoid intra-path interference. On long paths, it pipelines
packets over multiple hops, allowing spatial reuse of the
channel. To better understand the issues involved in pipelin-

Interference

Packet transmission time

x

1

2

3

4

N = 1(a)

(b)

(c)

(d)

N = 2

N ≥ 3

Interference = 1

N ≥ 4

Interference = 2

nodes

B

1

1

1

2

23

B

B

B

x
x

x

Rate = 1/4

Rate = 1/3

Rate = 1/2

Rate = 1

ti
m

e

ti
m

e

ti
m

e

ti
m

e

Figure 2. Maximum sending rate without collision in
the simplified pipelining model, for different number of
nodes (N) and interference ranges (I).

ing packets, we first present an idealized model with strong
simplifying assumptions. We then lift these assumptions as
we present how Flush dynamically estimates its maximum
sending rate.

2.3.1 A Conceptual Model
In this simplified model, there are N nodes arranged lin-

early plus a basestation B. Node N sends packets to the
basestation through nodes N − 1, ...,1. Nodes forward a
packet as soon as possible after receiving it. Time is divided
in slots of length 1s, and nodes are synchronized. They can
send exactly one packet per slot, and cannot both send and
receive in the same slot. Nodes can only send and hear pack-
ets from neighbors one hop away, and there is no loss. There
is however a variable range of interference, I: a node’s trans-
mission interferes with the reception of all nodes that are I
hops away.

We ask the question: what is the fastest rate at which a
node can send packets and not cause collisions?

Figure 2 shows the maximum rate we can achieve in the
simplified pipeline model for key values of N and I. If there is
only one node, as in Figure 2(a), it can send to the basestation
at the maximum rate of 1 pkt/s. There is no contention, as
no other nodes transmit. For two nodes (b), the maximum
rate falls to 1/2, because node 1 cannot send and receive at
the same time. The interference range starts to play a role if
N ≥ 3. In (c), node 3 has to wait for node 2’s transmission
to finish, and for node 1’s, because node 1’s transmission
prevents node 2 from receiving. This is true for any node
beyond 3 if we keep I constant, and the stable maximum rate
is 1/3. Finally, in (d) we set I to 2. Any node past node 3 has
to wait for its successor to send, and for its successor’s two
successors to send. Generalizing, the maximum transmission
rate in this model for a node N hops away with interference
range I is given by

r(N, I) =
1

min(N,2+ I)
.

Thus, the maximum rate at which nodes can send depends
on the interference range at each node, and on the path length
(for short paths). If nodes send faster than this rate, there will
be collisions and loss, and the goodput can greatly suffer. If
nodes send slower than this rate, throughput will be lower

353

i i-1 i-2

δi

δi-1

fi-1

Hi-1 di

i-3 i-4

……

Ii-1

ti
m

e

Forward data packets

Interference

Packet transmission time

Figure 3. A detailed look at pipelining from the perspec-
tive of node i, with the quantities relevant to the algo-
rithm shown.

than the maximum possible. The challenge is to efficiently
discover and communicate this rate, which will change with
the environment.

2.3.2 Dynamic Rate Control
We now describe how Flush dynamically estimates the

sending rate that maximizes the pipeline utilization. The al-
gorithm is agile in reacting to increases and decreases in per-
hop throughput and interference range, and is stable when
link qualities do not vary. The rate control algorithm follows
two basic rules:

• Rule 1: A node should only transmit when its successor
is free from interference.

• Rule 2: A node’s sending rate cannot exceed the send-
ing rate of its successor.

Rule 1 derives from a generalization of our simple
pipelining model: after sending a packet, a node has to wait
for (i) its successor to forward the packet, and for (ii) all
nodes whose transmissions interfere with the successor’s re-
ception to forward the packet. This minimizes intra-path in-
terference. Rule 2 prevents rate mismatches: when applied
recursively from the sink to the source, it tells us that the
source cannot send faster than the slowest node along the
path. This rule minimizes losses due to queue overflows for
all nodes.

Establishing the best rate requires each node i to deter-
mine the smallest safe inter-packet delay di (from start to
start) that maintains Rule 1. As shown in Figure 3, di com-
prises the time node i takes to send a packet, δi, plus the
time it takes for its successor to be free from interference,
Hi−1. δi is measured between the start of the first attempt
at transmitting a packet and the first successfully acknowl-
edged transmission. Hi−1 is defined for ease of explanation,
and has two components: the successor’s own transmission
time δi−1 and the time fi−1 during which its interfering suc-
cessors are transmitting. We call the set of these interfering
nodes Ii−1. In summary, for node i, di = δi +(δi−1 + fi−1):
the minimum delay is the sum of the time it takes a node to
transmit a packet, the time it takes the next hop to transmit
the packet, and the time it takes that packet to move out of
the next hop’s interference range.

Flush can locally estimate δi by measuring the time it
takes to send each packet. However, each node needs to ob-

8 7 6 5

8 6 5

4

4

3

Figure 4. Packet transfer from node 8 to node 7 interferes
with transfer from node 5 to node 4. However it does not
interfere with transfer from node 4 to node 3

tain δi−1 and fi−1 from its successor, because most likely
node i cannot detect all nodes that interfere with reception at
node (i−1). Instead of separate control packets, Flush relies
on snooping to communicate these parameters among neigh-
bors. Every Flush data packet transmitted from node (i−1)
contains δi−1 and fi−1. Using these, node i is able to approx-
imate its own fi as the sum of the δs of all successors that
node i can hear. Note that we only consider nodes which can
be heard (this will be discussed in the following subsection).
As the values δi−1 and fi−1 of its successor may change over
time and space due to environmental effects such as path and
noise, Flush continually estimates and updates δi and fi.

Let us look at an example. In Figure 4, node 7 determines,
by overhearing traffic, that the transmissions of node 6 and 5
(but not node 4) can interfere with reception of traffic from
node 8. This means that node 7 can not hear a new packet
from node 8 until node 5 finishes forwarding the previous
packet. Thus, f7 = δ6 + δ5. Node 7 can not receive a packet
while sending, and H7 = δ7 + f7. Considering node 8’s own
transmission time, d8 = δ8 + H7 = δ8 + δ7 + f7 = δ8 + δ7 +
δ6 +δ5. So the interval between two packets should be sepa-
rated by at least that time.

As described above, each node can determine its own
fastest sending rate. This, however, is not enough for a node
to ensure the optimal sending rate for the path. Rule 2 pro-
vides the necessary condition: a node should not send faster
than its successor’s sending rate.

When applied recursively, Rule 2 leads to the correct
sending interval at node i: Di = max(di,Di−1). Most im-
portantly, this determines the sending interval at the source,
which is the maximum di over all nodes. This rate is easy to
determine at each node: all nodes simply include Di in their
data packets, so that the previous node can learn this value
by snooping. To achieve the best rate it is necessary and suf-
ficient that the source send at this rate, but as we show in
Section 4, it is beneficial to impose a rate limit of Di for
each node i in the path, and not only for the source. Flush
take an advantage of in-network rate control on a hop-by-
hop basis. Figure 5 presents a concise specification of the
rate control algorithm and how it embodies the two simple
rules described above.

Finally, while the above formulation works in a steady
state, environmental effects and dynamics as well as sim-
ple probability can cause a node’s Di to increase. Because
it takes n packets for a change in a delay estimate to prop-
agate back n hops, for a period of time there will be a rate
mismatch between incoming and outgoing rates. In these
cases, queues will begin to fill. In order to allow the queues
to drain, a node needs to temporarily tell its previous hop to

354

The Flush rate control algorithm

(1) δi : actual transmission time at node i
(2) Ii : set of forward interferers at node i
(3) fi = ∑k∈Ii δk
(4) di = δi +(δi−1 + fi−1) (Rule 1)
(5) Di = max(di,Di−1) (Rule 2)

Figure 5. The Flush rate control algorithm. Di determines
the smallest sending interval at node i.

slow down. We use a simple mechanism to do this, which has
proved efficient: while a node’s queue occupancy exceeds a
specified threshold, it temporarily increases the delay it ad-
vertises by doubling δi.

2.4 Identifying the Interference Set
A node can interfere with transmissions beyond its own

packet delivery range. The fact that Flush assumes it can hear
its interferers raises the question of how common this effect
is in the routes it chooses. Packet reception rates follow a
curve with respect to the signal-to-noise ratio, but for sim-
plicity’s sake we consider the case where it follows a simple
threshold, such that reception is worse than reality.

Consider nodes mi and node mi−1 along a path, where
mi is trying to send a packet to mi−1 with received signal
strength Si as measured at mi−1. For another node j to con-
flict with this transmission, it must have a signal strength
of at least Si − T , as measured at the receiver, where T is
the SNR threshold. For a node j to be a jammer – a node
which can conflict with the transmission but cannot be heard
– S j > Si −T and S j < Ni−1 +T , where Ni−1 is the hardware
noise at mi−1. That is, its signal strength must be within T of
mi’s received signal strength at mi−1 to conflict and also be
within T of the noise floor such that it can never be heard.
For there to be a jammer, Si can be at most 2T stronger than
Ni−1.

Using the 100-node Mirage testbed, we examined
the topology Flush’s underlying routing algorithm,
MintRoute [32], establishes. We measured the noise
floor of each node by sampling the CC2420 RSSI register
and the signal strength of its predecessor using TinyOS
packet metadata. Figure 6 shows the results. Fewer than 20%
of the links chosen are within the range [Ni + T,Ni + 2T].
For there to be a jammer, it must be within T of these
links, or approximately 3.5dBm. While Flush’s interference
estimation is not perfect, its window of inaccuracy is narrow.

3 Implementation
To empirically evaluate the Flush algorithms, we imple-

mented them in the nesC programming language [8] and the
TinyOS [11] operating system for sensor networks. Our im-
plementation runs on the Crossbow MicaZ platform but we
believe porting it to other platforms like the Mica2 or Telos
would be straightforward.

3.1 Protocol Engine
The Flush protocol engine implements the reliable block

transfer service. This module receives and processes data
read requests and selective NACKs from the receiver. The
requests are forwarded to the application, which is responsi-
ble for returning the requested data. After the requested data
have been returned, the protocol engine writes the data and
identifying sequence numbers into a packet and then sub-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 L
in

ks

Difference Between Received Signal Strength and Noise Floor (dBm)

Figure 6. CDF of the difference between the received sig-
nal strength from a predecessor and the local noise floor.
The dotted line indicated twice the SNR threshold. Links
with an SNR exceeding this threshold will not be unde-
tectably affected by interferers. A large fraction of inter-
ferers are detectable and avoidable.

mits the packet to the routing layer at the rate specified by
the packet delay estimator, which is discussed below.

Although the Flush interface supports 32-bit offsets, our
current implementation only supports a limited range of
data object sizes: 917,504 bytes (64K x 14 bytes/packet),
1,114,112 bytes (64K x 17 bytes/packet), or 2,293,760 bytes
(64K x 35 bytes/packet), depending on the number of bytes
available for the data payload in each packet. This restric-
tion comes from the use of 16-bit sequence numbers, which
we use in part to conserve data payload and in part because
the largest flash memory available on today’s sensor nodes
is 1 MB. Individual packets are protected using link layer
CRCs and the entire data objects is protected using a simple
checksum, although more robust methods could be used.

3.2 Routing Layer
MintRoute [32] is used to convergecast packets from the

source to the sink, which in our case is the root of a collec-
tion tree. Flush does not place many restrictions on the path
other than it be formed by reasonably stable bidirectional
links. Therefore, we believe Flush should work over most
multihop routing protocols like CLDP [15], TinyAODV [1],
or BVR [7]. However, we do foresee some difficulty us-
ing routing protocols that do not support reasonably sta-
ble paths. Some routing protocols, for example, dynamically
choose distinct next hops for packets with identical desti-
nations [19]. It is neither obvious that our interference esti-
mation algorithm would work with such protocols nor clear
that a high rate could be achieved or sustained because Flush
would be unable to coordinate the transmissions of the dis-
tinct next hops.

Flush uses the TinyOS flooding protocol, Bcast, to send
packets from the receiver to the source for both initiating a
transfer and sending end-to-end selective NACKs. Bcast im-
plements a simple best-effort flood: each node rebroadcasts
each unique packet exactly once, assuming there is room in
the queue to do so. A packet is rebroadcast with a small, ran-
dom delay. Although we chose a flood, any reasonably re-
liable delivery protocol could have been used (e.g. a virtual
circuit, an epidemic dissemination protocol, or a point-to-
point routable protocol). However, in the target applications,

355

the reverse traffic would be infrequent. For example, the de-
ployment at the Golden gate Bridge [13] indicates that about
1126 times more packets are received than sent at the base-
station. The control overhead of more sophisticated routing
layers is likely to exceed the traffic generated by infrequent
flooding, so we do not focus our efforts on optimizing the
data transfer in the reverse direction.

3.3 Packet Delay Estimator
The packet delay estimator implements the Flush rate

control and interference estimation algorithms. The estima-
tor uses the MintRoute Snoop interface to intercept packets
sent by a node’s successor hops and predecessor hop along
the path of a flow, for estimating the set of interferers. The δ,
f , and D fields, used by the estimator, are extracted from the
next hop’s intercepted transmissions.

The Flush estimator extracts the received signal strength
indicator (RSSI) of packets received from the predecessor
hop and snooped from all successor hops along the routing
path. Flush assumes some type of received signal strength
indicator (RSSI) is provided by the radio hardware. These
RSSI values are smoothed using an exponentially-weighted
moving average to filter out transients on single-packet
timescales. History is weighted more heavily because RSSI
is typically quite stable [25] and outliers are rare, so a single
outlier should have little influence on the RSSI estimate. A
node i considers an successor node (i− j) an interferer of
node i+1 at time t if, for any j > 1, rssii+1(t)− rssii− j(t) <
10 dBm. The threshold of 10 dBm was chosen after consult-
ing the literature [21] and empirically evaluating a range of
values.

Since the forwarding time fi was defined to be the time
it takes for a packet transmitted by a node i to no longer in-
terfere with reception at node i, we set fi accordingly, such
that for all values j for which the above inequality holds con-
tributes to fi. We implemented a timeout mechanism under
which if no packets are overheard from a successor during
an interval spanning 100 consecutive packet receptions, that
successor is no longer considered an interferer. However, we
left this mechanism turned off so none of the experiments
presented in this paper use this timeout. Based in part on the
preceding information, the estimator computes di, the mini-
mum delay between adjacent packet transmissions. The es-
timator provides the delay information, Di, to the protocol
engine to allow the source to set the sending rate. The esti-
mator also provides the parameters δi, fi, Di to the queuing
component so that it can insert the current values of these
variables into a packet immediately prior to transmission.

3.4 Queuing
Queues provide buffer space during transient rate mis-

matches which are typically due to changes in link quality. In
Flush, these mismatches can occur over short time scales be-
cause rate estimates are based on averaged interval values, so
unexpected losses or retransmissions can occur. Also, control
information can take longer to propagate than data: at a node
i along the path of a flow, data packets are forwarded with

a rate 1
δi

while control information propagates in the reverse

direction with a rate 1
δi+ fi

. The forwarding interference time

fi is typically two to three times larger than the packet send-
ing delay δi, so control information flows three to four times
slower than data. Since it can take some time for the con-
trol information to propagate to the source, queues provide

buffering during this time.
Our implementation of Flush uses a 16-deep rate lim-

ited queue. Our queue is a modified version of QueuedSend,
the standard TinyOS packet queue. Our version, called
RatedQueuedSend, implements several functions that are
not available in the standard component. First, our ver-
sion measures the local forwarding delay, δ, and keeps
an exponentially-weighted moving average over it. This
smoothed version of δ is provided to the packet estima-
tor. Second, RatedQueuedSend enforces the queue depar-
ture delay Di specified by the packet delay estimator. Third,
when a node becomes congested, it doubles the delay ad-
vertised to its descendants but continues to drain its own
queue with the smaller delay until it is no longer congested.
We chose a queue depth of 5, about one-third of the queue
size, as our congestion threshold. Fourth, the queue inserts
the then-current local delay information into a packet im-
mediately preceding transmission. Fifth, RatedQueuedSend
retransmits a packet up to four times (for a total for five trans-
missions) before dropping it and attempting to send the next
packet. Finally, the maximum queuing delay is bounded,
which ensures the queue will be drained eventually, even if a
node finds itself neighborless.

3.5 Link Layer
Flush employs link-layer retransmissions to reduce the

number of expensive end-to-end transmissions that are
needed. Flush also snoops on the channel to overhear the
next hop’s delay information and the predecessor hop and
successor hops’ RSSI values. Unfortunately, these two re-
quirements – hardware-based link layer retransmission and
snooping – are at odds with each other on the MicaZ mote.
The CC2420 radio used in the MicaZ does not simulta-
neously support hardware acknowledgments and snooping,
and the default TinyOS distribution does not provide soft-
ware acknowledgments. Our implementation enables the
snooping feature of the CC2420 and disables hardware ac-
knowledgments. We use a modified version of the TinyOS
MAC, CC2420RadioM, which provides software acknowl-
edgments [22]. We configure the radio to perform a clear
channel assessment and employ CSMA/CA for medium ac-
cess. Since Flush performs rate control at the network layer,
and does not schedule packets at the link layer, CSMA de-
creases collision due to retransmissions during transient pe-
riods.

3.6 Protocol Overhead
Our implementation of Flush uses the default TinyOS

packet which provides 29 bytes of payload above the link
layer. The allocation of these bytes is as follow: MintRoute
(7 bytes), sequence numbers (2 bytes), Flush rate control
fields (3 bytes), and application payload (17 bytes). Since
in the default implementation, only 17 bytes are available
for the application payload, Flush’s effective data through-
put suffers. During subsequent experiments, we changed the
application payload to 35-bytes. Future work might consider
an A-law style compressor/expander (compander), used in
audio compression, to provide high resolution for expected
delay values while allowing small or large outliers to be rep-
resented.

4 Evaluation
We perform a series of experiments to evaluate Flush’s

performance. We first establish a baseline using fixed rates

356

against which we compare Flush’s performance. This base-
line also allows us to factor out overhead common to all pro-
tocols and avoid concerning ourselves with questions like,
“why is there a large disparity between the raw radio rate of
250 kbps and Flush?” We also look at where time is spent,
and where packets are lost for the different algorithms. Next,
we take a more detailed look at Flush’s performance: we ex-
plore the benefits of Flush’s hop-by-hop rate control com-
pared to controlling the rate only at the source. We also con-
sider the effects of abrupt link quality changes on Flush’s
performance and analyze Flush’s response to a parent change
in the middle of a transfer. The preceding experiments are
carried out on the Mirage testbed [2, 5]. We consider Flush’s
scalability by evaluating its performance over a 48-hop, ad
hoc, outdoor wireless network. To the best of our knowledge,
this is the longest multihop path used in evaluating a proto-
col in the wireless literature. Finally, we present Flush’s code
and memory footprint.

To better appreciate the results presented in this section,
we revisit Flush’s design goals. First, Flush requires com-
plete reliability, which the protocol design itself provides
(and our experiments validate, across all trials, networks,
and data sizes). The remaining goals are to maximize good-
put, minimize transfer time, and adapt gracefully to dynamic
changes in the network.

4.1 Testbed Methodology
We evaluate the effectiveness of Flush through a se-

ries of experiments on the Intel Research Berkeley sensor-
net testbed, Mirage, as well as a 79-node, ad hoc, outdoor
testbed. The Mirage testbed consists of 100 MicaZ nodes.
We used node 0, in the south west corner, as the sink, or
basestation. Setting the MicaZ node’s CC2420 radio power
level to -11 dBm, the diameter of the resulting network var-
ied between 6 and 7 hops in our experiments. The end-to-end
quality of the paths was generally good, but in Section 4.5 we
present the results of an experiment in which the quality of a
link was artificially degraded. The outdoor testbed consisted
of 79 nodes deployed in a linear fashion with 3ft spacing in
an open area, creating an approximately 48-hop network.

We use the MintRoute [32] protocol to form a collection
tree with the sink located at the root. MintRoute uses peri-
odic beacons to update link quality estimates. Prior to start-
ing Flush, we allow MintRoute to form a routing tree, and
then freeze this tree for the duration of the Flush transfer. In
Section 5, we discuss Flush’s interactions with other proto-
cols and applications.

We look at the following metrics when analyzing Flush’s
performance:

• Overall Throughput: the number of unique data pack-
ets or bytes received at the sink divided by the total
transfer time. This metric considers all of Flush’s phases
and overhead.

• Transfer Phase Throughput: the number of unique
data packets or bytes received at the sink during Flush’s
transfer phase, divided by the transfer phase duration.

In our experiments the sink issues a request for data from
a specific node. All the nodes are time-synchronized prior
to each trial, and they log to flash memory the following in-
formation for each packet sent: the Flush sequence number,
timestamp, the values of δ, f , and D, and the instantaneous
queue length. After each run we collect the data from all

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
pk

t/s
)

Hops from Sink

Fixed 10ms
Fixed 20ms
Fixed 40ms

Figure 7. Overall packet throughput of fixed rate streams
over different hop counts. The optimal fixed rate varies
with the path length.

nodes using Flush itself. We compare Flush with a static al-
gorithm that fixes the sending rate. Then, to evaluate the ben-
efits of using hop-by-hop in-network rate control, we com-
pare Flush with a variation which only adjusts the sending
rate at the source, even though the intermediate nodes still es-
timate and propagate the delays as described in Section 2.3.

4.2 High Level Performance
In this section, we examine the overall throughput by

comparing Flush to various values of the fixed-rate algo-
rithm. To establish a baseline, we first consider the overall
packet throughput achieved by the fixed rate algorithm. For
each sending interval of 10, 20, and 40ms, we reliably trans-
fer 17,000 bytes along a fixed path of length ranging from
zero to six hops. The smallest inter-packet interval our hard-
ware platform physically sustains is 8ms, which we empiri-
cally discover using a one hop throughput test.

We begin by initiating a multihop transfer from a source
node six hops away. After this transfer completes, we per-
form a different transfer from the 5th hop, and continue this
process up to, and including, a transfer in which the source
node is only one hop away. The data is also transferred from
a basestation. Figure 7 shows the results of these trials. The
0th hop indicates the basestation. Each point in the graph is
the average of four runs, with the vertical bars indicating the
standard deviation.

Each path length has a fixed sending rate which per-
forms best. When transferring over one hop there is no
forward interference, and a node can send packets as fast
as the hardware itself can handle. As the path length in-
creases, the rate has to be throttled down, as packets further
along in the pipeline interfere with subsequent ones. For ex-
ample, sending with an interval of 20ms provides the best
packet throughput over 3, 4, 5, and 6 hop transfers, as there
are too many losses due to queue overflows when sending
faster. Slower rates do not cause interference, but also do not
achieve the full packet throughput as the network is under-
utilized.

Figure 8(a) shows the results of the same experiments
with Flush. The circles in the figure show the performance of
the best fixed rate at the specific path length. Flush performs
very close, or better, than this envelope, on a packets/second
basis. These results suggest that Flush’s rate control algo-

357

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

O
ve

ra
ll

T
hr

ou
gh

pu
t (

pk
t/s

)

Hops from Sink

Flush
Best Fixed Rate

(a) Overall packet throughput

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6

O
ve

ra
ll

Th
ro

ug
hp

ut
 (

B
/s

)

Hops from Sink

Flush
Best Fixed Rate

(b) Overall byte throughput

Figure 8. Performance of Flush compared to the best fixed rate at each hop, taken from Figure 7. (a) Flush tracks the
best fixed packet rate. (b) Flush’s protocol overhead reduces the effective data rate.

rithm is automatically adapting to select the best sustainable
sending rate along the path and optimizing for changing link
qualities and forward interference.

Figure 8(b) shows the overall throughput on a
bytes/second basis. The overall throughput of Flush is
sometimes lower than the best fixed rate because we adjust
for protocol overhead. In this figure, Flush’s rate control
header fields account for 3 bytes (δ, f , and D each require
1 byte), leaving only 17 bytes for the payload – a 15%
protocol overhead penalty. These figures show that fixing a
sending interval may work best for a specific environment,
but that no single fixed rate performs well across different
path lengths, topologies, and link qualities. We could fine
tune the rate for a specific deployment and perhaps get
slightly better performance than Flush, but that process is
cumbersome, because it requires tuning the rate for every
node, and brittle because it does not handle changes in the
network topology or variations in link quality gracefully.

At this point it is useful to take a closer look at the gap
between the overall throughput achieved by Flush and the
hardware nominal capacity. The Chipcon CC2420 radio on
the MicaZ mote has a maximum data rate of 250kbps, while
the serial interface with the PC runs with a data rate of
115.2kbps. Clearly, if we are to transfer all bytes out of the
network through the serial interface, we will be limited by
the lower serial rate. To measure what packet sending rates
our hardware and OS configuration can achieve, we ran an
experiment sending packets to the sink from a node one hop
away, varying the packet interval, i.e., the time between the
start of consecutive packets. The results showed that with
any packet interval lower than 10ms we experienced a high
loss rate at the sink. With packets with 29-byte payloads,
this interval translates to at most 23,200bps of throughput
above the MAC layer. This is lower than the maximum hard-
ware throughput, but it is outside of the scope of this paper to
change the underlying MAC and OS to improve this bound.

There are other important overheads above the MAC
layer. The routing header in MintRoute is 7-bytes long; for
reliable data collection, 2 bytes are further used to include a
sequence number. Lastly, Flush adds 3 bytes for rate control
information. This reduces the available bandwidth for trans-
fers by 12 bytes, or 41%, for a maximum achievable 1-hop

transfer throughput of 13,600bps (1,700B/s). Lastly, Flush
has the additional overhead of a topology query, end-to-end
retransmissions, and an integrity check. For the 1-hop case,
68.9% of the time is spent in the actual data transfer phase,
and the possible overall bandwidth is 9,370bps (1,171 B/s).
As will be shown later, Flush exploits most of the capacity
that the routing layer can provide. Flush is trying to work
on top of a basic CSMA layer, rather than designed from
an optimal cross-protocol design outlook. Our evaluation of
Flush is conservative, in that we can use a larger packet size
to decrease the header overhead, but there is still a large per-
formance gap to the raw radio bandwidth that would require
a cross-layer design and integration with the MAC and the
packet processing in the OS.

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6

A
ve

ra
ge

 T
ra

ns
m

is
si

on
s

P
er

 N
od

e

Hops from Sink

Flush
Fixed 10ms
Fixed 20ms
Fixed 40ms
Optimal

Figure 9. Average number of transmissions per node for
sending an object of 1000 packets. The optimal algorithm
assumes no retransmissions.

Figure 9 compares the efficiency of the different alterna-
tives from the experiment above. We use the average number
of packets sent per hop in our transfer of 1000 packets as
an indicator for the efficiency at each sending rate. Overall
throughput is negatively correlated with the number of mes-
sages transmitted, as the transfers with a small fixed interval
lose many packets due to queue overflows. As in the previ-
ous graphs, Flush performs close to the best fixed rate at each
path length. Note that the extra packets transmitted by Flush

358

0

0.2

0.4

0.6

0.8

1

1.2

Flush Fixed 40 Fixed 20 Fixed 10 ASAP

Fr
ac

tio
n

ACK Phase
Transfer Phase

Figure 10. Fraction of data transferred from the 6th hop
during the transfer phase and acknowledgment phase.
Greedy best-effort routing is unreliable, and exhibits a
loss rate of 43.5%. A higher than sustainable rate leads
to a high loss rate.

0

5

10

15

20

25

30

35

40

45

50

Flush Fixed 40 Fixed 20 Fixed 10 ASAP

Ti
m

e
(s

)

Integrity
Check
ACK Phase

Transfer
Phase
Topology
Query

Figure 11. Fraction of time spent in different stages. A
retransmission during the acknowledgment phase is ex-
pensive, and leads to poor throughput.

and by the “Fixed 40ms” flow are mostly due to link level re-
transmissions, which depend on the link qualities along the
path. Flush and “Fixed 40ms” flow experienced no losses
due to queue overflows. In contrast, the retransmissions of
the “Fixed 10ms” and “Fixed 20ms” curves include both the
link level retransmissions and end-to-end retransmissions for
packet losses due to queue overflows at intermediate nodes.

4.3 Performance Breakdown
We now examine how Flush compares to the fixed rate

algorithms in more detail, examining where time is spent
and where packets are lost for each case. To recall, Flush
first sends the entire data object once during the transfer
phase. After this completes, in the acknowledgment phase,
the receiver identifies missing packets and repeatedly re-
quests retransmissions until all packets are received success-
fully. Sending a packet during this phase is more expensive
than sending a packet during the transfer phase both in terms
of the number of packets needed and the total transfer time
required. Therefore, an important design goal is to maximize
the data received during the transfer phase. The higher the
throughput during the transfer phase, the greater the overall
throughput becomes.

Figure 10 shows the fraction of packets received during

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1 2 3 4 5 6

Tr
an

sf
er

 P
ha

se
Th

ro
ug

hp
ut

 (
B

/s
)

Hops from Sink

Flush
Fixed 40
Fixed 20
Fixed 10

ASAP

Figure 12. Transfer phase byte throughput. Flush re-
sults take into account the extra 3-byte rate control
header. This metric does not take loss into account. Flush
achieves a good fraction of the throughput of “ASAP”,
with a 65% lower loss rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

 (
pk

t/s
)

Th
ro

ug
hp

ut
Tr

an
sf

er
 P

ha
se

Hops from Sink

Flush
Fixed 40
Fixed 20
Fixed 10

ASAP

Figure 13. Transfer phase packet throughput. Flush pro-
vides comparable throughput with a lower loss rate.

the transfer phase from a node that is 6 hops away from the
basestation. The data set is the same one as in Subsection 4.2.
Flush collects 99.5% of packets during the transfer phase. In
contrast, the “Fixed 10ms” rate flow collects only 62.7% dur-
ing the transfer phase, due to severe loss from intra-path in-
terference. We also compare with a naı̈ve transfer algorithm
that sends a packet as soon as the last packet transmission is
done, which we call “ASAP (As Soon As Possible)”. ASAP
has no acknowledgment phase, and is included just to assess
how quickly the underlying routing layer can send packets
with no rate control. ASAP can transmit faster than Fixed
10ms in the transfer phase, but exhibits an even higher loss
rate of 43.5%.

Figure 11 shows a breakdown of how time is spent dur-
ing the transfer. The “Topology Query” probes the depth of a
target node before the “Transfer Phase”. The topology query
is needed to tune the RTT and compute a timeout at the re-
ceiver. The “Transfer Phase” and “Acknowledgment Phase”
were explained above. The “Integrity Check” tests the check-
sum of the data computed at a target node with the checksum
computed at the sink after the “Acknowledgment Phase”. As
we argued previously, the “Acknowledgment Phase” is ex-

359

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

R
at

e
(p

kt
/s

)

Time (s)

Fixed 30ms

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

R
at

e
(p

kt
/s

) Flush-e2e

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

R
at

e
(p

kt
/s

) Flush

Figure 14. Packet rate over time for a source node 7 hops
away from the base station. Packet rate averaged over 16
values, which is the max size of the queue. Flush approx-
imates the best fixed rate with the least variance.

pensive. In the case of the Fixed 10ms rate, a modest fraction
of packets are transferred during the transfer phase, and more
time is spent in the acknowledgment phase. While both Fixed
10ms and ASAP spend less time than Flush int the transfer
phase, they also deliver less data than Flush in these phases.

Figures 12 and 13 show the transfer phase byte through-
put of the different algorithms. The byte throughput mea-
surements include an adjustment factor for payload size, be-
cause of the additional 3-byte rate control header of Flush.
When looking at the packet throughput, we see that starting
from the 2nd hop, and continuing for all greater hop counts,
Flush provides a similar throughput to the best case among
fixed rates and the greedy best-effort. For a basestation (0th
hop) and the 1st hop, “Fixed 10ms” and “ASAP” provide a
higher throughput. However, they suffer higher loss rates and
pay a high price during the acknowledgment phase. Over-
all, Flush provides competitive throughput during the trans-
fer phase.

In summary, Flush achieves comparable transfer phase
throughput to the fixed rate algorithms as Figure 13 shows,
but with very low loss rates (Figure 10). Flush also spends
much less time in the expensive acknowledgment phase as
Figure 11 shows. This combination makes Flush’s overall
transfer time relatively short, and explains Flush’s good over-
all throughput.

4.4 A More Detailed Look
We now take a more detailed look at Flush’s operation.

In the following two subsections, Flush’s rate control header
fields account for 6 bytes (δ, f , and D each require 2 bytes).
leaving 14 bytes for the payload. At this initial stage, 2 bytes
are used just in case where a value exceeds 255. We discov-
ered, however, that the δ, f , and D values never exceeded
255, so these fields were reduced to a single byte each in
other bandwidth and scalability experiments. “Flush-e2e” is
a variation of Flush which only limits the rate at the source,
even though the intermediary nodes still estimate the delays
and propagate them as described in Section 2.3. Using the
detailed logs collected for a sample transfer of 900 packets
(12600 bytes) over a 7 hop path, we are able to look at the
real sending rate at each node, as well as the instantaneous
queue length at each node as each packet is transmitted.

Figure 14 shows the sending rate of one node over a par-

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Flush Sequence Number

Flush
Congestion Threshold

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Flush Sequence Number

Flush-e2e

Figure 15. Maximum queue occupancy across all nodes
for each packet. Flush exhibits more stable queue occu-
pancies than Flush-e2e.

 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

Q
ue

ue
 L

en
gt

h

Flush Sequence Number

Flush-e2e

 2

 4

 6

 8

 10

 12

 14

 16

 760 770 780 790 800 810 820

Q
ue

ue
 L

en
gt

h
Queue at Hop 5
Queue at Hop 4
Queue at Hop 3
Queue at Hop 2
Queue at Hop 1

Figure 16. Detailed view of instantaneous queue length
for Flush-e2e. Queue fluctuations ripple through nodes
along a flow.

ticular interval, where the rates are averaged over the last
k packets received. We set k to 16, which is the maximum
queue length. Other nodes had very similar curves. We com-
pare Flush and Flush-e2e, with the best performing fixed-rate
sending interval at this path length, 30ms. Sending at this in-
terval did not congest the network. As expected, under sta-
ble network conditions, the fixed-rate algorithm maintains a
stable rate. Although Flush and Flush-e2e showed very simi-
lar high-level performance in terms of throughput and band-
width, we see here that the Flush is much more stable, al-
though not to the same extent as the fixed interval transfer.

Another benefit of the in-network rate limiting, as op-
posed to source-only limiting, can be seen in Figure 15. This
plot shows the maximum queue occupancy for all nodes in
the path, versus the packet sequence number. Note that we
use sequence number here instead of time because two of the
nodes were not properly time-synchronized due to errors in
the timesync protocol. The results are very similar, though,
as the rates do not vary much. The queue length in Flush
is always close to 5, which is the congestion threshold we
set for increasing the advertised delay (c.f. Section 2.3). Our
simple scheme of advertising our delay as doubled when the
queue is above the threshold seems to work well in practice.
It is actually good to have some packets in the queue, be-

360

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

P
kt

s/
s

Time(s)

Fixed 30ms

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

P
kt

s/
s

Flush-e2e

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

P
kt

s/
s

Flush

Figure 17. Sending rates at the lossy node for the forced
loss experiment. Packets were dropped with 50% proba-
bility between 7 and 17 seconds. Both Flush and Flush-
e2e adapt while the fixed rate overflows its queue.

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h

Time(s)

Fixed 30ms

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h Flush-e2e

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h Flush

Figure 18. Queue length at the lossy node for the forced
loss experiment. Packets were dropped with 50% prob-
ability between 7 and 17 seconds. Flush and Flush-e2e
adapt while the fixed rate overflows its queue.

cause it allows the node to quickly increase its rate if there is
a sudden increase in available bandwidth.

In contrast, Flush-e2e produces highly variable queue
lengths. The lack of rate limiting at intermediary nodes in-
duces a cascading effect in queue lengths, as shown in Fig-
ure 16. The bottom graph provides a closer look at the queue
lengths for 5 out of the 7 nodes in the transfer during a
small subset of the entire period. The queue is drained as
fast as possible when bandwidth increases, thus increasing
the queue length at the next hop. This fast draining of queues
also explains the less stable rate shown in Figure 14.

4.5 Adapting to Network Changes
We also conduct experiments to assess how well Flush

adapts to changing network conditions. Our first experiment
consists of introducing artificial losses for a link in the mid-
dle of a 6-hop path in the testbed for a limited period of
time. We did this by programmatically having the link layer
drop each packet sent with a 50% probability. This effec-
tively doubled the expected number of transmissions along
the link, and thus the delay.

Figure 17 provides the instantaneous sending rate over the
link with the forced losses for Flush, Flush-e2e, and Fixed

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30 35 40 45

Q
ue

ue
 L

en
gt

h

Time(s)

Queue at Hop 4

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

P
kt

s/
s

Hop 1a
Hop 2a
Hop 3a

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

P
kt

s/
s

Hop 1b
Hop 2b
Hop 3b

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

P
kt

s/
s

Hop 0 (sink)
Hop 4 (parent change)

Figure 19. Detailed look at the route change experiment.
Node 4’s next hop is changed, changing all nodes in the
subpath to the root. No packets were lost, and Flush
adapted quickly to the change. The only noticeable queue
increase was at node 4, shown in the bottom graph. This
figure shows Flush adapts when the next hop changes
suddenly.

30ms. Again, 30ms was the best fixed rate for this path be-
fore the link quality change was initiated. In the test, the link
between two nodes, 3 and 2 hops from the sink, respectively,
has its quality halved between the 7 and 17 second marks,
relative to the start of the experiment. We see that the static
algorithm rate becomes unstable during this period; due to
the required retransmissions, the link can no longer sustain
the fixed rate. Flush adapts gracefully to the change, with a
slight decrease in the sending rate. The variability remains
constant during the entire experiment. Flush-e2e is not very
stable when we introduce the extra losses, and is also less
stable after the link quality is restored.

Figure 18 compares the queue lengths for the same exper-
iment for all three algorithms, and the reasons for the rate in-
stability become apparent, especially for the fixed rate case.
The queue at the lossy node becomes full as its effective
rate increases, and is rapidly drained once the link quality
is reestablished.

The last experiment looks at the effect of a route change
during a transfer on the performance of Flush. We started
a transfer over a 5 hop path, and approximately 21 seconds
into the experiment forced the node 4 hops from the sink
to switch its next hop. Consequently, the entire subpath from
the node to the sink changed. Note that this scenario does not
simulate node failure, but rather a change in the next hop,
so packets should not be lost. The high level result is that
the change had a negligible effect on performance. Figure 19
presents a detailed look at the rates for all nodes, and the
queue length at the node that had its next hop changed. There
was no packet loss, and the rate control algorithm was able to
quickly reestablish a stable rate. Right after the change there
was a small increase in the affected node’s queue, but that
was rapidly drained once the delays were adjusted.

361

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50

O
ve

ra
ll

Th
ro

ug
hp

ut
 (

B
/s

)

Hops from Sink

Flush
Fixed 20ms
Fixed 40ms
Fixed 60ms

Figure 21. Effective bandwidth from the real-world scal-
ability test where 79 nodes formed 48 hop network. The
Flush header is 3 bytes and the Flush payload is 35-
bytes (versus a 38 byte payload for the fixed rates). Flush
closely tracks or exceeds the best possible fixed rate
across at all hop distances that we tested.

While we do not show any results for node failure, we
expect the algorithm will considerably slow down the source
rate, because the node before the failure will have to perform
a large number of retransmissions. If the routing layer selects
a new route in time, the results we have lead us to believe
Flush would quickly readjust itself to use the full bandwidth
of the new path.

4.6 Scalability
Finally, to evaluate the scalability of Flush, we deployed

an outdoor network consisting of 79 MicaZ nodes in an
outdoor setting. These nodes were placed in a line on the
ground, with neighboring nodes separated by 3ft. The physi-
cal extent of the network spanned 243ft. The radio transmis-
sion power was lowered to decrease range, but not so much
so that the network would be void of interference. The re-
sulting topology is shown in Figure 20, where the rightmost
node is 48 hops from the root, which is the leftmost node.

For the following experiments, we increased the data pay-
load size to 38 bytes (from 20 bytes used previously) for the
fixed rate and 35 bytes (from 17 bytes used previously) for
Flush. The size of the Flush rate control header was 3 bytes,
leaving us with a protocol overhead of about 8%. We trans-
fer a 26,600 byte data object from the node with a depth of
48 (node 79), and then perform similar transfers from nodes
at depths 40, 30, 20, 15, 10, 7, 5, 4, 3, 2, and 1. The exper-
iment is repeated for Flush, and fixed rates of 20ms, 40ms,
and 60ms. Each experiment is performed twice and the re-
sults are averaged. We omit error bars for clarity. Figure 21
shows the results of this experiment. The results indicate that
Flush efficiently transfers data over very long networks – 48
hops in this case.

4.7 Memory and Code Footprint
We round out our evaluation of Flush by reviewing its

footprint. Flush uses 629 bytes of RAM and 6,058 bytes of
code, including the routines used to debug, record perfor-
mance statistics, and log traces. These constitute 15.4% of
RAM and 4.62% of program ROM space on the MicaZ plat-
form. Table 1 shows a detailed breakdown of memory foot-
print and code size. The Protocol Engine accounts for 301

Table 1. Memory and code footprint for key Flush com-
ponents compared with the regular TinyOS distribution
of these components (where applicable). Flush increases
RAM by 629 bytes and ROM by 6,058 bytes.

Memory Footprint Code Size
Component Regular Flush Regular Flush

Queue 230 265 380 1,320
Routing 754 938 76 2,022
Proto Eng - 301 - 2,056
Delay Est - 109 - 1,116

Total 984 1,613 456 6,514
Increase 629 6,058

out of 629 bytes of RAM, or 47.9% of Flush’s memory us-
age. A significant fraction of this memory (180 bytes) is used
for message buffers, which are used to hold prefetched data.

5 Discussion
In this section, we discuss two important issues that we

have largely ignored until now. The first deals with whether
a multihop collection protocol that scales to tens of hops is
needed and the second deals with the interactions between
Flush and routing that led us to freeze the collection tree over
the duration of a transfer.

5.1 Is Multihop Necessary?
We claimed that wireless multihop delivery of bulk data

to the network edge is complicated by lossy links, inter-path
interference, intra-path interference, and transient rate mis-
matches. One compelling solution to these challenges might
be to simply sidestep them. By judiciously placing high-
power radios within a low-power sensornet, a network ad-
ministrator might be able to reduce it to a single-hop prob-
lem, remove the complexities that multihop introduces, and
allow simple, robust solutions.

Unfortunately, it is not always possible to convert a dense
deployment of low-power, short-range nodes into an equiv-
alent network of high-power, long-range nodes. Some appli-
cations are deployed in challenging radio environments that
do not provide a clear line-of-sight over multiple hops. For
example, signals do not propagate well in steel-framed build-
ings, steel truss bridges, or dense foliage [14]. When phys-
ically large networks are deployed in such environments,
multihop delivery is often the enabler, so eliminating it elim-
inates the application as well.

5.2 Interactions with Routing
We freeze the MintRoute collection tree immediately

prior to a Flush transfer and then let the tree thaw after the
transfer. This freeze-thaw cycle prevents collisions between
routing beacons and Flush traffic. MintRoute [32] generates
periodic routing beacons but these beacons use a separate,
unregulated data path to the radio. With no rate control at the
link layer, the beacons are transmitted at inopportune times,
collide with Flush traffic, and are lost. Since MintRoute de-
pends on these beacons for route updates, and it evicts stale
routes aggressively, Flush freezes the MintRoute state during
a transfer to avoid stale route evictions.

Our freeze-thaw approach sidesteps the issue and works
well in practice. Over small time scales on the order of a
Flush session, routing paths are generally stable, even if in-
stantaneous link qualities vary somewhat. Our results show
that Flush can easily adapt to these changes. In Figure 19, we
also showed that Flush adapts robustly to a sudden change in

362

3
0

4

6
8

9 15
14

19
18

23
22

27
26

31
30

35
34

49
48

59
57

71
69

76
75

7977737270
6867666564

626058
55

535250
47464544434241

3938373632282420161210

1

5
7

11

13 17 21 25 29 33 40

51

54 56

61

63 74

Figure 20. The network used for the scalability experiment. Of the 79 total nodes, the 48 nodes shown in gray were on
the test path. This test is a demonstration that Flush works over a long path, and Flush is not limited to a linear topology,
as shown in previous tests.

the next hop. If the underlying routing protocol can find an
alternate route, then Flush will adapt to it. But if the physical
topology changes, and routing cannot adapt, then new routes
will need to be rebuilt and the session needs to be restarted.

It may seem that forcing all traffic to pass through a single
(rate-limited) queue would address the issue, but it does not.
Nodes located on the flow path would be able to fairly queue
routing beacons and Flush traffic. However, nodes located
off the flow path, but within interference range of the flow,
would not be able to contend for bandwidth and successfully
transmit beacons. Hence, if the physical topology changes
along the flow path during a transfer, the nodes along the
path may not be able to find an alternate route since beacons
from these alternate routes may have been lost. A solution
may be an interference-aware fair MAC. Many pieces are
already in place [12, 6, 22] but the complete solution would
require rate-controlling all protocols at the MAC layer across
all nodes within interference range of the path.

6 Related Work
Our work is heavily influenced by earlier work in con-

gestion mitigation, congestion control, and reliable trans-
fer in wired, wireless, and sensor networks. Architecturally,
our work was influenced by Mishra’s hop-by-hop rate con-
trol [18], which established analytically that a hop-by-hop
scheme reacts faster to changes in the traffic intensity and
thus, utilizes resources at the bottleneck better and loses
fewer packets than an end-to-end scheme. Kung et al’s work
on credit-based flow control for ATM networks [4] also in-
fluenced our work. Their approach of using flow-controlled
virtual circuits (FCVC) with guaranteed per-hop buffer space
is similar to our design. We adapted ideas of in-network pro-
cessing in high-speed wired networks to wireless networks in
which transmissions interfere due to the nature of the broad-
cast medium.

A complicating factor that distinguishes wired and wire-
less communication is that the radio interference range often
exceeds transmission range. Therefore, a major element of
our work is adapting the ideas of these earlier papers to an
environment that has forward interferers but supports broad-
cast snooping. Li et al. [16] studied the theoretical capac-
ity of a chain of nodes limited by interference using 802.11,
which is related to our work in finding a capacity and rate. In-
deed, our results generally appear to agree with Li’s models
but our work also demonstrates how real-world factors can
cause significant variance from ideal performance models.

ATP [27] and W-TCP [24], two wireless transport proto-
cols that use rate-based transmission, have also influenced
our work. In ATP, each node in a path keeps track of its local
delay and inserts this value into the data packet. Intermediate
nodes inspect the delay information embedded in the packet,
and compare it with its own delay, and then insert the larger
of the two. This way, the receiver learns the largest delay ex-
perienced by a node on the path. The receiver reports this
delay in each epoch, and the sender uses this delay to set its

sending rate. W-TCP uses purely end-to-end mechanisms.
In particular, it uses the ratio of the inter-packet separation
at the receiver and the inter-packet separation at the sender
as the primary metric for rate control. As a result, ATP and
W-TCP reduce the effect of non-congestion related packet
losses on the computation of transmission rate. Flush, in con-
trast, computes fine-grained estimates of the bottleneck ca-
pacity in real-time and communicates this during a transfer,
allowing our approach to react as congestion occurs. Flush
also applies rate control to the problem of optimizing pipelin-
ing and interference, neither of which is addressed by ATP
or W-TCP.

A number of protocols have been proposed in the sen-
sor network space which investigate aspects of this problem.
RMST [26] outlines many of the theoretical and design con-
siderations that influenced our thinking including architec-
tural choices, link layer retransmission policies, end-to-end
vs hop-by-hop semantics, and choice of selective/cumulative
or positive/negative acknowledgments, even though their
work was focused on analytical results and ns-2 simulations
of 802.11 traffic.

Fusion [12], IFRC [22], and the work in [6] address the
problems of rate and congestion control for collection, but
are focused on a fair allocation of bandwidth among several
competing senders, rather than efficient and reliable end-to-
end delivery. Fusion [12] uses only buffer occupancy to mea-
sure congestion and does not try to directly estimate forward
path interference. IFRC estimates the set of interferers on
a collection tree with multiple senders, and searches for a
fair rate among these with an AIMD scheme. It does not fo-
cus on reliability, and we conjecture that the sawtooth pat-
tern of rate fluctuations makes for less overall efficiency than
Flush’s more stable rate estimates.

Fetch [30] is a reliable bulk-transfer protocol used to col-
lect volcanic activity monitoring data. Fetch’s unit of transfer
is a 256-byte block, which fits in 8 packets. Similar to Flush,
Fetch requests a block, and then issues a repair request for
any missing packets in the block. Fetch was used to collect
data from a six hop network in an extremely hazardous en-
vironment. In collecting 52,736 bytes of data, the median
bandwidth for 1st hop was 561 bytes per second, and median
bandwidth for 6th hop was 129 bytes per second, a fraction
of the bandwidth that Flush can achieve over the same path
length.

Wisden [20], like Flush, is a reliable data collection proto-
col. Nodes send data concurrently at a static rate over a col-
lection tree and use local repair and end-to-end negative ac-
knowledgments. The paper reports on data collected from 14
nodes in a tree with a maximum depth of 4 hops. Of the entire
dataset, 41.3% was transferred over a single hop, and it took
over 700 seconds to collect 39,096 bytes from each node. To
compare with Flush, we assume the same distribution of path
lengths. Based on the data from our experiments, it would
take Flush 465 seconds for an equivalent transfer. We ran
a microbenchmark in which we collected 51,680 bytes us-

363

ing a packet size of 80 bytes (the same as Wisden) and 68
byte payload. This experiment, repeated four times, shows
that Flush achieved 2,226 bytes per second from a single hop
compared with Wisden’s 782 bytes per second. This differ-
ence can be explained by the static rate at every node in Wis-
den. Incorrectly tuned rates or network dynamics can cause
buffer overflows and congestion collapse at one extreme and
poor utilization at the other extreme. Since in Wisden, nodes
are sending without avoidance and adjustment to interfer-
ence, cascading losses can occur, leading to inefficiency.

We also wanted to compare Flush with Tenet’s reliable
stream transport service with end-to-end retransmission [9].
However, since comparable performance numbers for Tenet
is not available, we attempted to use and characterize Tenet’s
performance on the Mirage testbed. Unfortunately, despite
the assistance of Tenet’s authors, we were unable to in-
strument and evaluate Tenet’s performance on the Mirage
testbed we used for the majority of our experiments.

Event-to-Sink Reliable Transport (ESRT) [23] defines re-
liability as “the number of data packets required for reliable
event detection” collectively received from all nodes expe-
riencing an event and without identifying individual nodes.
This does not satisfy our more stringent definition of relia-
bility. PSFQ [29] is a transport protocol for sensor networks
aimed at node reprogramming. PSFQ addresses a dissemi-
nation problem that is distinct from our collection problem,
since the data move from the basestation to a large number
of nodes. ExOR [3] is a data transport protocol that takes
advantages of the broadcast medium. However, it requires
that each packet header contain considerable protocol data
(e.g. forward list, batch map). This protocol data would in-
troduce an additional overhead on our already quite-limited
payload. Recent attempts to apply network utility maximiza-
tion techniques to wireless networks [17] may be promising
to understand Flush’s performance from a more theoretical
perspective.

7 Conclusion
Rate-based flow control algorithms are known to work

better than window-based ones for multihop wireless flows
over unscheduled links. The challenge lies in deciding the
rate: too high a rate will cause self-interference while too
low a rate will cause poor capacity utilization. In contrast
with earlier work, this paper advocates directly measuring
intra-path interference at each hop and using this informa-
tion to compute an upper bound on the rate (the actual rate
could be lower due to lossy links). This paper demonstrates
that such measurements are feasible and practical, and that
they can form the basis of transport protocol that can scale to
dozens of hops. Indeed, we used Flush to collect the perfor-
mance data presented in this paper.

8 Acknowledgments
This material is based upon work supported by the Na-

tional Science Foundation under grants #0435454 (“NeTS-
NR”), #0454432 (“CNS-CRI”), and #0615308 (“CSR-
EHS”). A National Science Foundation Graduate Research
Fellowship and a Stanford Terman Fellowship, as well as
generous gifts from Intel Research, DoCoMo Capital, Foun-
dation Capital, Crossbow Technology, Microsoft Corpora-
tion, and Sharp Electronics, also supported this work.

9 References

[1] http://cvs.sourceforge.net/viewcvs.
py/tinyos/tinyos-1.x/contrib/hsn/
README TinyAODV.

[2] http://mirage.berkeley.intel-research.net/.

[3] S. Biswas and R. Morris. ExOR: opportunistic multi-
hop routing for wireless networks. In SIGCOMM ’05:
Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 133–144, New York, NY, USA,
2005. ACM Press.

[4] T. Blackwell, K. Chang, H. Kung, and D. Lin. Credit-
based flow control for ATM networks. In Proc. of the
First Annual Conference on Telecommunications R&D
in Massachusetts, 1994.

[5] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C.
Parkes, J. Shneidman, A. C. Snoeren, and A. Vah-
dat. Mirage: A microeconomic resource allocation
system for sensornet testbeds. In Proceedings of the
2nd IEEE Workshop on Embedded Networked Sensors,
May 2005.

[6] C. T. Ee and R. Bajcsy. Congestion control and fairness
for many-to-one routing in sensor networks. In SenSys
’04: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, pages 148–
161. ACM Press, 2004.

[7] R. Fonseca, S. Ratnasamy, J. Zhao, C.-T. Ee, D. Culler,
S. Shenker, and I. Stoica. Beacon-vector routing: Scal-
able point-to-point routing in wireless sensor networks.
In Proceedings of the 2nd USENIX Symposium on Net-
worked System Design and Implementation (NSDI’05),
May 2005.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic ap-
proach to networked embedded systems. In Program-
ming Language Design and Implementation (PLDI),
June 2003.

[9] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govin-
dan, B. Greenstein, A. Joki, D. Estrin, and E. Kohler.
The tenet architecture for tiered sensor networks. In
SenSys ’06: Proceedings of the 4th international con-
ference on Embedded networked sensor systems, pages
153–166, New York, NY, USA, 2006. ACM Press.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System Architecture Direc-
tions for Networked Sensors. In Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 93–104, 2000. TinyOS is available at
http://webs.cs.berkeley.edu.

[11] J. Hill, R. Szewczyk, A. Woo, P. Levis, K. Whitehouse,
J. Polastre, D. Gay, S. Madden, M. Welsh, D. Culler,
and E. Brewer. Tinyos: An operating system for sensor
networks, 2003.

[12] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigat-
ing congestion in wireless sensor networks. In SenSys
’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, Nov. 2004.

364

[13] S. Kim. Wireless Sensor Networks for High Fidelity
Sampling. PhD thesis, EECS Department, University
of California, Berkeley, Jul 2007.

[14] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves,
S. Glaser, and M. Turon. Health monitoring of civil
infrastructures using wireless sensor networks. In IPSN
’07: Proceedings of the 6th international conference on
Information processing in sensor networks, pages 254–
263, New York, NY, USA, 2007. ACM Press.

[15] Y. Kim, R. Govindan, B. Karp, and S. Shenker. Geo-
graphic routing made practical. In Proceedings of the
Second USENIX/ACM Symposium on Networked Sys-
tem Design and Implementation (NSDI 2005), Boston,
MA, May 2005.

[16] J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Mor-
ris. Capacity of ad hoc wireless networks. In MobiCom
’01: Proceedings of the 7th annual international con-
ference on Mobile computing and networking, pages
61–69, New York, NY, USA, 2001. ACM Press.

[17] X. Lin and N. Shroff. Utility maximization for commu-
nication networks with multi-path routing. 51(5):766–
781, May 2006.

[18] P. P. Mishra, H. Kanakia, and S. K. Tripathi. On
hop-by-hop rate-based congestion control. IEEE/ACM
Trans. Netw., 4(2):224–239, 1996.

[19] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler:
A reliable and energy efficient data dissemination ser-
vice for wireless embedded devices. In Proceedings
of the 26th IEEE Real-Time Systems Symposium (RTSS
2005), 2005.

[20] J. Paek, K. Chintalapudi, J. Cafferey, R. Govindan, and
S. Masri. A wireless sensor network for structural
health monitoring: Performance and experience. In
Proceedings of the Second IEEE Workshop on Embed-
ded Networked Sensors (EmNetS-II), 2005.

[21] M. Petrova, J. Riihijarvi, P. Mahonen, and S. Labella.
Performance study of ieee 802.15.4 using measure-
ments and simulations. In Wireless Communications
and Networking Conference 2006 (WCNC 2006), vol-
ume 1, pages 487–492, April 2006.

[22] S. Rangwala, R. Gummadi, R. Govindan, and K. Psou-
nis. Interference-aware fair rate control in wireless sen-
sor networks. In SIGCOMM 2006, Pisa, Italy, August
2006.

[23] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz.
ESRT: Event-to-sink reliable transport in wireless sen-
sor networks. In In Proceedings of MobiHoc, June
2003.

[24] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivaku-
mar, and V. Bharghavan. WTCP: A reliable transport
protocol for wireless wide-area networks. Wireless Net-
works, 8(2-3):301–316, 2002.

[25] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. Some
implications of low-power wireless to ip routing. In
Proceedings of the Fifth Workshop on Hot Topics in
Networks (HotNets V), November 2006.

[26] F. Stann and J. Heidemann. RMST: Reliable data trans-

port in sensor networks. In Proceedings of the First
International Workshop on Sensor Net Protocols and
Applications, pages 102–112. IEEE, Apr. 2003.

[27] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and
R. Sivakumar. ATP: a reliable transport protocol for
ad-hoc networks. In Proceedings of the 4th ACM inter-
national symposium on Mobile ad hoc networking &
computing (MobiHoc ’03), pages 64–75, 2003.

[28] A. K. Vyas and F. A. Tobagi. Impact of interference
on the throughput of a multihop path in a wireless net-
work. In The Third International Conference on Broad-
band Communications, Networks, and Systems (Broad-
nets 2006), 2006.

[29] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy.
PSFQ: a reliable transport protocol for wireless sen-
sor networks. In WSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless sensor net-
works and applications, 2002.

[30] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring
sensor network. In Proceedings of the ACM Sympo-
sium on Operating System Design and Implementation
(OSDI), pages 381–396, 2006.

[31] A. Woo and D. E. Culler. A transmission control
scheme for media access in sensor networks. In Pro-
ceedings of the seventh annual international confer-
ence on Mobile computing and networking, Rome,
Italy, July 2001.

[32] A. Woo, T. Tong, and D. Culler. Taming the under-
lying challenges of reliable multihop routing in sensor
networks. In Proceedings of the first international con-
ference on Embedded networked sensor systems, pages
14–27. ACM Press, 2003.

365

366

