
From Protocol Stack to Protocol Heap
– Role-Based Architecture

Robert Braden and Ted Faber
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA

Braden@isi.edu, Faber@isi.edu

Mark Handley
International Computer Science Institute

1947 Center St, Suite 600
Berkeley, CA 94704

mjh@icir.org

Abstract

Questioning whether layering is still an adequate founda-
tion for networking architectures, this paper investigates
non-layered approaches to the design and implementation
of network protocols. The goals are greater flexibility and
control with fewer feature interation problems. The paper
further proposes a specific non-layered paradigm called
role-based architecture.

1 Introduction

Traditional packet-based network architecture assumes
that communication functions are organized into nested
levels of abstraction calledprotocol layers[6], and that the
metadata that controls packet delivery is organized into
protocol headers, one for each protocol layer [3].

Protocol layering has served well as an organizing prin-
ciple, but it worked better for the more strict end-to-end
model of the original Internet architecture than it does
today. We see constant pressure for “layer violations”
(which are often assumption violations)1, and unexpected
feature interactions emerge. In large part this is due to
the rapid proliferation of “middle boxes” (firewalls, NAT
boxes, proxies, explicit and implicit caches, etc.), but
other multi-way interactions such as QoS, multicast, over-
lay routing, and tunneling also complicate the picture.

The complex interactions that result are difficult to de-
scribe using strict layering, and the implicit “last on, first
off” assumption of layering often makes a new service
fit poorly into the existing layer structure. The result is
an inability to reason about feature interaction in the net-
work. A reluctance to change working implementations
and long-standing inter-layer interfaces often lead design-
ers to insert new functionality between existing layers

1Current protocol engineering efforts are producing some remarkable
examples of layer muddling.

rather than modify existing layers.2

It is very hard to evolve network protocols, especially at
the network level. Partly this is for performance reasons3,
but partly it is because layering tends to lead to a relatively
large granularity of protocol functionality.

We are forced to conclude that layering is not a suffi-
ciently flexible abstraction for network software modular-
ity. This inflexibility might be considered desirable, as it
forces compliance with existing standards, but in practice
it often results in a tussle [1] between the needs of protocol
designers, ending in short-sighted solutions that violate
some of the assumptions made by other protocols. Sug-
gesting that layering is inadequate calls upon us to pro-
pose an alternative organizational principle for protocol
functionality. Our task is to allow more flexible relation-
ships among communication abstractions, with the aim of
providing greater clarity, generality, and extensibility than
the traditional approach allows.

This paper proposes a new non-stack network architec-
ture that we callrole-based architectureor RBA. Instead
of using protocol layers, RBA organizes communication
using functional units that are calledroles. Roles are not
generally organized hierarchically, so they may be more
richly interconnected than are traditional protocol layers.
The inputs and outputs of a role are application data pay-
loads and controlling metadata that is addressed to spe-
cific roles.

With a non-layered approach, layer violations should
be replaced by explicit and architected role interactions.
Of course, “role violations” will still be possible, but the
generality of the mechanism should typically make them
unnecessary, and suitable access controls over metadata
can make them difficult.

The intent is that roles will be building blocks that are
well-defined and perhaps well-known. To enable inter-
operability, a real network using RBA would need a rel-

2For example, MultiProtocol Label Switching was inserted at “layer
2.5”, IPsec at “layer 3.5”, and Transport-Layer Security at “layer 4.5”.

3For example, IPv4 options are rarely used.

1

atively few (tens to hundreds) ofwell-knownroles de-
fined and standardized.4 However, the number of special-
purpose, experimental, or locally defined roles is likely to
be much greater.

There has been much prior work on the modularization
of protocol processing, generally with the primary objec-
tive of easing the development of new protocol stacks;
see for example [2], [4], [5]. However, we believe that
RBA is the first general proposal for achieving modularity
through a non-layered protocol paradigm in both protocol
headers and processing modules.

1.1 Role-based Architecture

A general idea behind role-based architecture is that of
explicit signaling of functionality. The lack of architected
signaling is one of the main reasons why middleboxes do
not fit into the current layered architecture. For example,
there is no defined way to signal to an end-system that a
packet really did traverse the firewall protecting the site,
or to signal that an end-system does not want its request
redirected to a web cache.

Even in simple examples, the limits of layering are
clear. How can a TCP port 80 SYN packet signal that
it does not want to be redirected to an application-layer
web cache? Network congestion is signaled by a router
(network layer), but rate-control occurs at the flow level
(transport layer), so signaling between the flow and the
network is difficult. In both cases, layering is part of
the problem, and explicit signaling is a possible solution.
RBA is designed to perform such signaling in a robust and
extensible manner.

Role-based architecture also allowsall the compo-
nents comprising a network to be explicitly identified,
addressed, and communicated with. RBA would allow
re-modularization of current “large” protocols such as IP,
TCP, and HTTP into somewhat smaller units that are ad-
dressed to specific tasks. Examples of such tasks might
be “packet forwarding”, “fragmentation”, “flow rate con-
trol”, “byte-stream packetization”, “request web page”,
or “suppress caching”. Each of these comprise separable
functionality and could be performed by a specific role in
a role-based architecture.

Moving to a non-layered architecture requires a distinct
shift in thinking, so the next section examines the impli-
cations of removing layering constraints. Section 2 exam-
ines what role-based architecture might actually look like
in principle, while Section 3 describes a practical adapta-
tion of RBA to real-world networking.

4Note that role-based architecture will not remove the need for stan-
dardization.

1.2 Non-Layered Architecture Implications

The concept of a non-layered protocol architecture has
immediate implications. Layering provides modularity,
a structure and ordering for the processing of metadata,
and encapsulation. Modularity, with its opportunity for
information hiding and independence, is an indispensable
tool for system design. Any alternative proposal must
provide modularity, but also adequately address the other
aspects of layering:

Metadata Structure: The structure of metadata
carried in a packet header no longer forms a “stack”,
it forms a “heap” of protocol headers. That is, the
packet header is replaced by a container that can hold
variable-sized blocks of metadata, and these blocks may
be inserted, accessed, modified, and removed in any order
by the modular protocol units.

Processing Rules: A non-layered architecture re-
quires new rules to control processing order and control
access to metadata to replace the corresponding rules of a
layered architecture.

Consider ordering first. In the simplest case when roles
are completely independent, a non-layered architecture
specifies no processing order; protocol modules may op-
erate in any order, or even simultaneously, on various sub-
sets of the metadata. More commonly, however, an appro-
priate partial ordering is required among specific roles.

Other rules must specify how access to metadata is to
be controlled. By controlling the association between
program and (meta)data, the architecture can explicitly
control interactions among the different protocol mod-
ules, enhancing security as well as extensibility.

Encapsulation: In a layered architecture, each layer is
encapsulated in the layer below. In non-layered architec-
tures, there needs to be a different organizational principle
for the data and metadata in a packet. Encapsulation
does not disappear, but it is reserved for cases where
the functionality is that of a container. For example, a
protocol providing a reliable byte stream over a packet
network encapsulates that byte-stream, but it does not
encapsulate all the metadata associated with the byte
stream if that metadata affects packet processing.

2 The Idealized RBA

In light of the discussion above, we proposerole-based
architecture(RBA) as a particular non-layered architec-
ture in which the modular protocol unit is called arole. A
role is a functional description of a communication build-
ing block that performs some specific function relevant to
forwarding and/or processing packets. Roles are abstract

Payload
RSH 1

RSH 2 RSH 3

Role A Role B
Role C

Packet

Figure 1: Roles and Role-Specific Headers

entities, and it should be possible to reason about them
somewhat formally.

Roles are instantiated in nodes by code calledactors.
For many purposes, the distinction between a role and its
actors will not matter, so we can often simply speak of
roles as having particular properties. A role may logically
span multiple nodes, so it may be distributed in an abstract
sense, while each actor executes in a particular node.

The metadata in a packet, calledrole data, is divided
into chunks calledrole-specific headers(RSHs). This is
illustrated in Figure 1, which shows a packet containing
three RSHs in its heap and three roles that read and write
these RSHs, as shown by the arrows.

An end system does not necessarily know that a packet
it sends will encounter a node that cares about a particular
role. For example, there may be no web-cache-redirector
role on a particular path, but if there is, including a signal-
ing RSH addressed to this role will ensure that the cache
receives the metadata. Any node along the path can add an
RSH to a passing packet. For example, suppose that a fire-
wall has some lightweight way of signing that a packet has
been examined and found to conform to the site’s security
policy; it can include this signature in an RSH attached to
the data packet and addressed to the host firewall role.

2.1 RBA Objectives

RBA is designed to achieve the following objectives.

Extensibility : RBA is inherently extensible, both me-
chanically and conceptually. Mechanically, RBA
uses a(type, length, value)mechanism to encode all
role data. Conceptually, the general modularity sup-
ported by RBA should enhance extensibility.

Portability : The role abstraction is designed to be inde-
pendent of the particular choice of nodes in which a

role will be performed. Thisportability of roles en-
ables flexible network engineering, since functions
can be grouped into boxes as most appropriate. Role
portability may, but won’t generally, imply rolemo-
bility, in which a role could migrate dynamically to
a different node.

Explicit Architectural Basis for Middle Boxes : RBA
is intended to allow endpoints to communicate ex-
plicitly with middle boxes and middle boxes to com-
municate with each other.

Controlled Access to Metadata: RBA includes a gen-
eral scheme for controlling access to metadata, al-
lowing control over which nodes can read and mod-
ify specific subsets of the metadata as well as the ap-
plication data. This access control implies control of
the services that can be requested and control of the
operations that can be performed on a packet.

Auditability : An endpoint may wish toaudit received
data packets to ascertain that they were subjected to
requested processing, for example through a valida-
tor or an encrypted firewall. Auditability is not gen-
erally feasible with the current layered architecture
because the relevant metadata will have been pro-
cessed and removed before the data reaches the re-
ceiver. RBA role data can be used to indicate that the
requested service was provided.

2.2 General Properties of Roles

A role haswell-defined inputs and outputs, in the form of
RSHs whose syntax and semantics can be tightly speci-
fied, and/or in the form of APIs to other software compo-
nents in the local node.

A role is identified by aunique namecalled aRoleID.
A RoleID reflects the functionality provided. A full
RoleID may have a multicomponent structure like a file
name; the hierarchy would reflect the derivation of a spe-
cific role from a more generic one (Section 2.4). For effi-
cient transport and matching, a corresponding short-form
fixed-length integer RoleID will normally be used.

The RoleID only addresses meta-data to the provider
of a type of functionality; it does not indicate which
node will perform that functionality. RSHs in packets
can also be addressed to the specific actor that instantiates
a role5. RBA requires that node interfaces have unique
addresses called NodeIDs, which would correspond to
“network addresses” in the traditional layered architec-
ture. Symbolically, we denote arole addressin the form
RoleID@NodeID, or RoleID@� if the NodeID is to be left
unspecified.

5We speak of theaddressof a role, meaning the address of one of its
actors.

To perform their tasks, role actors may contain inter-
nal role state. Establishing, modifying, and deleting role
state generally requires signaling, which is done through
the exchange of RSHs.

Often roles are defined in complementary pairs; these
are calledreflective roles. Simple examples of such re-
flective roles might be: (Fragment, Reassemble), (Com-
press, Expand) or (Encrypt, Decrypt).

Other special role categories may emerge as the role-
based model is developed further. These sort of categories
are useful in bounding the flexibility that RBA provides,
so that we can reason about the interaction between roles.

There arefamilies of related roles that differ in detail
but perform the same generic function. This generic func-
tion may be abstractly represented by ageneric role. Spe-
cific roles may be derived from the generic role through
one or more stages of specification (see Section 2.4).
For example, corresponding to the generic roleReliable-
DataDeliverythere might be specific roles for reliable or-
dered byte streams and for reliable datagrams.

For designing and analyzing roles, it will be useful to
define thecomposition of a role from sub-roles. This
enables a building block approach to creating relatively
complex roles, and it allows the successive decomposition
of abstract roles into sub-roles.

2.3 Role Data

Under the idealized RBA model, all data in a packet, in-
cluding the payload, is role data that is divided into RSHs.
The set of RSHs in a particular header may vary widely
depending on the services requested by the client and can
vary dynamically as a packet transits the network. The
relationship between roles and RSHs is generally many-
to-many – a particular RSH may be addressed to multi-
ple roles, and a single role may receive and send multiple
RSHs.

Just as roles modularize the communication algorithms
and state in nodes, so RSHs modularize the metadata car-
ried in packets. RSHs divide the metadata along role
boundaries, so an RSH forms a natural unit for ordering
and access control on the metadata; it can be encrypted or
authenticated as a unit.

The granularity of RSHs is a significant design param-
eter, since role data cannot be shared among roles at a
smaller granularity than complete RSHs. At the finest
granularity, each header field could be a distinct RSH; this
would avoid any replication of data elements required by
multiple roles. However, overhead in both packet space
and processing requirements increases with the number of
RSHs in a packet, so such fine-granularity RSHs are not
generally feasible. As in all modularity issues, the optimal
division into RSHs will be an engineering trade-off.

A role might modify its activity depending upon the

particular set of RSHs in the packet. Furthermore, the
presence of a particular RSH may constitute the request
for a service from subsequent nodes. Thus, the RSHs
may be considered to provide a form of signaling that may
piggy-back on any data packet.

The format of an RSH is role-specific. It might have the
fixed-field format of a conventional protocol header or it
might have a (type, length, value) format, for example. An
RSH contains a list of role addresses to which this RSH is
directed and a body containing role data items. We denote
this symbolically as:

RSH(<RoleAddressList> ; <RoleBody>)
For example,RSH(Expand@N3, Decrypt@�; ...) rep-

resents an RSH addressed to the role namedExpandat
nodeN3and to the role namedDecryptat any node.

RBA provides a model for packet header processing,
not a mechanism for routing packets. Rather, RBA incor-
porates whatever forwarding mechanism is in use through
a genericForward role, which may depend upon global
or local state in each node. A mechanism to create that
state, e.g., a distributed SPF routing calculation, is sim-
ply another application from the viewpoint of RBA. Once
the forwarding rules determine the actual route taken by a
packet, the RBA sequence and scheduling rules come into
play to determine the sequence of operations.

2.4 Technical Issues

Further definition of RBA requires specific solutions to a
number of technical problems.

� Role Matching

Rules must be specified for matching role addresses
in RSHs with actors, taking into account the access
control rules. An actor may have access to an RSH
either because the RSH was explicitly addressed to
that actor or because the actor was promiscuously
“listening” for particular RSHs (again subject to ac-
cess control rules.) An actor may read or write (add,
modify or delete) an RSH (see the arrows in Figure
1).

� Actor Execution Scheduling

Once the matching actors are selected, the node must
determine in what order they should be executed.
This scheduling problem must consider ordering re-
quirements imposed by roles; these requirements are
called sequencing rules. For example, such rules
might prevent undesirable sequences likeEncrypt,
Compress(compression is not useful after encryp-
tion) or Expand, Compress(wrong order), orCom-
press, Encrypt, Expand, Decrypt(reflective pairs are
improperly nested). These rules must consider dy-
namic precedence information carried in packets as

well as static precedence associated with the actors
in the nodes.

� RSH Access Control

By controlling access to RSHs, RBA allows nodes,
including end systems, to control what network ser-
vices can be applied to specific packets. RBA pro-
vides two levels of access control, de jure and ab-
solute. De jure access control is provided by bits in
each RSH that grant specific roles read and/or write
permission for the RSH. Write access would pro-
vide the ability to modify or delete the RSH from
the packet.

De jure access control is sufficient as long as nodes
follow the RBA rules. Otherwise, nodes can abso-
lutely control access to RSHs by encrypting these
RSHs; of course, this greater certainty has greater
cost.

� Role Definition

To fully define a specific role, it is necessary to define
its internal state, its algorithms, and the RSHs to be
sent and received. In addition, some roles have non-
network interfaces that must be defined.

It remains to be seen whether RBA is amenable to
the use of formal protocol specification techniques.
One possible direction is to exploit the analogy be-
tween object-oriented programming and the deriva-
tion of specific roles from generic roles. If roles cor-
respond to classes, then actors are instantiations of
these classes, and RBA communication can be mod-
eled by actors communicating via message passing.

� Role Composition

Two rolesRa andRb that communicate directly with
each other using RSHs (which may originate and ter-
minate in the two roles, or may be passing through
one or both) should be composable into a larger role
Rc. This bindsRa andRb into the same node, and
allows inter-role communication to be replaced by
internal communication, e.g., shared data.

Conversely, a complex role may be decomposed into
component roles, replacing shared data by explicit
role data communication using RSHs.

2.5 RBA Examples

2.5.1 Simple Datagram Delivery

As a very simple RBA example, the RBA equivalent to a
simple IP datagram might be a packet containing the four
RSHs:

f RSH(LinkLayer@NextHopAddr;),
RSH(HbHForward@�; destNodeID),
RSH(HbHSource@�; sourceNodeID),
RSH(DestApp@destNodeID; AppID, payload) g

Here theLinkLayerrole presents the link layer proto-
col, and its RSH is addressed to the next hop node. The
DestApprole is the generic destination application role
that delivers the payload in the role data to the application-
level protocol specified byAppID. The HbHForward
role represents a hop-by-hop forwarding function, in-
voked in every node along the path, with the destination
address as its role data. It is one specific rule derived from
the genericForward role, which is the fundamental action
of a router and of most middle boxes. It uses role data to
determine one or more outgoing interfaces or next hops.
HBHSourceindicates the node ID that can be used to re-
turn a response by hop-by-hop forwarding.

2.5.2 Network Address Translators

Regardless of their architectural merit, network address
translators (NATs) make a good RBA example since they
do not fit well into a layered architecture. A NAT is essen-
tially a packet relay that separates two different addressing
realms. Complication is added by application-level proto-
cols that are unaware of the NAT’s existence but need to
communicate addresses or ports end-to-end.

There are essentially two types of NAT.Pure NATsper-
form a dynamic but one-to-one mapping between a small
pool of external addresses and a larger number of inter-
nal addresses.NAPTsperform a one-to-many mapping
between a single external address and many internal ad-
dresses, by overloading the TCP or UDP port fields.

Pure NATs are simple to accommodate using RBA. The
NAT simply inserts a RSH for the role callednat-receiver
giving the original address, and all software on any down-
stream nodes can see that the translation has occurred, and
act accordingly.

Network address and port translators (NAPTs) are a
little more complex. We wish to avoid overloading any
fields, and we want NAPT to function for any application-
level protocol. A NAPT can behave exactly like a pure-
NAT in its insertion of thenat-receiverRSH, but it also
needs some way to demux incoming packets to the cor-
rect internal address. This is done using a general-purpose
cookierole. On outgoing packets, the NAPT inserts an
RSH for thecookierole, giving a cookie that is unique to
the internal address. All systems should be aware of the
cookierole, and should echo the cookie in acookieecho
RSH included in any response. This cookie mechanism is
not NAT-specific, and it can form a useful building block
for many new mechanisms.

3 Practical Realization of RBA

The idealized RBA described in the previous sections is
useful as a model for network protocols. We furthermore
believe that the RBA model can be adapted for practical
implementation in a large-scale Internet world.

The idealized RBA replaces all layers of the tradi-
tional layered model, including the link layer. However,
link layer protocols are given, at least in the short term;
they are designed by industry groups to match particular
technological constraints. A practical RBA subset would
therefore retain the link layer as a distinct layer “below”
RBA.

A critical design decision when instantiating a role-
based architecture is designing the packet format. There
is a clear tradeoff between making the RSH header for-
mat quite powerful and general, versus wasting too many
bytes on role addressing relative to the size of the infor-
mation carried in each RSH. In the earliest sketch of RBA,
we imagined a small number of well-defined roles and a
field as small as 6 bits to address each RSH. Later we real-
ized that RBA would be much more powerful if we could
address RSHs more generally, and so the addressing in-
formation grew to include NodeIDs and larger RoleIDs.
This has a direct effect - it is probably not cost-effective
to split very simple low-level functionality into separate
roles. The advantage is that at higher levels we have a
more powerful mechanism for expressing complex inter-
actions.

Furthermore, forwarding performance is an important
real-world issue. In a very large-scale network like the
Internet, there are strong reasons to keep the basic packet
forwarding machinery as simple and efficient as possible.
A practical RBA would therefore retain the IP layer of the
Internet, with its high-speed forwarding machinery and
efficient packet header. RBA would then be applied above
the Internet layer, i.e., it would replace only the transport
and application layers. As a result, RBA would be imple-
mented only in end systems and middle boxes, where per-
formance requirements are much less severe than within
the core network.

These assumptions could be incorporated into RBA by
declaring that the genericForwardingrole and the reflec-
tive pair (Fragment, Reassemble) are “built in”. These
simplifications should not interfere with a major ratio-
nale for RBA, providing a consistent architectural basis
for middle boxes, but they should make a RBA approach
a realistic proposition for real networks.

4 Conclusions

This document has proposed role-based architecture to
simplify the design and deployment of communication

protocols in today’s world, where the complex interac-
tions among networking elements often do not follow a
strict layering model. RBA provides a uniform way to
structure protocols and protocol processing without the
confines of strict layering.

The generality of RBA does not come without cost, of
course. The layered-network model has been a very pow-
erful tool for conceptualizing and designing protocols. We
need to satisfy ourselves that roles will provide a tool that
is at least as good as, if not better than, layers for devel-
oping protocols. Furthermore, RBA requires a more gen-
eral data structuring in packet headers, which has a cost in
implementation, packet size, and execution performance.
We must show that these costs are containable.

5 Acknowledgments

We are grateful to the other members of the NewArch
project, who have given much encouragement on devel-
oping the RBA concepts. We especially want to thank
Dave Clark, John Wroclawski, Karen Sollins, Noel Chi-
appa, and Aaron Falk.

Development of RBA was funded in part by DARPA
contract F30602-00-1-0540.

References

[1] D. Clark, J. Wroclawski, K. Sollins, and R. Braden.
Tussle in Cyperspace – Defining Tomorrow’s Inter-
net. Proceedings of SIGCOMM 2002, 2002. Position
Paper.

[2] N. Hutchinson and L. Peterson. The x-Kernel:
An Architecture for Implementing Network Proto-
cols. IEEE Transactions on Software Engineering,
17(1):64–76, 1991.

[3] ISO. Information Processing Systems - Open Systems
Interconnection - Basic Reference Model. ISO 7498,
1984.

[4] E. Kohler, M. Kaashoek and D. Montgomery”. A
Readable TCP in the Prolac Protocol Language. Proc
SIGCOMM 99, 1999.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The Click modular router.ACM Trans-
actions on Computer Systems, 18(3):263–297, 2000.

[6] E. Meyer. ARPA Network Protocol Notes. RFC 46,
Network Working Group, April 1970.

