
 ;login: AUGUST 2012 45

The past few years have seen tremendous interest in large-scale data analysis, as
data volumes in both industry and research continue to outgrow the processing
speed of individual machines. Google’s MapReduce model and its open source
implementation, Hadoop, kicked off an ecosystem of parallel data analysis tools
for large clusters, such as Apache’s Hive and Pig engines for SQL processing.
However, these tools have so far been optimized for one-pass batch processing of
on-disk data, which makes them slow for interactive data exploration and for the
more complex multi-pass analytics algorithms that are becoming common. In

Ankur Dave is an under
graduate at UC Berkeley and
a Spark contributor since
2010. His projects include

Arthur, a replay debugger for Spark programs,
and Bagel, a Sparkbased graph processing
framework.
ankurd@eecs.berkeley.edu

Justin Ma is a postdoc in
the UC Berkeley AMPLab.
His primary research is in
systems security, and his other

interests include machine learning and the
impact of energy availability on computing. He
received BS degrees in Computer Science and
Mathematics from the University of Maryland
in 2004, and he received his PhD in Computer
Science from UC San Diego in 2010.
jtma@cs.berkeley.edu

Murphy McCauley is a
Master’s student at UC
Berkeley. His current focus
is on software defined

networking.
murphy.mccauley@gmail.com

Michael J. Franklin is the
Thomas M. Siebel Professor
of Computer Science and
Director of the Algorithms,

Machines and People Laboratory (AMPLab)
at UC Berkeley. His current research is in
the areas of scalable query processing, data
integration, hybrid human/computer data
processing systems, and crossdatacenter
consistency protocols.
franklin@cs.berkeley.edu

Scott Shenker spent his
academic youth studying
theoretical physics but soon
gave up chaos theory for

computer science. Unable to hold a steady job,
he currently splits his time between the UC
Berkeley Computer Science Department and
the International Computer Science Institute.
shenker@cs.berkeley.edu

Ion Stoica is a Professor in
the EECS Department at
the University of California
at Berkeley. His research

interests include cloud computing, distributed
systems, and networked computer systems.
istoica@cs.berkeley.edu

Matei Zaharia is a fifth
year PhD student at UC
Berkeley, working with Scott
Shenker and Ion Stoica

on topics in computer systems, networks,
cloud computing, and big data. He is also a
committer on Apache Hadoop and Apache
Mesos.
matei@eecs.berkeley.edu

Mosharaf Chowdhury is a PhD
student at the University of
California, Berkeley, working
with Ion Stoica on topics in

cloud computing and datacenter networks.
He received his undergraduate degree at
Bangladesh University of Engineering and
Technology (BUET) and a Master’s degree
from the University of Waterloo in Canada.
mosharaf@cs.berkeley.edu

Tathagata Das is a PhD
student at the University of
California, Berkeley, working
with Scott Shenker on topics

in cloud computing, datacenter frameworks,
and datacenter networks. He received his
undergraduate degree at the Indian Institute of
Technology, Kharagpur, India.
tdas@cs.berkeley.edu

NETWORKED SYSTEMSFast and Interactive Analytics over Hadoop
Data with Spark
M A T E I Z A H A R I A , M O S H A R A F C H O W D H U R Y , T A T H A G A T A D A S , A N K U R
D A V E , J U S T I N M A , M U R P H Y M C C A U L E Y , M I C H A E L J . F R A N K L I N ,
S C O T T S H E N K E R , A N D I O N S T O I C A

 46 ;login: VOL. 37, NO. 4

this article, we introduce Spark, a new cluster computing framework that can run
applications up to 40× faster than Hadoop by keeping data in memory, and can be
used interactively to query large datasets with sub-second latency.

Spark started out of our research group’s discussions with Hadoop users at and
outside UC Berkeley. We saw that as organizations began loading more data into
Hadoop, they quickly wanted to run rich applications that the single-pass, batch
processing model of MapReduce does not support efficiently. In particular, users
wanted to run:

u More complex, multi-pass algorithms, such as the iterative algorithms that are
common in machine learning and graph processing

u More interactive ad hoc queries to explore the data

Although these applications may at first appear quite different, the core problem
is that both multi-pass and interactive applications need to share data across mul-
tiple MapReduce steps (e.g., multiple queries from the user, or multiple steps of an
iterative computation). Unfortunately, the only way to share data between parallel
operations in MapReduce is to write it to a distributed filesystem, which adds sub-
stantial overhead due to data replication and disk I/O. Indeed, we found that this
overhead could take up more than 90% of the running time of common machine
learning algorithms implemented on Hadoop.

Spark overcomes this problem by providing a new storage primitive called resilient
distributed datasets (RDDs). RDDs let users store data in memory across que-
ries, and provide fault tolerance without requiring replication, by tracking how to
recompute lost data starting from base data on disk. This lets RDDs be read and
written up to 40× faster than typical distributed filesystems, which translates
directly into faster applications.

Apart from making cluster applications fast, Spark also seeks to make them easier
to write, through a concise language-integrated programming interface in Scala,
a popular functional language for the JVM. (Interfaces in Java and SQL are also
in the works.) In addition, Spark interoperates cleanly with Hadoop, in that it can
read or write data from any storage system supported by Hadoop, including HDFS,
HBase, or S3, through Hadoop’s input/output APIs. Thus, Spark can be a powerful
complement to Hadoop even for non-iterative applications.

Spark is open source at http://www.spark-project.org and is being used for data
analysis both at Berkeley and at several companies. This article will cover how
to get started with the system, how users are applying it, and where development
is going next. For a detailed discussion of the research behind Spark, we refer the
reader to our NSDI ’12 paper [6].

Programming Interface

The key abstraction in Spark is resilient distributed datasets (RDDs), which are
fault-tolerant collections of objects partitioned across cluster nodes that can be
acted on in parallel. Users create RDDs by applying operations called transforma-
tions, such as map, filter, and groupBy, to data in a stable storage system, such as
the Hadoop Distributed File System (HDFS).

In Spark’s Scala-based interface, these transformations are called through a func-
tional programming API, similar to the way users manipulate local collections.
This interface is strongly inspired by Microsoft’s DryadLINQ system for cluster

 ;login: AUGUST 2012 Fast and Interactive Analytics over Hadoop Data with Spark 47

computing [5]. For example, the following Spark code creates an RDD representing
the error messages in a log file, by searching for lines that start with “ERROR,” and
then prints the total number of error messages:

val lines = spark.textFile(“hdfs://...”)

val errors = lines.filter(line => line.startsWith(“ERROR”))

println(“Total errors: “ + errors.count())

The first line defines an RDD backed by an HDFS file as a collection of lines of
text. The second line calls the filter transformation to derive a new RDD from
lines. Its argument is Scala syntax for a function literal or closure. It’s similar to a
lambda in Python or a block in Ruby. Finally, the last line calls count, another type
of RDD operation called an action that returns a result to the program (here, the
number of elements in the RDD) instead of defining a new RDD.

Spark lets users call this API both from stand-alone programs and interactively
from the Scala interpreter to rapidly explore data. In both cases, the closures
passed to Spark can call any Java library, because Scala runs on the Java VM. They
can also reference read-only copies of any variables in the program. Spark will
automatically ship these to the worker nodes.

Although simply providing a concise interface for parallel processing is a boon to
interactive analytics, what really makes the model shine is the ability to load data
in memory. By default, Spark’s RDDs are “ephemeral,” in that they get recomputed
each time they are used in an action (e.g., count). However, users can also per-
sist selected RDDs in memory for rapid reuse. If the data does not fit in memory,
Spark will automatically spill it to disk, and will perform similarly to Hadoop. For
example, a user searching through a large set of log files in HDFS to debug a prob-
lem, as above, might load just the error messages into memory across the cluster by
calling:

errors.persist()

After this, she can run a variety of queries on the in-memory data:

// Count the errors mentioning MySQL

errors.filter(line => line.contains(“MySQL”)).count()

// Fetch the MySQL errors as an array of strings

errors.filter(line => line.contains(“MySQL”)).collect()

// Fetch the time fields of errors mentioning PHP as an array

// (assuming time is field number 3 in a tab-separated format):

errors.filter(line => line.contains(“PHP”))

 .map(line => line.split(‘\t’)(3))

 .collect()

In-memory data provides a significant speed boost for these queries. For example,
in one test, we loaded a 50 GB Wikipedia dump onto a 20-node Amazon cluster, and
found that a full-text search through it took 20 seconds with on-disk data or with
Hadoop. The same search took only 0.8 seconds with an in-memory RDD.

Fault Tolerance

Apart from providing in-memory storage and a variety of parallel operators, RDDs
also automatically recover from failures. Each RDD tracks the graph of trans-
formations that was used to build it, called its lineage graph, and reruns these

 48 ;login: VOL. 37, NO. 4

operations on base data to reconstruct any lost partitions. For example, Figure 1
shows the RDDs in the last query above, where we obtain the time fields of errors
mentioning PHP by applying two filters and a map. If any partition of a dataset is
lost, e.g., a node holding an in-memory partition of errors fails, Spark will rebuild
it by applying the filter on the corresponding block of the HDFS file. Recovery
is often much faster than simply rerunning the program, because a failed node
typically contains multiple RDD partitions, and these can be rebuilt in parallel on
other nodes.

Figure 1: Lineage graph for the third query in our example. Boxes represent RDDs, and arrows
represent transformations between them.

Lineage-based fault recovery is powerful because it avoids the need to replicate
data. This saves both time in constructing RDDs, as writing data over the network
is much slower than writing it to RAM, and storage space, especially for precious
memory resources. Even if all the nodes running a Spark program crash, Spark will
automatically rebuild its RDDs and continue working.

Other Examples

Spark supports a wide range of operations beyond the ones we’ve shown so far,
including all of SQL’s relational operators (groupBy, join, sort, union, etc.). We
refer the reader to the Spark Web site for a full programming guide [8], but show
just a couple of additional examples here.

First, for applications that need to aggregate data by key, Spark provides a parallel
reduceByKey operation similar to MapReduce. For example, the popular “word
count” example for MapReduce can be written as follows:

val counts = file.flatMap(line => line.split(“ “))

 .map(word => (word, 1))

 .reduceByKey((a, b) => a + b)

Second, to give an example of an iterative algorithm, the code below implements
logistic regression, a common machine learning algorithm for classifying objects
such as, say, spam vs. non-spam emails. The algorithm runs MapReduce opera-
tions repeatedly over the same dataset to optimize a mathematical function by
gradient descent (specifically, to find a hyperplane that best separates the objects).
Thus, it benefits greatly from storing the input data in RAM across iterations.

val points = spark.textFile(...).map(parsePoint).persist()

var w = Vector.random(D) // Current separating plane

for (i <- 1 to ITERATIONS) {

 val gradient = points.map { p =>

 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

 }.reduce((a, b) => a + b)

 w -= gradient

}

println(“Final separating plane: “ + w)

 ;login: AUGUST 2012 Fast and Interactive Analytics over Hadoop Data with Spark 49

To show the benefit of Spark for this algorithm, Figure 2 compares its performance
against Hadoop for varying numbers of iterations. In this test, with 100 GB of
data on a 50-node cluster, Hadoop takes a constant time per iteration of about 110
seconds. In contrast, Spark takes 80 seconds for the first iteration to load the data
in memory, but only six seconds for each subsequent iteration.

Figure 2: Performance of logistic regression in Hadoop vs. Spark for 100 GB of data on a 50
node cluster. Hadoop takes a constant time of 110s per iteration, much of which is spent in I/O.
Spark takes 80s on the first iteration to load the data in memory, but only 6s per subsequent
iteration.

User Applications

Spark is in use both at several Internet companies and in a number of machine
learning research projects at Berkeley. Some of our users’ applications are dis-
cussed below.

In-Memory Analytics on Hive Data

Conviva Inc., an online video distribution company, used Spark to accelerate a
number of analytics reports that previously ran over Hive, the SQL engine built on
Hadoop. For example, a report on viewership across different geographical regions
went from taking 24 hours with Hadoop to only 45 minutes with Spark (30× faster)
by loading the subset of data of interest into memory and then sharing it across
queries [2]. Conviva is also using Spark to interactively search large collections of
log files and troubleshoot problems, using both the Scala interface and a SQL inter-
face we are developing (discussed in the next section) called Shark.

Interactive Queries on Data Streams

Quantifind, a startup that specializes in predictive analytics over time series data,
used Spark to build an interactive interface for exploring time series. The system
periodically loads new data from external feeds (e.g., Twitter streams), runs an
entity extraction algorithm to parse the data, and builds an in-memory table of
mentions of each entity. Users can then query this table interactively through a
Web application that runs Spark queries on the backend [4].

Traffic Modeling

Researchers in the Mobile Millennium project at Berkeley [3] parallelized a learn-
ing algorithm for inferring traffic conditions from crowd-sourced automobile GPS
measurements. The source data were a 10,000 link road network for the San Fran-
cisco area, as well as 600,000 position reports for GPS-equipped automobiles (e.g.,
taxi cabs, or users running a mobile phone application) collected every minute. By

 50 ;login: VOL. 37, NO. 4

applying an iterative expectation maximization (EM) algorithm to this data, the
system can infer the time it takes to travel across individual road links.

Twitter Spam Detection

The Monarch project at Berkeley used Spark to identify link spam in Twitter posts.
They implemented a logistic regression classifier on top of Spark, similar to the
example in “Other Examples,” above. They applied it to over 80 GB of data contain-
ing 400,000 URLs posted on Twitter and 107 features/dimensions related to the
network and content properties of the pages at each URL to develop a fast and
accurate classifier for spammy links.

Conclusion and Next Steps

By making in-memory data sharing a first-class primitive, Spark provides a pow-
erful tool for interactive data mining, as well as a much more efficient runtime for
the complex machine learning and graph algorithms that are becoming common
on big data. At the same time, Spark’s ability to call into existing Java libraries
(through the Scala language) and to access any Hadoop-supported storage system
(by reusing Hadoop’s input/output APIs) make it a pragmatic choice to comple-
ment Hadoop for large-scale data analysis. Spark is open source under a BSD
license, and we invite the reader to visit http://www.spark-project.org to try it out.

Our group is now using Spark as a foundation to build higher-level data analysis
tools. Two ongoing projects that we plan to open source in 2012 are:

u Hive on Spark (Shark): Shark is a port of the Apache Hive SQL engine to run
over Spark instead of Hadoop. It can run over existing Hive data warehouses and
supports the existing Hive query language, but it adds the ability to load tables in
memory for greater speed. Shark will also support machine learning functions
written in Spark, such as classification and clustering, as an extension to SQL [1].
An alpha release is available at http://shark.cs.berkeley.edu.

u Spark Streaming: This project extends Spark with the ability to perform online
processing, through a similar functional interface to Spark itself (map, filter,
reduce, etc. on entire streams). It runs each streaming computation as a series of
short batch jobs on in-memory data stored in RDDs, and offers automatic paral-
lelization and fault recovery for a wide array of operators. A short paper on Spark
Streaming appears in HotCloud ’12 [7].

For more information on these projects, or on how to get started using Spark itself,
visit the Spark Web site at http://www.spark-project.org.

Acknowledgments

Research on Spark is supported in part by an NSF CISE Expeditions award, gifts
from Google, SAP, Amazon Web Services, Blue Goji, Cisco, Cloudera, Ericsson,
General Electric, Hewlett Packard, Huawei, Intel, MarkLogic, Microsoft, NetApp,
Oracle, Quanta, Splunk, and VMware, by DARPA (contract #FA8650-11-C-7136),
and by a Google PhD Fellowship.

 ;login: AUGUST 2012 Fast and Interactive Analytics over Hadoop Data with Spark 51

References

[1] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. Franklin, S. Shenker, and I. Stoica,
“Shark: Fast Data Analysis Using Coarse-Grained Distributed Memory,” SIGMOD,
2012.

[2] D. Joseph, “Using Spark and Hive to Process Big Data at Conviva”: http://
www.conviva.com/blog/engineering/using-spark-and-hive-to-process-bigdata
-at-conviva.

[3] Mobile Millennium project: http://traffic.berkeley.edu.

[4] K. Thiyagarajan, “Computing Time Series from Extracted Data Using Spark,”
Spark User Meetup presentation, Jan. 2012: http://files.meetup.com/3138542/
Quantifind%20Spark%20User%20Group%20Talk.pdf.

[5] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P.K. Gunda, and J. Currey,
“DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language,” USENIX OSDI ’08.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S.
Shenker, and I. Stoica, “Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for In-Memory Cluster Computing,” USENIX NSDI, 2012.

[7] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized Streams: An
Efficient Programming Model for Large-Scale Stream Processing,” USENIX
HotCloud, 2012.

[8] Spark homepage: http://www.spark-project.org.

