
 ;login: AUGUST 2012    45

The past few years have seen tremendous interest in large-scale data analysis, as 
data volumes in both industry and research continue to outgrow the processing 
speed of individual machines. Google’s MapReduce model and its open source 
implementation, Hadoop, kicked off an ecosystem of parallel data analysis tools 
for large clusters, such as Apache’s Hive and Pig engines for SQL processing. 
However, these tools have so far been optimized for one-pass batch processing of 
on-disk data, which makes them slow for interactive data exploration and for the 
more complex multi-pass analytics algorithms that are becoming common. In 
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this article, we introduce Spark, a new cluster computing framework that can run 
applications up to 40× faster than Hadoop by keeping data in memory, and can be 
used interactively to query large datasets with sub-second latency. 

Spark started out of our research group’s discussions with Hadoop users at and 
outside UC Berkeley. We saw that as organizations began loading more data into 
Hadoop, they quickly wanted to run rich applications that the single-pass, batch 
processing model of MapReduce does not support efficiently. In particular, users 
wanted to run: 

u More complex, multi-pass algorithms, such as the iterative algorithms that are 
common in machine learning and graph processing

u More interactive ad hoc queries to explore the data

Although these applications may at first appear quite different, the core problem 
is that both multi-pass and interactive applications need to share data across mul-
tiple MapReduce steps (e.g., multiple queries from the user, or multiple steps of an 
iterative computation). Unfortunately, the only way to share data between parallel 
operations in MapReduce is to write it to a distributed filesystem, which adds sub-
stantial overhead due to data replication and disk I/O. Indeed, we found that this 
overhead could take up more than 90% of the running time of common machine 
learning algorithms implemented on Hadoop. 

Spark overcomes this problem by providing a new storage primitive called resilient 
distributed datasets (RDDs). RDDs let users store data in memory across que-
ries, and provide fault tolerance without requiring replication, by tracking how to 
recompute lost data starting from base data on disk. This lets RDDs be read and 
written up to 40× faster than typical distributed filesystems, which translates 
directly into faster applications. 

Apart from making cluster applications fast, Spark also seeks to make them easier 
to write, through a concise language-integrated programming interface in Scala, 
a popular functional language for the JVM. (Interfaces in Java and SQL are also 
in the works.) In addition, Spark interoperates cleanly with Hadoop, in that it can 
read or write data from any storage system supported by Hadoop, including HDFS, 
HBase, or S3, through Hadoop’s input/output APIs. Thus, Spark can be a powerful 
complement to Hadoop even for non-iterative applications. 

Spark is open source at http://www.spark-project.org and is being used for data 
analysis both at Berkeley and at several companies. This article will cover how 
to get started with the system, how users are applying it, and where development 
is going next. For a detailed discussion of the research behind Spark, we refer the 
reader to our NSDI ’12 paper [6]. 

Programming Interface

The key abstraction in Spark is resilient distributed datasets (RDDs), which are 
fault-tolerant collections of objects partitioned across cluster nodes that can be 
acted on in parallel. Users create RDDs by applying operations called transforma-
tions, such as map, filter, and groupBy, to data in a stable storage system, such as 
the Hadoop Distributed File System (HDFS). 

In Spark’s Scala-based interface, these transformations are called through a func-
tional programming API, similar to the way users manipulate local collections. 
This interface is strongly inspired by Microsoft’s DryadLINQ system for cluster 
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computing [5]. For example, the following Spark code creates an RDD representing 
the error messages in a log file, by searching for lines that start with “ERROR,” and 
then prints the total number of error messages: 

val lines = spark.textFile(“hdfs://...”)

val errors = lines.filter(line => line.startsWith(“ERROR”))

println(“Total errors: “ + errors.count())

The first line defines an RDD backed by an HDFS file as a collection of lines of 
text. The second line calls the filter transformation to derive a new RDD from 
lines. Its argument is Scala syntax for a function literal or closure. It’s similar to a 
lambda in Python or a block in Ruby. Finally, the last line calls count, another type 
of RDD operation called an action that returns a result to the program (here, the 
number of elements in the RDD) instead of defining a new RDD. 

Spark lets users call this API both from stand-alone programs and interactively 
from the Scala interpreter to rapidly explore data. In both cases, the closures 
passed to Spark can call any Java library, because Scala runs on the Java VM. They 
can also reference read-only copies of any variables in the program. Spark will 
automatically ship these to the worker nodes. 

Although simply providing a concise interface for parallel processing is a boon to 
interactive analytics, what really makes the model shine is the ability to load data 
in memory. By default, Spark’s RDDs are “ephemeral,” in that they get recomputed 
each time they are used in an action (e.g., count). However, users can also per-
sist selected RDDs in memory for rapid reuse. If the data does not fit in memory, 
Spark will automatically spill it to disk, and will perform similarly to Hadoop. For 
example, a user searching through a large set of log files in HDFS to debug a prob-
lem, as above, might load just the error messages into memory across the cluster by 
calling: 

errors.persist()  

After this, she can run a variety of queries on the in-memory data: 

// Count the errors mentioning MySQL

errors.filter(line => line.contains(“MySQL”)).count()

// Fetch the MySQL errors as an array of strings

errors.filter(line => line.contains(“MySQL”)).collect()

// Fetch the time fields of errors mentioning PHP as an array

// (assuming time is field number 3 in a tab-separated format):

errors.filter(line => line.contains(“PHP”))

      .map(line => line.split(‘\t’)(3)) 

      .collect()  

In-memory data provides a significant speed boost for these queries. For example, 
in one test, we loaded a 50 GB Wikipedia dump onto a 20-node Amazon cluster, and 
found that a full-text search through it took 20 seconds with on-disk data or with 
Hadoop. The same search took only 0.8 seconds with an in-memory RDD. 

Fault Tolerance

Apart from providing in-memory storage and a variety of parallel operators, RDDs 
also automatically recover from failures. Each RDD tracks the graph of trans-
formations that was used to build it, called its lineage graph, and reruns these 
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operations on base data to reconstruct any lost partitions. For example, Figure 1 
shows the RDDs in the last query above, where we obtain the time fields of errors 
mentioning PHP by applying two filters and a map. If any partition of a dataset is 
lost, e.g., a node holding an in-memory partition of errors fails, Spark will rebuild 
it by applying the filter on the corresponding block of the HDFS file. Recovery 
is often much faster than simply rerunning the program, because a failed node 
typically contains multiple RDD partitions, and these can be rebuilt in parallel on 
other nodes. 

Figure 1: Lineage graph for the third query in our example. Boxes represent RDDs, and arrows 
represent transformations between them.

Lineage-based fault recovery is powerful because it avoids the need to replicate 
data. This saves both time in constructing RDDs, as writing data over the network 
is much slower than writing it to RAM, and storage space, especially for precious 
memory resources. Even if all the nodes running a Spark program crash, Spark will 
automatically rebuild its RDDs and continue working. 

Other Examples

Spark supports a wide range of operations beyond the ones we’ve shown so far, 
including all of SQL’s relational operators (groupBy, join, sort, union, etc.). We 
refer the reader to the Spark Web site for a full programming guide [8], but show 
just a couple of additional examples here. 

First, for applications that need to aggregate data by key, Spark provides a parallel 
reduceByKey operation similar to MapReduce. For example, the popular “word 
count” example for MapReduce can be written as follows: 

val counts = file.flatMap(line => line.split(“ “))

                 .map(word => (word, 1))

                 .reduceByKey((a, b) => a + b)

Second, to give an example of an iterative algorithm, the code below implements 
logistic regression, a common machine learning algorithm for classifying objects 
such as, say, spam vs. non-spam emails. The algorithm runs MapReduce opera-
tions repeatedly over the same dataset to optimize a mathematical function by 
gradient descent (specifically, to find a hyperplane that best separates the objects). 
Thus, it benefits greatly from storing the input data in RAM across iterations. 

val points = spark.textFile(...).map(parsePoint).persist()

var w = Vector.random(D)   // Current separating plane

for (i <- 1 to ITERATIONS) {

  val gradient = points.map { p =>

    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

  }.reduce((a, b) => a + b)

  w -= gradient

}

println(“Final separating plane: “ + w)
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To show the benefit of Spark for this algorithm, Figure 2 compares its performance 
against Hadoop for varying numbers of iterations. In this test, with 100 GB of 
data on a 50-node cluster, Hadoop takes a constant time per iteration of about 110 
seconds. In contrast, Spark takes 80 seconds for the first iteration to load the data 
in memory, but only six seconds for each subsequent iteration. 

Figure 2: Performance of logistic regression in Hadoop vs. Spark for 100 GB of data on a 50
node cluster. Hadoop takes a constant time of 110s per iteration, much of which is spent in I/O. 
Spark takes 80s on the first iteration to load the data in memory, but only 6s per subsequent 
iteration.

User Applications

Spark is in use both at several Internet companies and in a number of machine 
learning research projects at Berkeley. Some of our users’ applications are dis-
cussed below. 

In-Memory Analytics on Hive Data

Conviva Inc., an online video distribution company, used Spark to accelerate a 
number of analytics reports that previously ran over Hive, the SQL engine built on 
Hadoop. For example, a report on viewership across different geographical regions 
went from taking 24 hours with Hadoop to only 45 minutes with Spark (30× faster) 
by loading the subset of data of interest into memory and then sharing it across 
queries [2]. Conviva is also using Spark to interactively search large collections of 
log files and troubleshoot problems, using both the Scala interface and a SQL inter-
face we are developing (discussed in the next section) called Shark. 

Interactive Queries on Data Streams

Quantifind, a startup that specializes in predictive analytics over time series data, 
used Spark to build an interactive interface for exploring time series. The system 
periodically loads new data from external feeds (e.g., Twitter streams), runs an 
entity extraction algorithm to parse the data, and builds an in-memory table of 
mentions of each entity. Users can then query this table interactively through a 
Web application that runs Spark queries on the backend [4]. 

Traffic Modeling

Researchers in the Mobile Millennium project at Berkeley [3] parallelized a learn-
ing algorithm for inferring traffic conditions from crowd-sourced automobile GPS 
measurements. The source data were a 10,000 link road network for the San Fran-
cisco area, as well as 600,000 position reports for GPS-equipped automobiles (e.g., 
taxi cabs, or users running a mobile phone application) collected every minute. By 
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applying an iterative expectation maximization (EM) algorithm to this data, the 
system can infer the time it takes to travel across individual road links. 

Twitter Spam Detection

The Monarch project at Berkeley used Spark to identify link spam in Twitter posts. 
They implemented a logistic regression classifier on top of Spark, similar to the 
example in “Other Examples,” above. They applied it to over 80 GB of data contain-
ing 400,000 URLs posted on Twitter and 107 features/dimensions related to the 
network and content properties of the pages at each URL to develop a fast and 
accurate classifier for spammy links. 

Conclusion and Next Steps

By making in-memory data sharing a first-class primitive, Spark provides a pow-
erful tool for interactive data mining, as well as a much more efficient runtime for 
the complex machine learning and graph algorithms that are becoming common 
on big data. At the same time, Spark’s ability to call into existing Java libraries 
(through the Scala language) and to access any Hadoop-supported storage system 
(by reusing Hadoop’s input/output APIs) make it a pragmatic choice to comple-
ment Hadoop for large-scale data analysis. Spark is open source under a BSD 
license, and we invite the reader to visit http://www.spark-project.org to try it out. 

Our group is now using Spark as a foundation to build higher-level data analysis 
tools. Two ongoing projects that we plan to open source in 2012 are: 

u Hive on Spark (Shark): Shark is a port of the Apache Hive SQL engine to run 
over Spark instead of Hadoop. It can run over existing Hive data warehouses and 
supports the existing Hive query language, but it adds the ability to load tables in 
memory for greater speed. Shark will also support machine learning functions 
written in Spark, such as classification and clustering, as an extension to SQL [1]. 
An alpha release is available at http://shark.cs.berkeley.edu. 

u Spark Streaming: This project extends Spark with the ability to perform online 
processing, through a similar functional interface to Spark itself (map, filter, 
reduce, etc. on entire streams). It runs each streaming computation as a series of 
short batch jobs on in-memory data stored in RDDs, and offers automatic paral-
lelization and fault recovery for a wide array of operators. A short paper on Spark 
Streaming appears in HotCloud ’12 [7]. 

For more information on these projects, or on how to get started using Spark itself, 
visit the Spark Web site at http://www.spark-project.org. 
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