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Abstract

We propose the Robust Overlay Architecture for Mobil-
ity (ROAM) to provide seamless mobility for Internet
hosts. ROAM is built on top of the Internet Indirection
Infrastructure (i3). With i3, instead of explicitly sending
a packet to a destination, each packet is associated with
an identifier. This identifier defines an indirection point
in i3, and is used by the receiver to obtain the packet.

ROAM takes advantage of end-host ability to control
the placement of indirection points in i3 to provide ef-
ficient routing, fast handoff, and preserve location pri-
vacy for mobile hosts. In addition, ROAM allows end
hosts to move simultaneously, and is as robust as the un-
derlying IP network to node failure. We have developed
a user-level prototype system on Linux that provides
transparent mobility without modifying applications or
the TCP/IP protocol stack. Simulation results show that
ROAM’s latency can be as low as 0.25-40% of Mobile
IP. Experimental results show that with soft handoff the
TCP throughput decreases only by 6% when there are as
many as 0.25 handoffs per second.

1 Introduction

While the wired Internet reaches many homes and busi-
nesses, the wireless Internet has the potential to not
just reach, but encompass all the spaces that people use
to live, work, and travel. Wireless data services (e.g.,
802.11b, GPRS, 3G cellular) will soon provide the po-
tential for ubiquitous, though heterogeneous, coverage.
To realize this potential, users will want both seamless
connectivity (flows uninterrupted by mobility) and con-
tinuous reachability (the ability of other hosts to contact
the user’s host despite mobility). These services would
enable users to run applications such as IP telephony, in-
stant messaging, and audio streaming while mobile.

Unfortunately, the standard Internet cannot provide these
services. The fundamental problem is that the Internet
uses IP addresses to combine the notion of unique host
identifier with location in the network topology. For a
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mobile host to have seamless connectivity and continu-
ous reachability, it must retain its identifier while chang-
ing its location. Previous mobility proposals decouple
this binding by introducing a fixed indirection point (e.g.,
Mobile IP [1]), redirecting through the DNS (e.g., TCP
Migrate [2]), or using indirection at the link layer (e.g.,
cellular mobility schemes).

However, these proposals lack one or more of the follow-
ing properties to fully realize the promise of ubiquitous
mobility:

• Efficient routing: packets should be routed on paths
with latency close to the shortest path provided by
IP routing.

• Efficient handoff : the loss of packets during handoff
should be minimized and avoided, if possible.

• Fault tolerance: communication between mobile
hosts should not be more vulnerable to faults than
communication between stationary hosts.

• Location privacy: the host’s topological location
should not be revealed to other end-hosts.

• Simultaneous mobility: end hosts should be able to
move simultaneously without breaking an ongoing
session between them.

• Personal/session mobility: a user should be able to
redirect a new session or migrate an active one from
one application or device to another one when a bet-
ter choice becomes available [3, 4, 5].

• Link layer independence: users should be able to
seamlessly operate across heterogeneous link layer
technologies, not all of which support the same link
layer mobility scheme (e.g., GSM mobility).

In this paper, we propose (to the best of our knowledge)
the first solution to achieve all of these properties. Our
solution, called Robust Overlay Architecture for Mobil-
ity (ROAM), is built on top of the Internet Indirection
Infrastructure (i3) [6]. i3 is implemented as an overlay
network on top of IP, and provides a rendezvous-based
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communication abstraction. In i3, each packet is sent to
an identifier. To receive a packet, a receiver inserts a trig-
ger, which is an association between the packet’s identi-
fier and the receiver’s address. The trigger is stored at an
i3 node (server). Each packet is routed through the over-
lay network until it reaches the i3 server which stores the
trigger. Once the matching trigger is found the packet is
forwarded to the address specified by the trigger. Thus,
the trigger plays the role of an indirection point that re-
lays packets from the sender to the receiver.

ROAM addresses each of the properties described above.
For instance, since an i3 identifier can be bound to a
host, session, or person (unlike Mobile IP, where an IP
address can only be bound to a host), personal/session
mobility applications can leverage the ROAM infrastruc-
ture for efficiency, fault tolerance, and privacy. Section 4
discusses in detail how ROAM achieves the above prop-
erties.

At the architectural level, this paper makes two contri-
butions. First, it demonstrates the benefit of giving end-
hosts control on the placement of the indirection points.
This allows, end-hosts to optimize the routing and hand-
off efficiency. Second, it demonstrates the benefits of a
mobility architecture based on a shared overlay network.
Such a solution leverages the robustness of the overlay
networks.

In addition, we use a proxy based solution to transpar-
ently support unmodified applications on an unmodified
Linux kernel. Using our prototype implementation, we
show that our solution can perform rapid soft handoffs
with no noticeable disruption of TCP throughput.

The paper is organized as follows. Section 2 presents
the related work, and Section 3 gives an overview of
i3. Section 4 discusses the design of ROAM, and Sec-
tion 5 presents the ROAM support for legacy applica-
tions. Section 6 presents some implementation details.
Section 7 presents simulation and experimental results.
Finally, Section 8 discusses some open issues, and Sec-
tion 9 concludes the paper.

2 Related Work

In this section we review the main mobility proposals.

Several link layer technologies provide mobility at the
link layer (e.g., as in Ricochet [7], 802.11b, or GSM).
However, these solutions preclude mobility across link
layer technologies. In addition, hiding mobility at the
link layer results in a reinvention of mobility support in
each new wireless system; solving the mobility problem
at the network layer results in a reusable mobility infras-
tructure for all link technologies.

One proposal to achieve mobility in the Internet is Mo-

bile IP (MIP). MIP in IPv4 [1] and IPv6 [8] uses an
explicit indirection point, called the Home Agent (HA),
to encapsulate and relay the Correspondent Host’s (CH)
initial packet to the Mobile Host (MH). MIP provides
the following options that determine how the following
packets are routed: 1) triangle routing, 2) bidirectional
tunneling, and 3) route optimization.

As noted by Cheshire and Baker [9] no MIP routing op-
tion is clearly better than the others; instead, different op-
tions are suitable for different circumstances. Options (1)
and (2) preserve location privacy, but routing can be in-
efficient when the MH and CH are close relative to their
distance from the HA. With route optimization (an ex-
tension in MIPv4 [10], but standard in MIPv6), the MH
conveys its care-of IP address to the CH using a Binding
Update (BU). Routing is efficient because the ratio of the
latency of the optimized route to the latency of the short-
est IP path (or latency stretch) is 1.0. However, the CH
must be modified to support MIPv4 with route optimiza-
tion or IPv6. This also exposes the MH’s current care-of
address (and therefore its location) to the CH, thus com-
promising location privacy. In certain delay-sensitive or
real-time applications, the latency involved in handoffs
can be above the threshold if the MH is far away from
the CH.

In general, the dependence in MIP on a fixed HA reduces
fault tolerance. If the HA or its network fails or is over-
loaded, then the MH will be unreachable.

To address routing anomalies and robustness issues as-
sociated with a fixed HA, researchers have proposed the
notion of dynamic home agents in MIPv4 [11]. How-
ever, the actual algorithm used to discover and allocate
a nearby home agent is still under investigation. MIPv6
provides a dynamic home agent address discovery mech-
anism [8] that allows a MH to dynamically discover the
IP address of a HA on its home network. This scheme in-
creases the robustness of MIPv6 as the HA is no longer a
statically fixed entity, but it does not address routing in-
efficiencies caused by routing through the HA when the
MH is far away from its home network.

Recently, two mechanisms have been proposed to in-
crease handoff performance in MIPv4 and MIPv6: (1)
low latency handoff [12], and (2) fast handover [13]. The
first mechanism attempts to send a BU in advance of an
actual link-layer handoff when the handoff is anticipated.
However, timing must be arranged such that the BU com-
pletes before the actual handoff does, which may be hard
to achieve in practice. Similar in concept to Regionalized
Tunnel Management [14] and Hierarchical Mobility [15]
extensions in MIPv4 and MIPv6, the second mechanism
sets up a bi-directional tunnel between an anchor Foreign
Agent (FA) that stays the same during rapid movements
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and the current FA. This allows the MH to delay a formal
BU to the HA which minimizes the impact on real-time
applications. However, this mechanism relies on the ex-
istence of a FA in each network the MH visits. Further-
more, the use of link-layer triggers and inter-FA adver-
tisements in these mechanisms assumes a homogeneous
link-layer technology. In contrast to both these mecha-
nisms, ROAM supports fast handoff by giving end-hosts
implicit control over trigger placement.

The Host Identity Protocol [16] supports mobility by de-
coupling the transport from the network layer, and bind-
ing the transport to a host identity. Similarly, Location
Independent Networking for IPv6 [17] specifies a unique
identifier for a host regardless of its location. These ideas
are in line with the seminal work by Jerome Saltzer on
host identifier and locator separation [18]. However, i3
provides a general-purpose indirection infrastructure that
enables a variety of communication services beyond mo-
bility, such as multicast, and transcoding. Section 4.2.2
will present the use of i3 multicast to support soft hand-
offs for mobile hosts.

Supporting Mobility for TCP with SIP [19] spoofs con-
stant TCP endpoints in a similar way to MIP with route
optimization. This requires modifying the IP stack of the
CH.

The Mobility Support using Multicasting in IP (MSM-
IP) architecture [20, 21] implements mobility using IP
Multicast [22]. The main advantages of MSM-IP are that
it can have low latency and do handoffs with little or no
packet loss. Several studies [21] [23] [24] have shown
that multicast mobility can cut the latency stretch of Mo-
bile IP in half and significantly reduce packet loss due
to handoffs. However, the MSM-IP location service is a
single point of failure and is vulnerable to overload, net-
work faults, and host faults.

In TCP Migrate [2], both the MH and CH use a modified
form of TCP which can tolerate a change in IP address
during a connection. The CH uses DNS to learn the cur-
rent address of the MH, which updates DNS every time
it moves. Since TCP Migrate does not use an indirec-
tion point, it can achieve an optimal latency stretch of
1.0 and is as fault tolerant as IP routing. However, it lacks
simultaneous mobility support, requires modification of
the TCP implementations on both the MH and the CH,
and does not preserve location privacy. TCP Migrate is
well suited for person-to-server applications with short-
lived flows like email and web browsing.

The mobility schemes previously described in this sec-
tion track mobile hosts. In contrast, personal and session
mobility schemes (e.g., The Mobile People Architecture
(MPA) [4] ICEBERG [5], and Telephony Over Packet
networkS [3]) track people or sessions. This allows redi-

i3’s Application Programming Interface (API)
sendPacket(p) send packet
insertT rigger(t) insert trigger
removeTrigger(t) remove trigger
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Figure 1: (a) i3’s API. Example illustrating communication
between two nodes: (b) Receiver R inserts trigger (id, R). (c)
Sender S sends packet (id, data).

rection of new sessions or migration of active sessions to
a completely different application or device according to
user connectivity (e.g., which devices are currently ac-
cessible to the user) and user preferences (e.g., less ex-
pensive or higher performance). In contrast, Mobile IP
redirects flows to the same device regardless of whether
the user can actually use the device or not. The costs of
personal/session mobility schemes are modifications to
applications (unlike Mobile IP) and an indirection infras-
tructure (e.g., the Personal Proxy in MPA).

In contrast to all of the above schemes, the novelty of
our approach is the use of an overlay indirection infras-
tructure that gives endhosts control over the placement
of the indirection points. As a result, ROAM achieves ef-
ficiency, robustness, location privacy, and simultaneous
mobility. In addition, the flexibility of i3 identifiers al-
lows ROAM to support mobility at any layer; i3 identi-
fiers can be bound to hosts as well as sessions and people.

3 Background

In this section we present a brief overview of an Internet
Indirection Infrastructure, i3 [6], which forms the foun-
dation for our mobility solution. The purpose of i3 is to
provide indirection; that is, it decouples the act of send-
ing from the act of receiving. The i3 service model is
simple: sources send packets to a logical identifier, and
receivers express interest in packets sent to an identifier.
Delivery is best-effort like in today’s Internet, with no
guarantees about packet delivery.
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Figure 2: (a) A Chord identifier circle for m = 6, with 5
servers identified by 5, 16, 24, 36, and 50, respectively. (b) Re-
ceiver R inserting trigger (30, R), and sender S sending packet
(30, data).

3.1 Rendezvous-based Communication

The service model is a rendezvous-based communica-
tion abstraction. In its simplest form, a packet is a pair
(id, data) where id is an m-bit identifier1 and data is
the payload (typically a normal IP packet payload). Re-
ceivers use triggers to indicate their interest in packets.
In its simplest form, a trigger is a pair (id, addr), where
id is the trigger identifier, and addr is a node’s address,
consisting of an IP address and UDP port number. A trig-
ger (id, addr) indicates that all packets sent to identifier
id should be forwarded (at the IP layer) by the i3 in-
frastructure to the node with address addr. More specif-
ically, the rendezvous-based communication abstraction
exports the three primitives shown in Figure 1(a).

Figure 1(b) illustrates the communication between two
nodes, where receiver R wants to receive packets sent to
id. R inserts the trigger (id, R) into the network. When
a packet is sent to identifier id, the trigger causes it to be
forwarded via IP to R.

Thus, as in IP multicast, identifier id represents a logi-
cal rendezvous between the sender’s packets and the re-
ceiver’s trigger. This level of indirection decouples the
sender from the receiver and enables them to be oblivi-
ous to the other’s location. However, unlike IP multicast,
hosts in i3 are free to place their triggers. This can allevi-
ate the triangle routing problem in Mobile IP. In addition,
i3 can be generalized to support multicast, anycast, and
service composition. For more details refer to [6].

3.2 i3 Implementation

i3 is implemented as an overlay network composed of
servers that store triggers and forward packets.

To maintain this overlay network and to route packets
in i3, we use the Chord lookup protocol [25]. Chord

1In the implementation presented in this paper, we use
m = 256. Such a large value of m allows end hosts to choose
trigger identifiers independently since the chance of collision
is minimal. In addition, a large m makes it very hard for an
attacker to guess a particular trigger identifier.
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� � �� � � � �� � �

(id, data)

sender (S)

(id, R’)

receiver (R)

(id, R)(id, data) (R, data)

sender (S)
receiver (R)

(R’, data)

Figure 3: Upon changing its address from R to R′, a receiver
needs only to update its trigger. This change is transparent to
the sender.

assumes a circular identifier space of integers [0, 2m),
where 0 follows 2m 1. Every i3 server has an iden-
tifier in this space, and all trigger identifiers belong to
the same identifier space. The i3 server with identifier
n is responsible for all identifiers in the interval (np, n],
where np is the identifier of the node preceding n on the
identifier circle. Figure 2(a) shows an identifier circle for
m = 6. There are five i3 servers in the system with iden-
tifiers 5, 16, 24, 36, and 50, respectively. All identifiers
in the range (5, 16] are mapped on server 16, identifiers
in (17, 24] are mapped on server 24, and so on.

When a trigger (id, addr) is inserted, it is stored at the i3
node responsible for id. When a packet is sent to id, it is
routed by i3 to the node responsible for its id; there it is
matched against (any) triggers for that id and forwarded
(using IP) to all hosts interested in packets sent to that
identifier. Chord ensures that the server responsible for
an identifier is found after visiting at most O(log n) other
i3 servers irrespective of the starting server (n represents
the total number of servers in the system). To achieve
this, Chord requires each node to maintain only O(log n)
routing state. Chord allows servers to leave and join dy-
namically, and it is highly robust against failures. For
more details refer to [25]. Figure 2(b) shows an exam-
ple in which trigger (30, R) is inserted at node 36 (i.e.,
the node that maps (24, 36], and thus is responsible for
identifier 30). Packet (30, data) is forwarded to server
30, matched against trigger (30, R), and then forwarded
via IP to R.

Note that packets are not stored in i3; they are only for-
warded. End hosts must periodically refresh their triggers
in i3. Hosts need only know one i3 node to use the i3
infrastructure. This can be done through a static config-
uration file, or by a DNS lookup assuming i3 is associ-
ated with a DNS domain name. In Figure 2(b), the sender
knows only server 16, and the receiver knows only server
5.
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4 ROAM Design

In this section, we describe ROAM, which provides an
end-to-end architecture for Internet host mobility on top
of i3.

Achieving host mobility using i3 is straightforward. A
mobile host that changes its address from R to R′ as a re-
sult of moving from one subnetwork to another can pre-
serve end-to-end connectivity by simply updating each
of its existing triggers from (id, R) to (id, R′), as shown
in Figure 3.

ROAM exhibits the following desirable properties:

Efficient routing. ROAM takes into account the mobility
pattern of the end-hosts to improve i3’s ability to provide
low latency stretch (see Section 4.1).

Efficient handoff. ROAM implements fast handoff and
multicast-based handoff to reduce packet loss during
handoffs (see Section 4.2).

Fault tolerance. Since triggers are periodically re-
freshed, ROAM recovers gracefully from server failure.
If a server fails, the triggers stored at that server are in-
serted at another server the next time they are refreshed.2

Section 7.1.4 evaluates ROAM’s robustness through sim-
ulation.

Simultaneous mobility. The sending and receiving hosts
can move simultaneously while i3 serves as an anchor
point for the two sides of the communication channel.

Location privacy. ROAM allows end-hosts the flexibil-
ity of choosing triggers to not reveal any location infor-
mation. Section 4.3 discusses the tradeoffs between loca-
tion privacy and routing efficiency.

Personal/session mobility. Unlike Mobile IP, ROAM al-
lows a user to redirect a new session or migrate an active
one from one application or device to another when a
better choice becomes available (see Section 4.4).

Next, we describe efficient routing, efficient handoff, lo-
cation privacy, and personal/session mobility in more de-
tail. The key to achieving these properties is the ability of
end-hosts to control the location of a trigger in i3. Since
fault tolerance and simultaneous mobility follow directly
from i3’s properties, we do not discuss them here.

4.1 Efficient Routing

Although the Chord lookup protocol limits the number of
hops traversed in i3 to O(log n), the delay on each hop
may be comparable or even larger than the IP shortest
path between the MH and the CH. This can result in un-
acceptably high delay. To deal with this problem, i3 uses

2To make i3 server failure completely transparent to end-
hosts, i3 can replicate triggers [6].

two techniques: (1) trigger server caching, and (2) trig-
ger sampling [6]. With the first technique, an end-host
caches the server storing a particular trigger, and then
sends trigger refresh messages and data packets match-
ing the trigger to that server directly via IP. For exam-
ple, in Figure 2, both the sender (S) and the receiver (R)
would cache server3 36.

While caching ensures that subsequent packets will tra-
verse only one i3 server, the delay can still be large if
that server is far from both end-hosts. To address this
problem, end-hosts use trigger sampling to pick triggers
stored at nearby servers. An end-host picks triggers with
random identifiers, measures the round trip delay to the
servers that store those triggers, and then uses the trigger
with the lowest delay. Note that an end-host only needs to
sample at most once per location change, and not every
time it opens a connection. As shown in [6], this method
is quite efficient. In an i3 system with 216 servers, tak-
ing only 32 samples results in a 90th percentile latency
stretch of only 1.5.

Next, we present an extension of these techniques that
takes into account the movement pattern of mobile hosts.

4.1.1 Mobility-Aware Trigger Caching

We assume that mobile hosts are likely to move in a pat-
tern where some moves are short (in geographic distance
and network latency), but some moves are very far [26].
This pattern corresponds to a person who drives around
a metropolitan area which is a few 10’s of miles in di-
ameter, but occasionally flies hundreds or thousands of
miles to another location. This pattern also fits a user
who moves among different network technologies with
widely varying network latency.

We cache sampled triggers to take advantage of this pat-
tern. The goal is to create diversity in the cache so that a
trigger in the cache is near each of the remote locations
that a mobile host visits (perhaps infrequently), while
preventing the frequent local moves from polluting the
cache. When the mobile host changes its network ad-
dress, it randomly samples i3 servers as described above,
caches the result, and measures the delay to every trigger
in the cache. When the cache is full, and the new sam-
ple is closer than any in the cache, then we must select
a cache entry to evict. If the new sample is much closer
than the next closest cache entry (e.g., the new sample’s
latency is less than 50% of the latency of lowest latency
cache entry), then we replace the least recently used trig-
ger in the cache. That the new sample is much closer than
the next closest sample indicates that the mobile host is

3Since the trigger can be reused across connections, the
O(log n) traversal only needs to be done when i3 servers fail
or when using a trigger for the first time.
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probably at a location that is far from any it has visited
before, so we evict the entry we are least likely to use
again. If instead the new sample is not much closer than
the next closest entry in the cache is (e.g. the new sam-
ple’s latency is 50%-100% of the latency of the next clos-
est cached trigger), then we replace that entry with the
new sample. This indicates that the mobile host is rel-
atively close to a recently visited location, and the new
sample is a better server for that location.

In Section 7.1, we show by simulation that this caching
scheme can reduce the latency stretch to nearly 1.0.

4.2 Efficient Handoff

To reduce the loss of packets during handoffs, ROAM
supports fast handoff and multicast-based handoff.

4.2.1 Fast Handoff

Existing mobility systems such as Mobile IP or TCP Mi-
grate propagate address binding updates (BUs) all the
way to a HA or CH. As a result, a potentially large num-
ber of packets may be in flight when the path latency
from the MH to the HA or CH is high. If the MH stops re-
ceiving packets at the old IP address before starting to re-
ceive packets at the new address (cold switch), then those
in-flight packets will be lost.

With ROAM, end-hosts can alleviate this problem by
choosing indirection points (i.e., triggers) that map onto
nearby i3 servers. Since the number of packets that are
lost during a cold-switch is proportional to the delay be-
tween the MH and the indirection point, this choice will
reduce packet loss. In Section 7.2.2, we use experiments
to compare the performances of ROAM and MIPv6 with
cold-switching. See section 2 for a qualitative compar-
ison of our approach to two recently proposed mecha-
nisms to increase the performance of handoff in MIPv4
and MIPv6 [12, 13].

4.2.2 Multicast-based Soft Handoff

When a MH moves from one network to another, there
may be an interval during which it has poor connectivity
(either lost packets or low bandwidth) in the new net-
work, but good connectivity in the old network. If the
MH performs handoff too early, then its performance can
suffer from poor connectivity in the new network. On the
other hand, if the MH performs handoff too late, then it
may lose packets as the connectivity in the old network
degrades.

The solution in ROAM is to use the generalized level
of indirection provided by i3 to do multicast-based soft
handoff. In the situation described above, when the MH
can obtain an address in the new network, the MH’s
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CH

(id1, CH)
(id, data)

(id, id’)

(id’, MH)

(id’, data)

(MH, data)

MH

CH

(id1, CH)

(MH, data)

(id, data)

MH

(id, MH)

(a) (b)

Figure 4: Achieving location privacy: (a) MH chooses a trig-
ger close to the CH; (b) MH uses two triggers to preserve fast
handoff.

proxy inserts a trigger with the same identifier as its ex-
isting trigger, but associated with the new address. This
causes the same packets to be delivered to both the old
and new addresses. This allows the MH to take advan-
tage of the best available connectivity. There are two
things worth noting. First, the use of multicast is com-
pletely transparent to the sender. Second, fast handoff is
still necessary for cases when the MH cannot listen si-
multaneously at both addresses. For example, an 802.11b
client cannot be simultaneously connected to two base
stations on different channels [27]. We address the prob-
lems of determining when to stop using multicast and
how to suppress duplicate packets in Section 6.1. We dis-
cuss the implication of multicast on communication pri-
vacy in Section 8.

4.3 Location Privacy

While choosing a trigger (id, MH) at an i3 server close
to the MH improves the routing and handoff efficiency,
this choice would reveal (to some extent) the location of
the MH. To avoid this problem, the MH can choose id
such that the trigger is stored at an i3 server close to the
CH instead of itself. This would result in a low latency
stretch without compromising the MH’s location privacy.
Let (id1, CH) be the trigger advertised by the CH to the
MH (see Figure 4(a)). Assuming that the CH chooses this
trigger close to itself, the MH can simply choose id to
share the first 128 bits with id1. This is because with i3,
all triggers whose identifiers share the same 128-bit pre-
fix are stored at the same i3 server [6].

To also allow fast handoff, the MH can use two triggers,
one of the form (id, id′) 4 inserted near the CH, and one
of the form (id′, MH) inserted close to itself (see Fig-

4Note this is a generalized form of triggers, which allows a
trigger to send a packet to another identifier rather than to an
address.
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Figure 5: Example of setting up a connection via private trig-
gers ida and idb between two hosts A and B. idp is B’s public
trigger.

ure 4(a)). Note that this change is transparent to the CH,
i.e., the CH will still send packets of the form (id, data)
to the MH. Because the CH does not need to know id′,
the location privacy of the MH is ensured. Moreover, the
choice of id and id′ ensures a low latency stretch, and
enables the MH to do fast handoff by updating trigger
(id′, MH).

If both end-points require location privacy, they can
choose completely random i3 servers. The flexibility
of i3 allows each application to make the tradeoff be-
tween location privacy and routing efficiency as desired.

4.4 Personal/Session mobility

While the focus of this paper is on using ROAM for net-
work layer mobility, ROAM also provides support for
personal/session mobility (Section 2). Personal/session
mobility requires tracking the set of active devices for
a user and routing to the optimal device. Devices reg-
ister themselves for a particular person whenever they
detect an authorized user is nearby (e.g., devices have
Bluetooth transceivers and users carry Bluetooth smart
cards) [28]. Devices register by setting a trigger with an
identifier representing that user. Given multiple simulta-
neously registered devices, the devices follow an agree-
ment protocol to decide which one will handle a particu-
lar session (e.g., the least expensive one or the highest
performing one). Leveraging the ROAM infrastructure
for personal/session mobility removes the cost of deploy-
ing infrastructure specific to any particular application or
personal/session mobility scheme.

5 Application Support

One of the central goals of ROAM is to support legacy
applications. Ideally, this would allow us to transparently
run existing applications on top of ROAM. In this sec-
tion, we first describe how i3 can support native appli-
cations, and then present our solution for legacy applica-
tions.

Notation Definition
X.hip home IP address of host X

X.cip current IP address of host X

C.port port associated to client process C

i3 hdr i3 packet header (see Figure 7)
i3 hdr.id i3 packet’s identifier
proxy hdr i3 proxy header
proxy hdr. flags: ID MASK specifies that proxy hdr
flags has an i3 identifier. DATA MASK specifies

that the payload has an IP packet.
H() well-known hash function; used to compute

public trigger identifier for X as H(X.hip)

trans table translation table maintained by each i3 proxy;
each entry is a pair (IP address, i3 identifier)

Table 1: Notations used in Section 5.2.

5.1 Support for Native Applications

So far we have assumed that each end-host is free to
choose its triggers independently. The natural question is
how does an end-host learn about the trigger of another
end-host? To answer this question, i3 introduces the con-
cept of public and private triggers [6]. Private triggers
are secretly chosen by the application end-points. Public
triggers can be computed by all end-hosts in the system
and are used to establish initial contact with the desired
end-host. For example, the public trigger of the “New
York Times” web server can be the hash of its name.

Consider the application in Figure 5 where a client A ac-
cesses a web server B. The web server B maintains a
public trigger with identifier idp in i3 (step 1). The con-
trol path operations are as follows. Client A inserts a pri-
vate trigger with identifier ida into i3 (step 2), and sends
ida to web server B via B’s public trigger idp (step 3). B
receives ida from i3 (step 4) and inserts a private trigger
with identifier idb into i3 (step 5). B then sends idb to
A via A’s private trigger ida (step 6), and A receives it
from i3 (step 7). Finally, data packets from A to B flow
through B’s private trigger idb, and through A’s private
trigger ida in the reverse direction. The important point
to note here is that end-hosts have full control on select-
ing their private triggers.

5.2 Support for Legacy Applications

Although achieving host mobility for i3 native applica-
tions is straight-forward, many legacy applications will
remain i3/ROAM unaware. In designing a solution for
these applications, our primary goals are to remain trans-
parent to both applications and the TCP/IP protocol
stack. The main host modification required for legacy ap-
plications is a user-level ROAM proxy. The proxy serves
the following functions: (1) encapsulates and decapsu-
lates IP packets within i3 packets, (2) determines the trig-
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IPpkt = ([A.hip:CA.port, B.hip:CB.port], data)

(H(B.hip), IPpkt)

Client (A) Server (B)

IPpkt = ([A.hip:CA.port, B.hip:CB.port], data)

CA PBPA

(H(B.hip), [B.cip, PB.port])

([B.cip,PB.port], IPpkt)
CB

Figure 6: Legacy application support. A.hip and B.hip repre-
sents home IP addresses of hosts A, and B, respectively. Each
host has a proxy that intercepts applications packets and send
them via i3.

flags id

i3_hdr prox_hdr payload (original IP packet)

Figure 7: The format of the i3 packet handled by the proxy.
The fields are explained in Table 1.

gers of remote hosts, and (3) sends the local private trig-
ger to remote hosts. Table 1 gives the notations used in
this section.

We assume that each host X has a current IP address de-
noted by X.cip and a home IP address (e.g., the address
of the host in its home network) denoted by X.hip. The
home address is stored in the end-host’s DNS record, and
it is used as a source address for all packets sent by legacy
applications on X . Each host X runs a ROAM proxy
PX that maintains a public trigger (id, addr) where id
is computed as a hash on X’s home IP address, and addr
contains the current address of X and PX’s port number,
i.e., [X.cip, PX.port]. The proxy is responsible for up-
dating the trigger every time the host’s current IP address
changes.

Figure 6 shows a typical data path in a legacy applica-
tion, where a client CA running on host A is accessing a
web server CB running on host B. (Figure 8 shows the
pseudo-code executed by an ROAM proxy.) The source
and the destination addresses in the headers of the pack-
ets sent by CA are the host IP addresses of A and B, re-
spectively. Upon capturing the packet, PA encapsulates
it in i3 and proxy headers and sends it to CB through
i3 using UDP. 5 The identifier of the packet is set to
B’s public trigger identifier, i.e., H(B.hip) (see func-
tion ip receive in Figure 8). The format of the packets
handled by i3 proxies is shown in Figure 7

When this packet arrives at B (see i3 receive), B’s
proxy (PB) strips off the i3 and proxy headers and for-
wards the packet to the local application. In addition, PB

5In order to avoid fragmentation due to the encapsulation,
the maximum segment size (MSS) TCP header option in a SYN
packet is decremented accordingly.

checks to see if the packet is addressed to its own public
trigger. If it is, then PB knows that A’s proxy (PA) does
not have a private trigger for B, so PB should send one.
As an optimization, PB sets a timeout to see if it can
piggyback the trigger on a packet sent from B’s appli-
cation (CB). Otherwise, when the timeout expires, B’s
proxy sends the private trigger in a separate packet. An
end-host chooses private triggers on a per flow or a per
communication peer basis. This precludes a malicious
end-host from learning the private trigger used by (the
flows of) another end-host and eavesdropping on it.

Assume that CB does send a packet before the timeout
expires, then PB piggybacks B’s local private trigger on
the outgoing packet to A. Since, PB does not know A’s
private trigger, it uses A’s public trigger (as H(A.hip)).
When PA receives this packet, it inserts B’s private trig-
ger into its translation table with B.hip as the key. In ad-
dition, PA sees that the packet was sent to its own public
trigger, so it also sets a timeout and tries to piggyback its
private trigger to B.

When A changes its IP address from A.cip to A.cip′

as a result of moving from one subnetwork to another,
PA will insert a trigger containing the new IP address
A.cip′ into i3 and remove the trigger containing the old
IP address A.cip. The trigger identifier itself remains the
same. Effectively, host mobility is masked by the i3 net-
work from the communicating peer, and end-to-end con-
nectivity is preserved.

While each end-host initially chooses its private triggers
such that they are stored on nearby servers, end-hosts
may eventually move far from those servers. To address
this problem, each end-host can re-sample trigger servers
either periodically or once it notices that its current pri-
vate triggers are experiencing a high latency. The new
private triggers can be exchanged using a mechanism
identical to the one used to exchange the original private
triggers via the public triggers. The only change occurs
in the i3 receive function: in addition to comparing the
packet identifier to the the host’s public trigger, we also
compare it to the previous private trigger identifier, and
then send out the new private trigger if necessary. This
operation will be transparent to applications.

6 Implementation Details

The ROAM user-level proxy translates between exist-
ing Internet packets and i3 packets, and inserts/refreshes
triggers on behalf of the applications. Applications do
not need to be modified, and are unaware of the ROAM
proxy. The ROAM proxy uses a virtual link-level inter-
face (similar to [29]), called TUN6, to transparently cap-

6The TUN virtual interface is implemented by the Universal
TUN/TAP driver, which is included as a standard feature of the
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// on receiving an IP packet pip from local applications
ip receive(pip)

p = i3 pkt new();
p.payload = pip;
p.prox hdr.flags = p.prox hdr.flags ∨ DATA MASK;
// do we need to send a private trigger to the sender?
if (exist timeout(pip.dst addr))

p.prox hdr.flags = p.prox hdr.flags ∨ ID MASK;
p.prox hdr.id = choose private trigger id(pip.dst addr);
timeout remove(pip.dst addr);

p.i3 hdr.id = i3 id(pip.dst addr);
i3 send(p);

// timeout set by i3 receive for addr has expired
timeout(addr)

p = i3 pkt new();
p.prox hdr.flags = p.prox hdr.flags ∨ ID MASK;
p.prox hdr.id = choose private trigger id(pip.dst addr);
p.i3 hdr.id = i3 id(pip.dst addr);
i3 send(p);

// on receiving an i3 packet p from network
i3 receive(p)

pip = p.payload; // get encapsulated IP packet carried by
// does p carry sender’s private trigger?
if (p.prox hdr.flags ∧ ID MASK)

update(trans table, pip.src addr, p.prox hdr.id);
else refresh(trans table, pip.src addr);
// was p sent to the local host’s public trigger?
if (p.i3 hdr.id = H(pip.dst addr))

// p’s source may not know our private trigger identifier
timeout set(pip.src addr); // set a timeout to send it

// does p contain data for a host’s client?
if (p.prox hdr.flags ∧ DATA MASK) ip send(pip);

// return the i3’s identifier corresponding to addr
i3 id(addr)

// get destination’s private trigger from translation table
if (exist entry(trans table, addr))

return get id(trans table, addr);
else return H(addr);

Figure 8: The pseudo-code executed by the proxy upon receiving packets from another host via i3 and from a host’s client. The
format of packet p handled by the proxy is given in Figure 7. trans table denotes a translation table that stores the association
between (1) a host IP address addr, and (2) the identifier of the private trigger inserted by the proxy running on host addr.

TCP

Application

Network

UDP Proxy

eth0
(cip0)

eth1
(cip1)

tun0
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Table

iptables

Figure 9: Data link, network, and transport layers on an end-
host running the ROAM proxy software. The dashed line shows
the path of an outgoing TCP packet.

ture packets at user-level, and to hide host mobility from
applications. The TUN interface receives packets from
user-level applications instead of from a physical media,
and sends them to user-level applications instead of send-
ing packets via physical media.

Users can specify a set of criteria, using the iptables tool,
that determines whether a packet is redirected to the TUN
virtual interface or passed directly to the IP routing ta-
ble. For example, if the user specifies the filter “-p udp
–dport domain -j ACCEPT”, then iptables will pass all
DNS query and reply packets directly to the routing ta-
ble.

Figure 9 illustrates the organization of our software when

kernel in Linux 2.4 and later.

sending out a packet from the end host. The ROAM
proxy reads and translates packets from tun0. To ensure
that the translated packet does not get routed to tun0
again, the proxy adds a rule to iptables such that all pack-
ets from itself are passed directly to the routing table.
Incoming packets from the correspondent host’s proxy
will arrive at the physical interface and be addressed to
the ROAM proxy. The proxy will strip off the i3 and
proxy headers and send it to TUN, from which the ap-
plications will receive the packet (thus taking the reverse
of the dashed path shown in Figure 9).

6.1 Multicast-based Soft Handoff

As a result of multicast-based soft handoff, the i3 server
will send duplicate encapsulated packets to the MH. To
prevent the MH’s TCP/IP stack and applications from re-
ceiving duplicates of the inner packet (i.e., original IP
packet, see Figure 7), the ROAM proxy suppresses du-
plicates during multicast-based soft handoff.

The ROAM proxy maintains a small window of
MD5 [30] digests of recent packets. The proxy computes
digests over the first 20 bytes of the IP header and the
first 8 bytes of the transport header. The first 28 bytes of
a packet are sufficient to differentiate non-identical pack-
ets in practice [31]. To minimize duplicates, the window
size must be sufficiently large so that a duplicated packet
that arrives both via a very low latency link and via a
very high latency link will be caught in the window. We
use a window size of 1 second, which should be suffi-
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cient even if one path is very congested or contains a
500ms satellite link. Note that this scheme detects dupli-
cates received on different addresses, which means that
only duplicates generated by i3 are eliminated, and not
duplicate packets sent by the sender (e.g., TCP dup-ack).
We show in Section 7 that a TCP bulk transfer flow using
multicast-based soft-handoff achieves similar throughput
to a flow without mobility.

Another implementation issue is when does the proxy
stop using multicast. Our algorithm removes an address
when a large fraction of its packets are duplicates as this
indicates that the address is redundant. The ROAM proxy
maintains a counter of duplicate packets received on both
addresses (d) and a counter of packets received on each
address (pi). When d > min(p0/k, p1/k), we simply re-
move the address that has received fewer packets in the
last window. The value 1/k is a constant indicating the
fraction of an address’s packets that must be duplicates
before the address can be dropped. In addition, the proxy
uses a timeout t to prevent a newly added address with
poor connectivity from being removed until the timeout
expires. In our implementation, we use k = 2 and t = 30
s.

7 Evaluation

In this section, we present simulation and experimental
results evaluating the benefit and cost of using ROAM.

7.1 Simulations

We use simulation to evaluate ROAM and Mobile IP with
triangle routing, bidirectional routing. We show that rout-
ing efficiency and fault tolerance are proportional to the
amount of mobility infrastructure (either i3 servers in
i3 or Home Agents in Mobile IP) deployed. However,
for moderate amounts of infrastructure, ROAM provides
higher routing efficiency and fault tolerance than Mobile
IP. In addition, ROAM’s routing efficiency and fault tol-
erance scale with the amount of infrastructure devoted to
it.

7.1.1 Methodology

We use our own simulator to simulate i3 mobility and
Mobile IP with its routing options. The simulator is ses-
sion level, and simulates the creation, maintenance, and
measurement of routes in the IP network, Mobile IP, and
i3. We do not require the level of detail (and consequent
overhead) of a packet-level simulator like NS.

Our simulation network topologies consist of three types
of nodes: routers, mobility servers (i3 servers or HAs),
and client hosts (MHs or CHs). We arrange the routers
using a transit-stub topology generated with the GT-ITM

topology generator [32] with 5000 nodes, where link

Home Agent

Mobile IP
Triangular

Home Agent
CH’s I3 
Server

Mobile IP
Bidirectional

MH’s I3 
Server

I3
Mobility

CH MH

Figure 10: Routing in different mobility schemes.

latencies are 100 ms for intra-transit links, 10 ms for
transit-stub links and 1 ms for intra-stub links. In [33],
we also present simulations using a power law topology.

We define domain to be a group of nodes that have low
latency links between them. We assume that each router
forms its own domain. We consider 5000 possible client
hosts, and up to 10000 mobility servers.7 For a particular
topology, we use 50 random choices from the client hosts
for the home network (HN). For each choice of HN, we
use 2000 random choices from the client hosts for the
MH and CH, as described below.

In addition to regular IP routing, we consider three mo-
bility routing schemes: Mobile IP with triangular routing,
Mobile IP with bidirectional tunneling, and ROAM (see
Figure 10).

With Mobile IP, each MH has a HA associated with it.
While the HA is typically assumed to be in the HN, in
practice this might be hard to achieve due to deploy-
ment costs. In addition, requiring the HA to be in the
HN restricts the number of MHs that can be supported.
For these reasons, we assume a more incremental deploy-
ment model, where a service provider would provide one
or more HAs and map multiple users to each one. There-
fore, in our simulations, we select the server closest to
the HN as the HA.

With ROAM mobility, the MH uses the mobility-aware
caching algorithm described in Section 4.1. The MH
takes 32 samples in each move, maintains 10 entries in
its cache, and replaces close entries when new samples
are closer, but not less than 50% closer. These param-
eters are a compromise between performance and over-
head because each sample consumes network bandwidth.

We simulate MH movement according to two mobility
models: uniform and Pareto with respect to the HN. Each
model defines the distance of the MH from the HN. In
the uniform model, the distance of the MH from the HN
is uniformly randomly selected from the interval [mini-
mum distance, maximum distance]. In the Pareto home

7There is little performance improvement for more than 2N
servers because at that point, each domain is likely to have a
server.
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model, the probability that the MH is distance d from the
HN is 1/d2. This simulates a MH that is close to the HN
most of the time, but sometimes moves very far from the
HN.

Similarly, we simulate communication with CHs accord-
ing to three communication models: uniform, Pareto with
respect to the HN, and Pareto with respect to the MH’s
current location in a foreign network. In the uniform
model, the CH is uniformly randomly selected from the
clients. The Pareto home and Pareto foreign models as-
sign distances to the CH according to the Pareto model
given above, but relative to the HN or the MH’s current
location, respectively. These models simulate a CH that
is close to the HN or MH, respectively, most of the time,
but is sometimes very far from it.

Given all of these parameters, we measure the round trip
time (RTT) of the various mobility schemes as shown in
Figure 10. Note that in the ROAM case, both the MH and
CH can be mobile, while in the triangular routing and
bidirectional tunneling cases, we assume that the CH is
stationary (i.e., the CH does not have a HA). If we were
to assume that the CH is mobile, then the triangular rout-
ing and bidirectional tunneling cases would incur even
more latency, so this comparison favors those cases over
ROAM.

In all cases, we measure the 90th percentile latency
stretch 8 of the various schemes.

7.1.2 Results: Stretch vs. Infrastructure Size

Figure 11 shows a series of graphs which compare the
90th percentile stretch of MIP with triangular routing and
bidirectional tunneling (“bi”). Each graph shows a differ-
ent combination of mobility model and communication
model.

In the transit-stub network, ROAM matches or exceeds
MIP’s stretch when more than 1-2% of the transit-stub
domains have a server. ROAM matches MIP when one
or both of the communication end points (the MH and
CH) is close to the HN. We expect that these are the op-
timal cases for MIP. Indeed, Figures 11 (b), (d), (e), and
(f) show that MIP’s stretch drops sharply as the num-
ber of deployed HAs increases. More HAs increase the
likelihood that a HA will be in the HN, thus decreasing
the stretch incurred by triangular routing or bidirectional
tunneling when the CH and/or MH are close to the HN.
However, the figures also show that ROAM’s stretch con-
verges with MIP’s when more than 50-100 servers are
deployed in the network (corresponding to 1-2% of the
transit-stub domains having a server). This is because

8Calculated as the ratio of the path latency using a particular
mobility scheme to the shortest path latency on the underlying
network topology.

1
2
3
4
5
6
7
8
9

10

0 100 200 300 400 500 600

IP
 s

tr
et

ch

latency from home network (ms)

tri
bi

ROAM

Figure 12: The 90th percentile stretch of MIP (tri/bi) and
ROAM.

ROAM is able (through its trigger server caching algo-
rithm) to dynamically find i3 servers which are as close
to the MH and CH as a statically configured HA.

ROAM significantly improves on MIP’s stretch when
neither the MH or CH are close to the HN. We expect this
to be the worst case for MIP. Figures 11(a) and (c) val-
idate this. Increasing the number of HAs in these cases
does not decrease MIP’s stretch because having a HA
close to the HN does not put it any closer to the CH
or MH. In contrast, ROAM’s stretch decreases as more
servers are deployed because it can still dynamically find
closer trigger servers. Figure 11(a) shows that even when
the CH, MH, and HN form a triangle with equal distribu-
tion of distance on each leg, ROAM’s stretch is 40% that
of MIP. When the CH and MH are Pareto close (as shown
in Figure 11(c)), then ROAM has a stretch 1/400th that
of MIP with triangular routing. The difference is so large
because the maximum latency in our transit-stub topol-
ogy is over 1000 ms, while the minimum latency is only
1ms, so the impact of poor routing is very large.

7.1.3 Results: Stretch vs. Distance from HN

Figure 12 compares the stretch to the distance of the
MH from the HN. As the distance from the HN in-
creases, MIP’s stretch increases linearly, while ROAM’s
stretch remains relatively constant. This simulation uses
the transit-stub topology with 10000 mobility servers, a
uniform mobility model, and a uniform communication
model.

7.1.4 Results: Fault Tolerance

In addition to stretch, we also simulate node failures. We
vary the failure probability of the clients and servers from
0% to 50% and perform 10,000 runs. In this simulation,
we assume that both the MH and CH are mobile and have
a HA. We assume that IP routing succeeds when both
the MH and CH are operational. We assume that MIP
is functional when the MH, CH, MH’s HA, and CH’s
HA are operational. We assume that ROAM is functional
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Figure 11: The 90% stretch of MIP with triangular routing (“tri”), bidirectional tunneling (“bi”), and ROAM. In all plots, x-axis
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Figure 13: The robustness of IP, MIP (tri/bi), and ROAM.

when the MH and CH are operational, and the MH and
CH can both find an operational trigger server in their
caches (of size 10).

Figure 13 shows the results of failing nodes on the like-
lihood of connectivity between the MH and CH. When
nodes have a 5% chance of failing, MIP has a 85% likeli-
hood of successful connectivity. When nodes have a 15%
chance of failing, MIP likelihood of successful connec-
tivity drops to only 50%. MIP is vulnerable to the failure
of the HA’s network connectivity. In most cases, a host
has only one HA in its HN. As a result, if the HA’s net-
work connectivity fails, the MH is unreachable. In con-
trast, a ROAM host can use any i3 server in the Internet.
As long as one i3 server is operational and the ROAM
host has IP connectivity, the host is reachable.
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Figure 14: TCP throughput received by the MH as the handoff
frequency increases. The vertical error bars show the standard
deviations of the receiver throughput.

7.2 Experiments

In this section, we describe our test-bed and examine the
effect of handoffs on TCP throughput. Our MH is a IBM
Thinkpad T23 1.13GHz laptop running Red Hat Linux
7.3 with a 2.4.18 kernel. The CH is a 866 MHz desktop
running a 2.4.18 Linux kernel. Our i3 server is a 800
MHz desktop running a 2.4.10 Linux kernel.

7.2.1 Results: Multicast-based Soft Handoffs

In this experiment, we perform TCP bulk transfers from
the CH to the MH. The MH resides in a 10 Mbps Ether-
net, and the CH and the i3 server reside in a 100 Mbps
Ethernet. The MH initiates TCP connections from one
location on its subnet, and moves to another location on
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Figure 15: Network topology used for cold switch experi-
ments. As shown by the dashed arrow, the mobile host moves
from one location to another on the same subnet during hand-
off.

the same subnet at a later point, or vice versa. Both MH
locations use identical connections with 10Mbps links.
The purpose of this simple configuration is to expose
the performance impact of multicast-based soft handoffs.
Each run involved a TCP bulk transfer lasting 16 seconds
and we varied the number of handoffs (0, 1, 2, and 4) per-
formed during each transfer. This was repeated ten times
at each handoff frequency. Figure 14 plots TCP through-
put and its standard deviation received by MH as the
number of handoffs increases during the bulk transfer.

We see that as handoff frequency increases, the TCP
throughput degradation is minimal. In fact, there are no
losses across the multicast-based soft handoffs as both
interfaces are available. The slight performance penalty
is caused by the overhead of MD5 digest computation of
every packet received and detection of duplicates during
handoffs. This demonstrates the effectiveness of ROAM
to support rapid handoffs. For example, consider a user
on an airplane moving at 540 miles per hour, and cell
coverage sizes with diameters of 1.5 miles. In this case,
the user makes 6 cell crossings per minute, which can
be easily supported by ROAM. To support multiple such
users on the airplane, we can use a NAT-like device to
aggregate cell-crossings made by users, and thereby al-
leviate the handoff load on the i3 trigger server.

7.2.2 Results: Cold Switch

In this experiment, we compare the handoff performance
of ROAM and MIPv6 during a cold switch when the MH
is far away from the CH. Figure 15 shows the experi-
mental setup. We use the NIST Net [34] network emu-
lation package to emulate a round trip time (RTT) of 70
ms between the MH and CH. In the setup for ROAM,
RTT between the MH and the i3 server is approximately
3 ms. The NIST Net router delays packets between the
i3 server and the CH by 70 ms. We emulate the MIPv6
scenario by running the i3 server on the same machine
as the CH since binding updates are propagated to the
CH in MIPv6. The NIST Net router delays packets be-
tween the MH and CH by 70 ms. During a cold switch,
the first interface is shutdown around 35-40 ms before
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Figure 16: TCP sequence trace showing a bulk transfer with a
cold-switch for (a) ROAM, and (b) MIPv6.

the second interface is brought up. During this discon-
nected interval, t, packets from the i3 server to the MH
are lost in both ROAM and MIPv6. However, the num-
ber of packets that are lost after cold switch completes is
proportional to the delay between the MH and the indi-
rection point.

Figure 16 plots the TCP sequence numbers seen at the
CH (TCP sender) for the ROAM and MIPv6 scenarios
during a cold switch. ROAM recovers from packet loss
caused by the cold switch by entering fast retransmit
when the MH receives duplicate acknowledgements gen-
erated by packets received after the lost packets. How-
ever, in MIPv6, the MH loses the entire window of data
and the CH waits for a timeout and goes into slow start
before retransmitting the lost packets.

If the disconnectivity time due to cold switch is t, and
t < RTT < 2t, then ROAM can recover by fast retrans-
mit whereas MIPv6 has to recover by timeout. If RTT
is greater than 2t, then both ROAM and MIPv6 can re-
cover through fast retransmit. However, ROAM will re-
cover sooner because of its ability to choose a nearby i3
server irrespective of the CH’s location, thereby greatly
reducing packet loss.

8 Discussion

In this section, we discuss some important security issues
and the overhead of ROAM. We then discuss the possi-
bility of using ROAM to exchange only control informa-
tion, while data packets are forwarded via IP. Finally, we
discuss the possibility to replace the ROAM proxy with
a NAT-like solution, and some deployment issues.

Eavesdropping. As discussed in Section 4.2.2, i3 sup-
ports multicast by allowing any host in the network to
add a trigger with the same identifier as another host’s
trigger. However, this allows any host to eavesdrop on an-
other host’s communications if it knows that host’s trig-
ger.

To avoid this problem, i3 uses public key cryptography
to protect against eavesdropping [6]. When initiating a
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Routing Header Relative Transmission
Size Overhead Delay

IP 40B 1.25 23ms
Mobile IP 60B 1.88 28ms
ROAM 117B 3.66 41ms
ROAM w/comp 45.8B 1.43 24ms

Table 2: This table shows the total header overhead (includ-
ing TCP/IP) of various routing schemes. The listed overhead is
relative to a 32 byte payload. The transmission delay is for the
given header size, a 32 byte payload, and a 32Kb/s link band-
width.

connection, A encrypts its private trigger ida under the
public key of B, before sending it to B via B’s public
trigger idp. Since A’s private trigger is encrypted, a ma-
licious user M cannot impersonate B even if it inserts a
trigger (idp, addrm) into i3. A potential disadvantage of
this technique is it assumes the existence of a Public Key
Infrastructure.9

An alternative solution would be to use an EXCLU-
SIVE ID flag in the trigger headers to preclude other hosts
from inserting triggers with the same identifier. Since pri-
vate triggers are assumed to be secret, they do not need
to have the EXCLUSIVE ID flag set. This allows applica-
tions to use the multicast functionality via private triggers
(see Section 4.2.2).

Although setting the EXCLUSIVE ID flag ensures that no
one can eavesdrop on communication destined to a pub-
lic trigger, an attacker can wait for a host to fail to refresh
its public trigger, and insert its own trigger with the same
identifier. As a result, all packets destined to that identi-
fier will be received by the attacker. This attack is similar
to hijacking a DNS entry. If an end-host wants to elimi-
nate this attack, it may use again cryptography to avoid
impersonation by an attacker.

Overhead. Table 2 lists the overhead of various rout-
ing schemes. A standard web browser using IP and TCP
or an IP telephony application using IP, UDP, and RTP
has a total header size of 40 bytes. Mobile IP needs 20
additional bytes for IP in IP encapsulation. The size of
i3 header in the current implementation is 48 bytes (of
which 32 bytes is the i3 ID). The proxy header has a min-
imum size of one byte (see Figure 7). The encapsulating
IP and UDP headers total 28 bytes. Thus, the ROAM to-
tal header size is 28 (encapsulating packet) + 1 (proxy)
+ 48 (i3 header) + 40 (original packet) = 117. When pri-
vate IDs are piggybacked in data packets (typically only
in the beginning of a connection), the overhead increases
by another 32 bytes.

9Another possibility would be to use DNS to store public
keys, but then ROAM would be as secure as the DNS.

However, header compression can reduce packet header
overhead by a factor of 5 [35]. If we compress the 89
bytes of header after the encapsulating header (which
must remain uncompressed to route through the Inter-
net), then we reduce the total header size to an average of
45.8 bytes. This only requires modifications to the proxy
and i3 server software.

Table 2 shows that even for a 32 byte IP telephony pay-
load, the ROAM compressed header overhead is only
18% greater than that of standard TCP/IP. On a hypothet-
ical 5ms latency, 32Kb/s link, the net difference in trans-
mission delay is 5%. This overhead decreases as packet
sizes, latencies, and bandwidths increase.

Another source of overhead is the user level proxy which
causes each packet to traverse the OS–user level bound-
ary twice. This can reduce the maximum throughput that
can be achieved by the end host. However, that maximum
is unlikely to be reached even in a relatively high band-
width wireless network like 802.11b (11Mb/s). If this be-
comes an issue, the proxy can be eliminated at the cost
of implementing its functionality in the kernel.

Control plane indirection. We assume that all packets
are transmitted via i3. For most applications we expect
the indirection overhead to be acceptable, but there might
be applications for which achieving the highest possible
throughput and lowest latency is critical. For those ap-
plications, one can implement a solution similar to TCP
Migrate, where i3 is used only to exchange the new IP
addresses when end-hosts move. In comparison to the ba-
sic TCP Migrate solution, such an approach would allow
simultaneous mobility and would avoid overloading the
DNS.

Home proxy. We assume that each end-host runs a
ROAM proxy. In some cases, the robustness and effi-
ciency this provides may not be worth the management
and deployment costs. For example, during initial de-
ployment, few of a MH’s CHs will have ROAM proxies.
An alternative is to deploy a home proxy for a MH that
implements the functionality of the ROAM proxy for all
of its non-ROAM CHs. This home proxy is analogous to
the HA in MIP in that it is only used for hosts that cannot
use a more efficient routing method.

Deployment issues. Our initial design assumes that
ROAM uses a shared overlay infrastructure (i3). The
most likely deployment strategy of such an infrastruc-
ture is still unclear. Options include a single provider
for-profit service (like content distribution networks),
a multi-provider for-profit service (like ISPs), and a
cooperatively managed nonprofit infrastructure (like
Gnutella). While full deployment is always hard to
achieve, our solution is incrementally deployable; if the
efficiency and robustness are not a concern, then it could
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start as a single server. Moreover, it does not require the
cooperation of ISPs, so third parties can provide this ser-
vice.

9 Conclusion

In this paper we present a highly robust and efficient mo-
bility architecture. ROAM uses an indirection infrastruc-
ture (i3) that gives end-hosts the ability to control place-
ment of indirection points in the infrastructure. ROAM
uses this ability to achieve efficient routing, fast handoff,
and preserve location privacy. ROAM is as robust as the
underlying IP network, and allows simultaneous mobility
while not requiring any changes to the TCP/IP protocol
stack.

Simulation results show that ROAM has a low latency
stretch and it is highly robust compared to Mobile IP.
We evaluate a prototype of ROAM in a small testbed,
and preliminary experimental results demonstrate that
ROAM provides good support for soft-handoff and fre-
quent mobility. We plan to deploy ROAM on a larger
scale with end hosts and i3 servers spanning the conti-
nental US. In addition, we plan to explore using ROAM
to compose services [6] such as transcoding and trans-
port protocol optimization for wireless links (e.g., TCP
Snoop [36]) that complement mobile routing.
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