
Implications of Netalyzr’s DNS Measurements

Nicholas Weaver
ICSI

Christian Kreibich
ICSI

Boris Nechaev
HIIT & Aalto University

Vern Paxson
ICSI & UC Berkeley

Abstract—Netalyzr is a widely used network measurement and
diagnosis tool. To date, it has collected 198,000 measurement
sessions from 146,000 distinct IP addresses. One of the primary
focus areas of Netalyzr is DNS behavior, including DNS resolver
properties, common name lookups, NXDOMAIN wildcarding,
lookup performance, and on-the-wire manipulations. Additional
tests detect and categorize the behavior of any DNS proxies
in the users’ gateways or firewalls. In this paper we report
on DNS-specific insights from Netalyzr’s growing dataset. We
identify significant problems in the existing DNS infrastructure,
including unreliability of IP-level fragmentation, several kinds
of result wildcarding, surprisingly poor lookup performance,
and deliberate in-path DNS message manipulations. As these
observations affect implementers of the DNS protocol as well as
developers using common DNS APIs, we offer recommendations
on common pitfalls and highlight likely impediments to the
deployment of upcoming DNS technologies.

I. INTRODUCTION

The ICSI Netalyzr is a widely used network diagnosis and

debugging tool, available at http://netalyzr.icsi.berkeley.edu.

This publicly available service enables the user to obtain a

detailed analysis of the operational envelope of their Internet

connectivity, serving both as a source of information for the

curious as well as an extensive troubleshooting diagnostic

should users find anything amiss with their network experi-

ence. Netalyzr tests a wide array of properties of users’ Internet

access, from the network layer to applications. Its tests include

IP address use and translation, IPv6 support, DNS resolver

fidelity and security, TCP/UDP service reachability, proxying

and firewalling, antivirus intervention, content-based download

restrictions, content manipulation, HTTP caching prevalence

and correctness, network and protocol-level latencies, and

access-link buffering.

In this paper we report on DNS-specific findings from

Netalyzr’s longitudinal dataset, including sessions recorded in

the six months since we first published Netalyzr’s results [18]

as well as results from tests we only implemented recently.

We focus particularly on findings that affect implementers of

DNS protocols, and on those that software authors using DNS

should be aware of.

Our measurements lead to three main conclusions. First,

we observe significant complications for the deployment of

DNSSEC and other size-sensitive DNS features. These rely

on message sizes large enough to require IP fragmentation

(which works only suboptimally in practice) and, potentially,

TCP failover (which thankfully works well). Second, we find

recursive resolvers untrustworthy in practice, with frequent

NXDOMAIN wildcarding, limited cases of Internet Service

Providers (ISPs) using DNS to redirect web search traffic

Fig. 1. Netalyzr’s conceptual architecture. � The user visits the Netalyzr
website. � When starting the test, the front-end redirects the session to a
randomly selected back-end node. � The browser downloads and executes
the applet. � The applet conducts test connections to various Netalyzr servers
on the back-end, as well as DNS requests that are eventually received by the
main Netalyzr DNS server on the front-end. � We store the test results and
raw network traffic for later analysis. � Netalyzr presents a summary of the
test results to the user.

to their own proxies, and malicious resolvers that inject

advertisements or block system updates. Third, we note that

buggy or restrictive DNS proxy implementations are common

in today’s home-network gateways, imposed upon users as

part of a gateway’s DHCP service. We find such DNS proxies

frequently refuse to process AAAA, EDNS0, TXT, and non-

standard resource records (RRs).

We next briefly review Netalyzr’s architecture before dis-

cussing our findings and their implications in more detail.

II. SYSTEM DESIGN & IMPLEMENTATION

When designing Netalyzr we had to strike a balance between

a tool with sufficient flexibility to conduct a wide range of

measurements and tests, and a simple interface that non-

technical users would find usable. To this end, we decided

to base our approach on a Java applet (≈ 5,000 lines of

code) to drive the bulk of the test communication with custom

servers (≈ 12,000 lines of code), since (i) Java applets run

automatically within most major web browsers, (ii) applets can

engage in raw TCP and UDP flows to arbitrary ports (though

not with altered IP headers), (iii) if the user approves trusting

the applet, it can contact hosts outside the same-origin policy,

(iv) Java applets come with intrinsic security guarantees for

users (e.g., no host-level file system access allowed by default

runtime policies), (v) Java’s fine-grained permissions model



allows us to adapt gracefully if a user declines to fully trust

our applet, and (vi) no alternative technology matches this level

of functionality, security, and convenience.

Figure 1 shows the Netalyzr architecture. For more details,

we refer the reader to our prior work [18], and here only

reiterate the setup’s conceptual separation into front- and back-

ends. For our DNS-related tests, we operate DNS servers

running identical code (≈ 2,800 lines) on both. We developed a

custom implementation because our server deliberately strays

from the DNS standards, including replying to corrupted

requests, manipulating glue, and keeping state across queries.

This implementation also facilitates extensive logging. The

Java applet uses a combination of the runtime’s DNS API

and direct UDP requests for which we craft the DNS PDUs

ourselves, particularly for our recent DNS test additions.

The applet can run either in trusted or untrusted mode.

Depending on the browser, the Java applet runtime presents

a message to the user at applet startup that asks whether the

user trusts the applet, showing the applet’s signature as an

indication as to the origin of the code. If the user confirms

trust, the applet is allowed to conduct a more extensive set of

tests. Details depend on the runtime’s configuration. However,

we can identify the extent to which we are allowed to engage

in network I/O by catching Java’s security exceptions.

The DNS tests are generally driven by client-side requests;

these come in the form of queries containing test directives

as part of the name that the applet looks up, such as

testname.nonce.netalyzr.icsi.berkeley.edu.

When mentioning test names, we will generally only show

the relevant part of the queried name. For tests with Boolean

outcomes, we return the IP address of the applet’s origin

server to encode “true,” and another address for “false.” For

example, a name starting with has_edns triggers a scan of

the request message for EDNS support, returning “true” or

“false” as appropriate. Note that this Boolean approach works

within the confines of Java’s default same-origin policy, so

we can employ it even when the applet runs untrusted. In this

mode, Java only allows the applet to contact the IP address

of the server that provided the applet, but the applet can still

attempt to look up arbitrary names. The runtime enforces

restrictions on the DNS responses: if the response contains

the IP address of the applet’s origin server, the response is

delivered; otherwise, Java generates a security exception.

On the client, receipt of the origin server’s IP address thus

signals “true,” while a security exception indicates “false.” In

trusted mode, we can also perform tests that encode numeric

values in the returned A records.

We note that our measurements have some skew regarding

who decided to run Netalyzr, with a bias towards more

technologically-aware users. In particular, we observe a large

number of OpenDNS and Comcast users, mainly because

a major technology news site featured Netalyzr in context

of coverage of Comcast’s DNS policy. Our data collection

is generally prone to such “flash crowds,” resulting from

exposure the tool receives on technical blogs and news sites.

Another skew comes from Netalyzr’s adoption as a debugging

tool by the on-line game League of Legends, which has

resulted in 14,700 sesions to date.

III. IN-GATEWAY DNS PROXIES

The user’s NAT or gateway device plays a key role with

respect to the correct functioning of the DNS path. Home

gateways often provide DHCP leases that configure the gate-

way’s own IP address as the LAN’s DNS recursive resolver.

Doing so allows the gateway to support a functioning LAN

independently of the global DHCP lease (which also includes

DNS configuration) that the gateway acquires from the ISP. It

also enables the user to access the gateway’s administrative in-

terface via custom DNS (such as www.routerlogin.net
for Netgear devices, or gateway.2wire.net for 2Wire

systems).

DNS proxy detection. Netalyzr does not try to determine

the gateway’s IP address via intrusive scanning, so we cannot

definitively check whether a system is configured to use a DNS

proxy. However, we can detect the existence of a potential

DNS proxy by sending requests to common gateway addresses

directly and seeing whether they elicit a response. If Netalyzr
detects that the client is behind a NAT, it probes a set of

typical gateway IP addresses. Initially, we only tried the .1
address within the local subnet (e.g., given local IP address

192.168.1.24, Netalyzr probed 192.168.1.1). More

recently, it came to our attention that 2Wire and some other

devices instead use .254, which we then added to the test.

The 73% of sessions behind a NAT in which we identify an in-

gateway DNS proxy thus reflect a lower bound. Since 88% of

sessions are behind NATs, the behavior of these DNS proxies

is crucial, as these are the DNS “resolvers” seen by a large

fraction of Internet users.1

Proxy behavior. We recently broadened our DNS tests

to determine how these gateways behave, including whether

they can correctly process: (i) AAAA lookups (96% of ses-

sions),2 (ii) TXT records (92% of sessions), (iii) unknown RRs

(RTYPE 1169) per RFC 3597 [13] (91% of sessions), and (iv)

EDNS0 requests (91%).

External DNS functionality. To our surprise, a significant

number of NATs have externally usable DNS proxies, as evi-

denced by 5.3% of the clients’ global IP addresses. Not only do

these proxies provide access to the ISP’s DNS resolution path

to unintended third parties, these proxies can be used to launch

reflector attacks [22], where the attacker uses small spoofed

query to generate large responses launched at the target. As

a 100B DNS request can elicit a 4000B (enabled by EDNS0)

reply, attackers can obtain 40-fold message size amplification

for spoofed-source reflectors. Even without DNS, DNS replies

of 512B can provide 5-fold amplification. Arbor Networks

1Unfortunately, we did not check whether the end user’s system is config-
ured to use the gateway’s proxy, or if the gateway’s DHCP server will instead
return the IP address of the recursive DNS resolver it receives from its own
DHCP lease [11].

2Silent failures in this manner can prove problematic for some Linux
systems that perform A and AAAA lookups in parallel, and require
that both lookups complete or time out before returning a record from
gethostbyname(), even when the system lacks routable IPv6 connectivity.



reports that many of the largest DDoS attacks include DNS

reflectors [3].

Other aberrations. We have also noticed specific aber-

rations with subtle effects. When debugging one of our

home networks, we observed that a 2Wire gateway would

prepend gateway.2wire.net to the DNS search path,

but responded to *.gateway.2wire.net with SERVFAIL

rather than NXDOMAIN errors. Our browser repeatedly re-

tried these lookups before moving on to the next element of the

search path, which stalled web searches conducted by typing

a word into the location bar by up to 30 sec.

Finally, we have seen a small number of cases where NATs

(likely D-Link products [4]) confuse AAAA and A records.

When the user’s system queries for both A and AAAA records

for a name and the AAAA record exists but the A record does

not (e.g., because the name reflects an IPv6-only site), the A

record request instead returns the first 4 bytes of the AAAA

record. This behavior can also manifest if the reply for the A

record request is simply unduly delayed.

IV. FRAGMENTATION, PATH MTU, AND FILTERING

DNS primarily relies on UDP for transmission. With the

EDNS0 [24] extension mechanism for DNS, replies may

exceed the common 1500B Ethernet MTU, requiring the

underlying IP fragmentation mechanism to work correctly

in order for DNS PDUs to survive the transfer. Therefore,

Netalyzr tests the client’s MTU on the path to our server. The

MTU test consists of two parts: fragmentation and path MTU

discovery.

Fragmentation. We test fragmentation by attempting to

send 2000B UDP datagrams from the client (for the client

→ server path) and the server (server → client path). Such

datagrams are naturally fragmented, as their size exceeds

the 1500B Ethernet MTU. If the reassembled original data-

gram does not arrive as expected, the system cannot handle

fragmented IP traffic correctly. Unfortunately this is quite

common: 8% of the sessions cannot send fragmented UDP,

and, more importantly for DNS, 9% cannot receive fragmented

UDP.

Fortunately, TCP remains an option for most of these

clients. While 5% of the systems cannot contact a DNS server

over TCP, only 0.16% of the sessions both fail to receive IP

fragments and lack the ability to contact DNS servers using

TCP. DNS’s TCP failover, coupled with strategies for detecting

and mitigating fragmentation failures, should therefore work

fairly well in practice.

Path MTU. As expected, the path MTUs are commonly, but

not exclusively, that of Ethernet. We discover the precise path

MTU only in the server → client direction, as the required IP

“Don’t Fragment” (DF) bit is not accessible via the Java API.

78% of our sessions report the full Ethernet MTU of 1500B,

while 16% show the PPP-over-Ethernet [20] MTU of 1492B.

Only 2% indicate an MTU of less than 1450B.

Sessions with an MTU less than Ethernet’s do not reliably

trigger ICMP Destination Unreachable messages with code

“Too Big:” only 60% of such sessions included these. Systems

that employ path MTU discovery via UDP by default (such

as recent Linux versions) can in such situations frustrate the

developer, as the combination of unintended IP DF bits and

the failure of the ICMP mechanism conspire to create MTU

“black holes” or spurious application-level exceptions.3

Filtering. We have also encountered numerous firewalls

and gateways that filter, block, or modify DNS over UDP.

We detect these by performing both correctly and incorrectly

formatted DNS queries to our server. Content-aware devices

may block incorrectly formatted queries, while leaving proper

queries unaffected.

99% of clients were able to access our DNS server over

UDP with legitimate queries. Sometimes this ability is con-

trolled by the gateway: 1.4% of sessions showed evidence of

DNS traffic being proxied or modified by the network. Thus

the request never actually was sent out over the network to

the intended recipient server, but was instead redirected to a

recursive resolver which processed the request.

10% of clients could access our DNS server directly with

correct requests but not when using ill-formed requests, sug-

gesting that a firewall or gateway enforced DNS semantics on

requests. This includes cases where a mandatory DNS proxy

blocked the invalid request, as well as those behind firewalls

which only block ill-formed requests.

For the results reported in [18], Netalyzr included tests to

detect whether direct EDNS requests to our server are allowed.

We subsequently added tests to check for filtering of AAAA

records, TXT records, and requests for unknown RRs. 98.3%

of sessions succeeded at fetching AAAA records, 98.3% for

TXT records, 98.5% for retrieving records using EDNS0, and

95.8% for 1400B records using EDNS0. To test for retrieval of

unknown RRs, we arbitrarily used RTYPE 169, finding 97.2%

of sessions could successfully retrieve these.

Recent DNS proposals suggest encoding data of various

novel types into TXT records. For example, the Sender Pol-

icy Framework [25] recommends that SPF-enabled domains

should provide both a record of RTYPE 99 and an equivalent

TXT record textually encoding equivalent information. We

find little benefit in this redundancy, since the capability to

receive TXT records highly correlates with being able to

receive arbitrary RTYPE RRs: only 1.2% of sessions could

only retrieve one of the two types.

V. RECURSIVE RESOLVER PROPERTIES

Netalyzr includes extensive tests of the recursive resolver.

Because of limitations the Java runtime imposes on applets, we

were unable to obtain the IP address of the recursive resolver

configured on the client directly. We thus conduct our tests

of the recursive resolver indirectly, by querying regular names

3If the ICMP “Too Big” message is not received, the application naturally
has no immediate way of knowing that delivery failed; if it is received, related
exceptions may be unexpected by the application developer because there was
no reason to assume sensitivity to message sizes.



using getbyname() and related API calls that return A or

AAAA records.4

EDNS MTUs. The path problems observed for clients also

apply to many recursive resolvers. When we detect that the

resolver uses EDNS0 (55% of sessions), Netalyzr captures the

EDNS0 MTU using a name lookup that encodes the advertised

MTU in the lower 16 bits of the response A record. Netalyzr
then verifies that the resolver indeed supports this claimed

MTU.

We initially used three names whose lookups triggered

responses padded to ≈ 300B, 1350B, and 1800B, respectively,

using unrelated CNAME records in the Additional field. Since

these records are almost always stripped by the recursive

resolver when returned to the client, these lookups serve to

test whether the resolver indeed supports its advertised MTU.

Of those sessions in which the resolver claimed the ability

to receive an 1800B response, only 87% could actually process

the large reply, while 98.5% could process the medium sized

reply. This finding suggests that a common failure mode

for these queries arises from networks that cannot handle

fragmentation.

Accordingly, we recommend that resolvers both detect this

condition and fail over to using a smaller (1400B) EDNS0

MTU when it occurs. BIND [15] has supported a slightly

different failover strategy since version 9.5: when a request

times out, BIND will retry with an EDNS0 MTU of 512B

and, if successful, use the smaller MTU for communication

with the server. We believe that first a 1400B MTU failover

should be used and, if several servers all fail with a larger

MTU but succeed with a 1400B MTU, the resolver should

assume that the problem lies in a local firewall rather than

with the remote servers and adjust its MTU accordingly.

TCP failover. We recently added a TCP failover test to

Netalyzr. The name truncate always returns a result with

the DNS truncation bit (TC) set when using UDP, but a normal

(different) result via TCP. Queries for this name can determine

whether the resolver properly fails over to TCP. Only 2%

of the sessions that included this test failed. 0.35% of the

sessions exhibited resolvers that ignored the truncation bit,

instead returning the value from the UDP datagram. 0.51%

of sessions showed both an inability of the recursive resolver

to handle large EDNS0 responses while advertising a large

MTU, and a failure to respond to truncation requests. These

results suggest that TCP failover can effectively compensate

for UDP fragmentation problems.

Port randomization. We find DNS port randomization

widespread but not universal. We released Netalyzr one year

after cache poisoning attacks received widespread press cov-

erage [6]. We observe that 4% of sessions still do not evince

DNS source port randomization by the recursive resolver.

Most of these sessions reflect home networks running a local

resolver on the NAT or end-system; in 24% of these non-

4We subsequently learned that a Sun Java extension exists that can obtain
the IP address of the recursive resolver. The next release of Netalyzr will use
this information to probe the recursive resolvers directly when the extended
API is available.

randommized sessions we find the global IP address for

general traffic matches the address that issues DNS requests to

our server, compared to 3% of the sessions where the identified

recursive resolver does not match the end-system’s global IP

address. Thus, although lack of randomization remains an

issue for some users, most ISPs and institutions have fixed

this problem.

Lookup latencies. We measure name lookup latency for

uncached names for each Netalyzr execution, and cached-name

latency whenever the recursive resolver accepts glue records.

We find the generally poor performance seen by many clients

striking. In 10% of sessions it took 300ms longer to look up a

DNS record from our server than a round-trip of a UDP packet

to our back-end server. We crudely estimate that up to 100ms

are due to the different server locations: the front-end server,

which hosts the DNS authority, is located at ICSI in Berkeley,

while the back-end servers are located at Amazon’s East coast

EC2 location. 4.4% of sessions required an additional 600ms

or more.

Perhaps more surprisingly, even cached lookups are often

slow: 11% of sessions exhibit a delay of 200ms or more for

looking up a cached record. This is strongly correlated with the

usage of third-party resolvers: 15% of OpenDNS customers

experienced cached lookups taking 200ms, while 9% of non-

OpenDNS users experienced an equivalent delay. 19% of the

non-OpenDNS users experience at least 100ms of delay to the

cache.

Figure 2 compares the latencies across different service

providers. For uncached latencies, distributions center just

below 100ms with the exception of the slightly faster SBC and

the slightly slower Google. DNS providers do not appear ob-

viously faster. A second modality is frequently present around

25ms. As expected cached latencies are faster throughout, but

with differing variances.

Miscellaneous tests. We employ a series of tests probing

the recursive resolver to infer its glue-handling policy. More

specifically, we test the ability to cache glue records that

appear in either the Authoritative or Additional field. These

tests use a different A record when included in the Additional

field than returned by a direct lookup. We find caching of

Additional records in 15% of sessions, but 44% of sessions

cache glue included in Authoritative records.

We do not observe widespread implementation of 0x20 [8]

(only 4.0% of sessions), but 94% of resolvers either propagate

capitalization unmodified, or directly implement 0x20. Thus,

this defense holds solid promise.

We find significant EDNS0 usage, with 55% of sessions

exhibiting a recursive resolver that supports it. Most of the

usage occurs in the context of requesting DNSSEC data (95%

of the sessions). The most common EDNS0 MTU (92% of

the sessions) is the 4096B BIND MTU, with other MTUs

including 512B (2.2%), 1280B (0.5%), and 2048B (1.3%).

We recently added a test for whether resolvers support

AAAA-only glue records. 5.1% were able to generate requests

to IPv6-only DNS servers.



DNS Latency (s)

D
en

si
ty

comcast.net

sbcglobal.net

google.com

0.0 0.2 0.4 0.6 0.8 1.0

rr.com

t−dialin.net

opendns.com

0.0 0.2 0.4 0.6 0.8 1.0

verizon.net

cox.net

ultradns.com

0.0 0.2 0.4 0.6 0.8 1.0

Cached

Uncached

Fig. 2. Probability densities for uncached and cached DNS lookup latencies, for the largest ISPs (top two rows) and DNS providers (bottom row). Y-axis
scaling is identical across all plots.

VI. LOOKUP RESULT FIDELITY

A striking finding from the Netalyzr sessions regards

widespread manipulation of results by recursive resolvers.

Result wildcarding. 27% of sessions show NXDOMAIN

error wildcarding, where the recursive resolver masks query er-

rors with artificial, valid responses that usually direct browsers

to a third-party site showing advertising or search engine

results potentially related to the original query. Netalyzr’s

dataset has a bias towards Comcast (which now wildcards)

and OpenDNS (which has always wildcarded). Even excluding

these, 24% of the sessions show wildcarding. Many of these

resolvers do not only wildcard names that begin with www,

but instead act as though all name lookups returning errors

stemmed from queries generated by web browsers. Excluding

Comcast (which only wildcards www) and OpenDNS (which

wildcards universally), 42% of such sessions wildcard all

NXDOMAINs. Going further, 6% of sessions (1% exclud-

ing OpenDNS users) wildcard SERVFAIL in addition, an

ill-advised practice because it transforms the semantics of

transient error conditions.

While controversial, NXDOMAIN wildcarding remains a

commercial reality. Like others [7], we argue that its im-

plementation should strive to minimize collateral damage,

viewed through the lens that only web surfing provides revenue

opportunity for those implementing NXDOMAIN wildcarding

in its current form.

We observe two other forms of wildcarding. In the first, the

resolver masks a valid name’s response with a different IP pro-

tocol family. We discovered this behavior inadvertently, while

adding IPv6 functionality tests. In this form of wildcarding,

a query for an IPv6-only name receives in response an IPv4

address generated by the wildcarding logic. This change un-

dermines any IPv6-only names (e.g., ipv6.google.com).

Of the sessions including this test, 5% (1.0% excluding

OpenDNS) will wildcard to an IPv4 address where there only

exists an IPv6 address. In the second form, the resolver treats

responses that confirm the server as authoritative but that omit

additional Answer RRs (e.g., because a query was performed

for an A record but the given name only has an MX or

AAAA record associated with it) as NXDOMAIN errors, and

wildcards them similarly. We have observed this behavior in

sessions using OpenDNS, and alerted them to the problem.

Target-dependent redirection. Other forms of result

manipulation exist. As we reported previously, Netalyzr
identified multiple ISPs that use DNS to redirect web

searches for popular sites, such as www.google.com,

search.yahoo.com, and www.bing.com [18]. Instead

of visiting the intended search engines’ IP addresses, the

user winds up redirected to proxy servers. Some ISPs only

manipulate Yahoo and Bing, while others manipulate all three.

The proxy servers appear to operate as an outsourced

service, with each ISP redirecting Yahoo and Bing to an ISP-



unique address in one of two prefixes 8.15.228/24 or

69.25.212/24. The redirection occurs via the ISP’s DNS

resolver, rather than via interception of DNS requests within

the network itself, since users who use third-party resolvers

do not experience redirection.

Some ISPs that redirect Google use the same outsourced

proxy for it too, while others redirect Google to an ISP-

controlled proxy running apparently the same software.

This software has a recognizable signature in terms of the

particular headers it when queried for hosts it does not

proxy, and in particular regarding the HTML page it re-

turns in response to ill-formed HTTP requests. A request

for an unproxied host returns a HTTP 302 redirect to

http://255.255.255.255/ with a banner indicating

the Squid software version. Ill-formed requests include a

HTML page with a note that the page was generated by

phishing-warning-site.com, a parked domain rather

than an actual live site.

Offending ISPs include Cavalier, Charter, Cincinnati Bell,

Cogent Communications, DirecPC, Frontier, Insight Broad-

band, Iowa Telecom, RCN, and Wide Open West. Cursory

inspection of the search result pages shows no evidence of

obvious content or header manipulation.

Malware. Finally, 141 sessions showed signs of mal-

ware tampering with the resolver configuration, as ob-

served previously by Dagon et al. [9]. These changes di-

rect DNS requests to malicious resolvers that can then

control responses at will, such as by injecting adver-

tisements [12] or deliberately disabling the resolution of

windowsupdate.microsoft.com in order to prevent

system updates.

In summary, our findings demonstrate that we cannot in gen-

eral treat today’s recursive resolvers as trustworthy systems,

as they are prone to manipulation. As recursive resolvers also

play a key role in DNSSEC validation, we argue that here

they also pose a trust problem. Ideally, end systems would only

trust DNSSEC validations they perform themselves, bypassing

the recursive resolver to conduct queries. Clearly, such an

approach would incur significant implementation complexity,

as well as diminished caching efficacy due to lack of broader

sharing of cached results.

VII. SUMMARY OF RECOMMENDATIONS

Netalyzr’s ongoing operations for over 1.5 years has allowed

us to gather a diverse set of measurements regarding the

capabilities of today’s end systems when interacting with DNS.

Based on our analysis of this data, we can make several

recommendations to DNS implementers and users of DNS

APIs.

DNS client software such as web browsers should not rely

on correct reporting of NXDOMAIN or SERVFAIL errors.

Non-cryptographic protocols such as HTTP can test for error

reliability by attempting a few known-to-fail and known-to-

succeed queries, using the results to check for wildcarding.

For cryptographic protocols, a failure to establish a connection

should catch faulty wildcarding before the user is informed

that a problem exists, in order to prevent false alarms that

might trip up even savvy users [10].

If client software wishes to use novel RRs or TXT records

to encode newly defined types, the client software may need to

include its own DNS library in order to bypass the host’s stub

resolver, as the latter is often configured to use the gateway’s

not-fully-functional DNS proxy. The same applies to DNSSEC

validation, though here the situation is exacerbated by the

fact that current stub resolvers will not necessarily perform

validations, and validations performed by the recursive re-

solver cannot be trusted. Thus, the Authenticated Data (AD)

bit should be considered to hold little weight.

Stub resolvers and resolver libraries should accommodate

failure modes such as that (i) the configured “recursive”

resolver provided by the DHCP server may not support the full

DNS specification, (ii) such resolvers cannot be fully trusted,

and (iii) the network may impinge on UDP DNS traffic,

including filtering or blocking of fragments. Implementations

must support TCP failover and should include routines to

detect and respond to filter-induced failures, including blocked

EDNS, blocked RRs, blocked large DNS replies, and blocked

fragments.

Performance-oriented stub libraries might also benefit from

bypassing the recursive resolver if testing indicates that it is

slow to return cached responses. Since 19% of sessions require

at least 100ms to fetch a cached item, a significant number of

clients benefit only marginally from caching.

DNS proxies in gateways should be tested for handling

of unknown resource records, à la RFC 3597. The easiest

mechanism for ensuring correct operation is for proxies to

act as forwarders, relaying unknown messages unchanged (as

done e.g. by DNSMask [17]). Likewise, such proxies should

not respond to external requests. Unfortunately, correcting the

existing installation base of improperly implemented NATs

will at best likely take significant time, so we require software

to work around these problems explicitly.

ISPs may find it advisable to manage DNS port 53 traffic

not just outbound [21] but also inbound, perhaps similarly to

how they handle outbound SMTP today, in order to detect

open DNS proxies and prevent contributing to DNS reflector

attacks.

Recursive resolvers commonly face transport issues with

fragmented UDP, making it advisable to add an additional

fallback mechanism to the normal EDNS failure chain, where

the resolver retries requests with a 1400B EDNS0 MTU before

reverting to 512B. Luckily, TCP fallback generally works well.

If the resolver performs wildcarding, it should not wildcard

SERVFAIL or valid names that simply lack an A record, as

such behavior can prove disruptive, and also does not help

with driving traffic to the advertising portal.

Authorities might, in a similar vein, consider always using

a 1400B EDNS0 MTU and attempting to keep replies below

this limit. This recommendation may prove controversial, as

it will cause more TCP failovers; but one could argue that

consistent results are preferable to unpredictable timeouts.

Software developers under Linux need to consider the UDP



PMTU behavior. If they do not disable PMTU discovery on a

given socket, they may encounter spurious exceptions if a path

MTU bottleneck generates ICMP too-big messages, and path

MTU “black holes” at bottlenecks if they do not send ICMP

too-big messages. If a software developer does not wish to

do TCP-like PMTU failure detection in software, they should

disable PMTU discovery. In terms of resolver support, we

see little advantage in encoding data in TXT records when

compared to defining new resource records. We would thus

encourage developers to define a new RR type when justified.

VIII. RELATED WORK

There exists a significant body of related work dedicated to

measuring the DNS infrastructure. In 2002, Jung et al. studied

DNS traces recorded at MIT and KAIST [16] and found

significant error rates, including 23% of requests remaining

unanswered and 13% returning error codes. In the same

year, Brownlee et al. reported on the traffic arriving at one

of the DNS root servers [5], finding request caching sorely

lacking and 14% of queries completely broken/bogus. Ager

et al. are conducting an ongoing measurement study using

DNS probing tools driven entirely by the client [2]. They

see similar performance artifacts on lookup time, as well

as significant performance degradation from using third-party

resolvers such as OpenDNS. They have also observed load

balancers that inhibit response caching completely. Dagon et

al. performed a survey of open recursive resolver behavior,

including analyzing why so many open such resolvers exist

and their characteristics [9].

Lukie et al. have recently reported on path MTU behavior

from the server’s vantage point [19]. They see comparable, if

somewhat lower, failure rates for path MTU discovery where

servers have a path MTU bottleneck.

Hatonen et al. [14] are actively cataloging and probing

home gateways. Their checks include whether the gateway

responds to DNS requests over TCP or UDP, whereas Netalyzr
currently only tries UDP. Dietrich [11] measured commonly

available gateways in Germany for support of unknown RR

types, the ability to proxy requests with EDNS0 and DO bits

set, and the ability to route requests directly to the network.

He observed a set of common failures similar to ours, and

also reports that most gateways will always return their proxy

address rather than the ISP’s resolver for DHCP replies. DNS-

OARC [1] has a DNS reply-size tester that checks for resolver

transport problems. The Root DNS servers also reported a

significant increase in TCP failover after the introduction of

DURZ (Deliberately Unverifiable Root Zone) signatures [23].

IX. CONCLUSIONS

In 18 months of ongoing operation, the Netalyzr network

diagnosis and debugging tool has collected a wide range

of measurements of the Internet’s edge networks in general,

and their DNS properties in particular. The picture emerging

from 198,000 sessions from 146,000 distinct IP addresses

is diverse. We find basic DNS functionality working well,

but observe significant DNS implementation shortcomings in

many gateway DNS proxies, in-network filtering of DNS traf-

fic, widespread result wildcarding, ISP-driven manipulation of

DNS results, and general difficulty in using IP fragmentation.

Many of these problems affect future upgrades to the DNS

protocol, since the existing edge network infrastructure is

entrenched and problems will require significant time to repair.

To this end we have provided a set of first recommendations

to DNS implementers and developers using DNS APIs, for

which we welcome the community’s feedback.

X. ACKNOWLEDGEMENTS

We are deeply grateful to the Netalyzr users for enabling

this study and to our beta-testers for the insightful comments

and feedback. We would particularly like to thank Mark

Allman, Paul Barford, Scott Bradner, John Brzozowski, Randy

Bush, Niels Bakker, Richard Clayton, Chris Cowart, Keith

Dawson, Adrian Dimcev, Holger Dreger, Brandon Enright,

Kevin Fall, Carrie Gates, Andrei Gurtov, Mark Handley,

Theodore Hong, Kelly Kane, Simon Kelley, Matthew Kogan,

Keith Medcalf, Thomas Narten, Michael Ross, Chris Switzer,

Wooter Wijngaards, and Richard Woundy. We thank Amazon

for supporting our EC2 deployment. This work was supported

by the National Science Foundation under grants NSF CNS-

0722035, NSF-0433702, and CNS-0905631, with additional

support from Google and Comcast.

REFERENCES

[1] “OARC’s DNS Reply Size Test Server,” https://www.dns−oarc.net/oarc/
services/replysizetest.

[2] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, “Comparing
DNS Resolvers in the Wild,” in Internet Measurement Conference
(IMC), 2010.

[3] Arbor Networks, “Worldwide Infrastructure Security Report,” http://
www.arbornetworks.com/report, 2010.

[4] ARIN IPv6 Wiki, “Customer problems that could occur,” http://getipv6.
info/index.php/Customer problems that could occur#D−Link.

[5] N. Brownlee, K. Claffy, and E. Nemeth, “DNS measurements at a
root server,” in IEEE Global Telecommunications Conference (GLOBE-
COM), 2002, pp. 1672–1676.

[6] CERT, “Vulnerability Note VU#800113, Multiple DNS implementations
vulnerable to cache poisoning.”

[7] T. Creighton, C. Griffiths, J. Livingood, and R. Weber, “DNS Redirect
Use by Service Providers,” Internet draft, work in progress.

[8] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee, “Increased
DNS Forgery Resistance Through 0x20-bit Encoding,” in Proceedings
of Cryptography and Computer Security (CCS), 2008.

[9] D. Dagon, N. Provos, C. Lee, and W. Lee, “Corrupted DNS Resolution
Paths: The Rise of a Malicious Resolution Authority,” in Proceedings
of the Network And Distributed Security Symposium (NDSS), 2008.

[10] DarkTangent, “DEFCON SSL Compromise? NO! – Defcon Forums,”
https://forum.defcon.org/showthread.php?t=9805.

[11] T. Dietrich, “DNSSEC Support by Home Routers in Germany,” in RIPE-
60, 2010.

[12] M. Fauenfelder, “How to get rid of Vimax ads,” http://boingboing.net/
2009/01/16/how−to−get−rid−of−vi.html, January 2009.

[13] A. Gustafsson, “Handling of Unknown DNS Resource Record (RR)
Types,” RFC 3597 (Proposed Standard), Tech. Rep. 3597, Sep. 2003,
updated by RFCs 4033, 4034, 4035, 5395.

[14] S. Hatonen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and
M. Kojo, “An Experimental Study of Home Gateway Characteristics,”
in Internet Measurement Conference (IMC), 2010.

[15] Internet Systems Consortium, “BIND,” http://www.isc.org/software/
bind.

[16] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS Performance and
the Effectiveness of Caching,” Networking, IEEE/ACM Transactions on,
vol. 10, no. 5, pp. 589–603, 2002.



[17] S. Kelley, “DNSMasq—A DNS Forwarder for NAT Firewalls,” http://
www.thekelleys.org.uk/dnsmasq/doc.html.

[18] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illumi-
nating the edge network,” in Internet Measurement Conference (IMC),
2010.

[19] M. Luckie and B. Stasiewicz, “Measuring Path MTU Discovery Behav-
ior,” in Internet Measurement Conference (IMC), 2010.

[20] L. Mamakos, K. Lidl, J. Evarts, D. Carrel, D. Simone, and R. Wheeler,
“A Method for Transmitting PPP Over Ethernet (PPPoE),” IETF, RFC
2516, February 1999.

[21] Messaging Anti-Abuse Working Group (MAAWG), “Overview of DNS
Security - Port 53 Protection,” http://www.maawg.org/sites/maawg/files/
news/MAAWG DNSPort53V1.0 2010−06.pdf, June 2010.

[22] V. Paxson, “An Analysis of Using Reflectors for Distributed Denial-of-
Service Attacks,” Computer Communication Review, vol. 31, 2001.

[23] “Root DNSSEC,” http://www.root−dnssec.org.
[24] P. Vixie, “Extension Mechanisms for DNS (EDNS0),” RFC 2671 (Pro-

posed Standard), Internet Engineering Task Force, Aug. 1999.
[25] M. Wong and W. Schlitt, “Sender Policy Framework (SPF) for Autho-

rizing Use of Domains in E-Mail, Version 1,” http://www.ietf.org/rfc/
rfc4408.txt, IETF, RFC 4408, April 2006.


