Internet Indirection Infrastructure’

lon Stoica Daniel Adkins Shelley Zhuang ScottShenkerT Sonesh Surana

University of California, Berkeley

{istoica, dadkins, shelleyz,

ABSTRACT

Attempts to generalize the Internet’s point-to-point conmigation
abstraction to provide services like multicast, anycas, mobility
have faced challenging technical problems and deploymamt-b
ers. To ease the deployment of such services, this papeogzsp
an overlay-based Internet Indirection Infrastructu® (hat offers
a rendezvous-based communication abstraction. Insteexptt-
itly sending a packet to a destination, each packet is estgabivith
an identifier; this identifier is then used by the receivertitain de-
livery of the packet. This level ahdirectiondecouples the act of
sending from the act of receiving, and allowssto efficiently sup-
port a wide variety of fundamental communication servic@s.
demonstrate the feasibility of this approach, we have desigand
built a prototype based on the Chord lookup protocol.

Categories and Subject Descriptors
H.4.3 Information Systemg: Communications

General Terms
Design
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1. INTRODUCTION

The original Internet architecture was designed to providie
castpoint-to-point communication between fixed locations.His t
basic service, the sending host knows the IP address oftb&es
and the job of IP routing and forwarding is simply to delivacgets
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to the (fixed) location of the desired IP address. The sirtplaf
this point-to-point communication abstraction contrimlifgreatly
to the scalability and efficiency of the Internet.

However, many applications would benefit from more general
communication abstractions, such as multicast, anycast hast
mobility. In these abstractions, the sending host no lokgews
the identity of the receiving hosts (multicast and anycast] the
location of the receiving host need not be fixed (mobilityhus,
there is a significant and fundamental mismatch betweenrtge o
inal point-to-point abstraction and these more generakongll
attempts to implement these more general abstractionsrbbgd
on a layer ofindirectionthat decouples the sending hosts from the
receiving hosts; for example, senders send to a group aifired-
ticast or anycast) or a home agent (mobility), and the IPrlafthe
network is responsible for delivering the packet to the appate
location(s).

Although these more general abstractions would undoupted|
bring significant benefit to end-users, it remains uncleaw tm
achieve them. These abstractions have proven difficult fgem
ment scalably at the IP layer [4, 13, 27]. Moreover, deplgyaa-
ditional functionality at the IP layer requires a level ohomunity-
wide consensus and commitment that is hard to achieve. I, sho
implementing these more general abstractions at the IP fmses
difficult technical problems and major deployment barriers

In response, many researchers have turned to applicatian-I
solutions (either end-host or overlay mechanisms) to sappese
abstractions [4, 15, 24]. While these proposals achievel¢iseed
functionality, they do so in a very disjointed fashion inttisalu-
tions for one service are not solutions for other servieeg; pro-
posals for application-layer multicast don’t address rtigbiand
vice-versa. As a result, many similar and largely reduncdaeth-
anisms are required to achieve these various goals. Iniawldit
overlay solutions are used, adding a new abstraction reguire
deployment of an entirely new overlay infrastructure.

In this paper, we propose a single new overlay network that
serves as a general-purpose Internet Indirection Infrektre ¢3).

13 offers a powerful and flexibleendezvoudased communication
abstraction; applications can easily implement a vari€poemu-
nication services, such as multicast, anycast, and myghilit top
of this communication abstraction. Our approach providgerm
eral overlay service that avoids both the technical andayepént
challenges inherent in IP-layer solutions and the redunydamd
lack of synergy in more traditional application-layer apaches.
We thus hope to combine the generality of IP-layer solutiwith
the deployability of overlay solutions.

The paper is organized as follows. In Sections 2 and 3 we pro-
vide an overview of theé3 architecture and then a general discus-
sion on how:3 might be used in applications. Section 4 covers ad-



13's Application Programming Interface (API
sendPacket(p) send packet
insertTrigger(t) insert trigger
removeTrigger(t) | remove trigger

@

PR
receiver (R

Figure 1: (a) 3's API. Example illustrating communication between two nodes. (b) The receiverR inserts trigger (id, R). (c) The

sender sends packetid, data).

ditional aspects of the design such as scalability and efficiout-
ing. Section 5 describes some simulation results3qrerformance
along with a discussion on an initial implementation. Redawork
is discussed in Section 6, followed by a discussion on futgek

Section 7. We conclude with a summary in Section 8.

2. 13 OVERVIEW

In this section we present an overviewidf We start with the
basic service model and communication abstraction, thilyor
describei3’s design.

2.1 Service Model

The purpose 0f3 is to provide indirection; that is, it decouples
the act of sending from the act of receiving. Ti3eservice model
is simple: sources send packets to a logidahtifier, and receivers
express interest in packets sent to an identifier. Deliveryest-
effort like in today’s Internet, with no guarantees aboutks de-
livery.

This service model is similar to that of IP multicast. The-cru
cial difference is that thé3 equivalent of an IP multicast join is
more flexible. IP multicast offers a receiver a binary dewisof
whether or not to receive packets sent to that group (thishean
indicated on a per-source basis). It is up to the multicdsastruc-
ture to build efficient delivery trees. Th8 equivalent of a join is
inserting atrigger. This operation is more flexible than an IP mul-
ticast join as it allows receivers tmntrol the routing of the packet.
This provides two advantages. First, it allows them to eeat the
application level, services such as mobility, anycast, semice
composition out of this basic service model. Thus, this ompke
service model can be used to support a wide variety of agjdita
level communication abstractions, alleviating the neednfiany
parallel and redundant overlay infrastructures. Secdmeljrifras-
tructure can give responsibility for efficient tree constian to the
end-hosts. This allows the infrastructure to remain simmibust,
and scalable.

2.2 Rendezvous-Based Communication

The service model is instantiated as a rendezvous-based com
munication abstraction. In their simplest form, packets pairs
(id, data) whereid is anm-bit identifier anddata consists of
a payload (typically a normal IP packet payload). Receiveses
triggersto indicate their interest in packets. In the simplest form,
triggers are pairgid, addr), whereid represents the trigger iden-
tifier, andaddr represents a node’s address which consists of an
IP address and a port number. A trigded, addr) indicates that
all packets with an identifietd should be forwarded (at the IP
level) by thei3 infrastructure to the node identified layldr. More
specifically, the rendezvous-based communication abiginex-
ports three basic primitives as shown in Figure 1(a).

Figure 1(b) illustrates the communication between two sopde
where receivel? wants to receive packets sentitb The receiver

inserts the trigge(id, R) into the network. When a packet is sent
to identifierid, the trigger causes it to be forwarded via IPRo

Thus, much as in IP multicast, the identifidrrepresents a log-
ical rendezvous between the sender’s packets and the e€seiv
trigger. This level of indirection decouples the sendenfrthe
receiver. The senders need neither be aware of the number of r
ceivers nor their location. Similarly, receivers need netlware of
the number or location of senders.

The above description is the simplest form of the abstractio
We now describe a generalization that allows inexact matche-
tween identifiers. (A second generalization that repladesiti-
fiers with a stack of identifiers is described in Section 2\86 as-
sume identifiers aren bits long and that there is soregact-match
thresholdk with & < m. We then say that an identified; in a
triggermatchesan identifierid in a packet if and only if

(a) id andid; have a prefix match of at leaktbits, and

(b) there is no trigger with an identifier that has a longeffigre
match withid.

In other words, a trigger identifiekl; matches a packet identi-
fier id if and only if id; is a longest prefix match (among all other
trigger identifiers) and this prefix match is at least as loaghe
exact-match thresholk. The valuek is chosen to be large enough
so that the probability that two randomly chosen identifieatch
is negligible? This allows end-hosts to choose the identifiers inde-
pendently with negligible chance of collision.

2.3 Overview of the Design

We now briefly describe the infrastructure that supports tén-
dezvous communication abstraction; a more in-depth detsmni
follows in Section 4.43 is an overlay network which consists of
a set of servers that store triggers and forward packetadu#l)
betweeni3 nodes and to end-hosts. Identifiers and triggers have
meaning only in thig3 overlay.

One of the main challenges in implementiiyis to efficiently
match the identifiers in the packets to those in triggers.sThi
done by mapping each identifier to a unigisenode (server); at
any given time there is a singt8 node responsible for a gived.
When a trigger(id, addr) is inserted, it is stored on thi& node
responsible foid. When a packet is sent td it is routed by:3 to
the node responsible fad; there it is matched against any triggers
for thatid and forwarded (using IP) to all hosts interested in packets
sent to that identifier. To facilitate inexact matching, wequire that
all id’s that agree in the first bits be stored on the sani@ server.
The longest prefix match required for inexact matching caen te
executed at a single node (where it can be done efficiently).

Note that packets are not stored#)they are only forwarded.3
provides a best-effort service like today’s Internét.implements
neither reliability nor ordered delivery on top of IP. Endsdlts use

YIn our implementation we choose = 256 andk = 128.
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Figure 2: Communication abstractions provided byi3. (a) Mobility: The change of the receiver’s address fromR to R’ is transparent
to the sender. (b) Multicast: Every packet(id, data) is forwarded to each receiverR; that inserts the trigger (id, R;). (c) Anycast:
The packet matches the trigger of receiverR2. id,|ids denotes an identifier of sizen, whereid, represents the prefix of thek most
significant bits, andid, represents the suffix of them — & least significant bits.

periodic refreshing to maintain their triggersihi Hosts contact an
13 node when sending packets or inserting triggers. Thi3 node
then forwards these packets or triggers to thenode responsible
for the associated identifiers. Thus, hosts need only knasvi®n
node in order to use th& infrastructure.

2.4 Communication Primitives Provided byi3

We now describe how can be used by applications to achieve
the more general communication abstractions of mobility/tim
cast, and anycast.

2.4.1 Mobility

The form of mobility addressed here is when a hesgi( a lap-
top) is assigned a new address when it moves from one location
another. A mobile host that changes its address ffom R’ as a
result of moving from one subnet to another can preserverte e
to-end connectivity by simply updating each of its existiriggers
from (id, R) to (id, R'), as shown in Figure 2(a). The sending host
needs not be aware of the mobile host’s current location dresss.
Furthermore, since each packet is routed based on its figent
the server that stores its trigger, no additional operatieads to be
invoked when the sender moves. Thilscan maintain end-to-end
connectivity even when both end-points move simultangousl

With any scheme that supports mobility, efficiency is a major
concern [25]. With:3, applications can use two techniques to
achieve efficiency. First, the address of the server stahiagrigger
is cached at the sender, and thus subsequent packets asededy
directly to that server via IP. This way, most packets arevéosded
through only one3 server in the overlay network. Second, to al-
leviate the triangle routing problem due to the trigger lestored
at a server far away, end-hosts can use off-line heurisgsichdose
triggers that are stored &t servers close to themselves (see Sec-
tion 4.5 for details).

2.4.2 Multicast

Creating a multicast group is equivalent to having all mersioé
the group register triggers with the same identifiér As a result,

any packet that matcheégéis forwarded to all members of the group
as shown in Figure 2(b). We discuss how to make this approach
scalable in Section 3.4.

Note that unlike IP multicast, with3 there is no difference be-
tween unicast or multicast packets, in either sending agivew.
Such an interface gives maximum flexibility to the applioatiAn
application can switch on-the-fly from unicast to multicagtsim-
ply having more hosts maintain triggers with the same idienti
For example, in a telephony application this would allow tipls
parties to seamlessly join a two-party conversation. Intre,
with IP, an application has to at least change the IP de&iimatl-
dress in order to switch from unicast to multicast.

2.4.3 Anycast

Anycast ensures that a packet is delivered to exactly oresvec
in a group, if any. Anycast enables server selection, a tasiding
block for many of today’s applications. To achieve this wighall
hosts in an anycast group maintain triggers which are idehi
the k most significant bits. Thedebits play the role of the anycast
group identifier. To send a packet to an anycast group, a saeds
an identifier whosek-bit prefix matches the anycast group identi-
fier. The packet is then delivered to the member of the groupserh
trigger identifier best matches the packet identifier adoortb the
longest prefix matching rule (see Figure 2(c)). Section 3v8g
two examples of how end-hosts can use thedast k bits of the
identifier to encode their preferences.

2.5 Stack of Identifiers

In this section, we describe a second generalizatiai3,ofthich
replaces identifiers with identifiestacks An identifier stack is a
list of identifiers that takes the forifid, idz, ids, . . ., idx) where
id; is either an identifier or an address. Packesd triggerg are
thus of the form:

e Packetp = (idsiqck, data)

e Triggert = (id, idstack)



13_recv(p) // upon receiving packet
id = head(p.id_stack); /| get head of p’s stack
/l'is local server responsible for id’'s best match? P
if (isMatchLocal(id) = FALSE)
13_forward (p); // matching trigger stored elsewhere

return; 7:22: 1222 :
pop(p.id_stack); I/ pop id from p’s stack... sender () _ = receiver (R)
set_t = get_matches(id); I/ get all triggers matching id (a) Service composition
if (set_t =0)

if (p.id_stack = 0)
drop(p) // nowhere else to forward
else

i3_forward (p); (9 \ipEG-H.263 *
while (set_t # () // forward packet to each matching trigger ((id ypeg- 263 - R1). data)
t = get_trigger(sett); o
pl = copy(p); Il create new packet to send - MPEG-H.263 '
/I ... add t's stack at head of p1's stack (d R

prepend(t.id_stack, pl.id_stack);
13_forward (p1);

(b) Heterogeneous multicast

i3-forward (p) // send/forward packet Figure 4: (a) Service composition: The senderg) specifies that
id = head(p.id_stack); Il get head of p's stack packets should be transcoded at server before being delivered
if (type(id) = IP_ADDR_TYPE) o to the destination (). (b) Heterogeneous multicast: Receiver
IP_send(id, p); // id is an IP address; send p to id via IP R1 specifies that wants to receive H.263 data, whilB2 specifies
else that wants to receive MPEG data. The sender sends MPEG
forward (p); // forward p via overlay network data.

Figure 3: Pseudo-code of the receiving and forward operatios

executed by ani3 server. p. For each matching trigger the identifier stack of the trigger is
prepended tg's identifier stack. The packet is then forwarded
based on the first identifier in its stack.

The generalized form of packets allows a source to send a&pack 3 SING i
to a series of identifiers, much as in source routing. The igéne Y i3

ized form of triggers allows a trigger to send a packet to heot In this section we present a few examples of li8wan be used.
identifier rather than to an address. This extension allavsaf We discuss service composition, heterogeneous multisaster
much greater flexibility. To illustrate this point, in Semtis 3.1, 3.2, selection, and large scale multicast. In the remainder®ptiper,
and 4.3, we discuss how identifier stacks can be used to @rovid we say that packet matchesrigger¢ if the first identifier ofp’s
service composition, implement heterogeneous multicasd, in- identifier stack matchess identifier.

crease3’s robustness, respectively. . ..

A packetp is always forwarded based on the first identifigr 3.1 Service Composition
in its identifier stack until it reaches the server who is mxible Some applications may require third parties to process #te d
for storing the matching trigger(s) for. Consider a packet with before it reaches the destination [10]. An example is a w&#®l
an identifier stacKid., id2, id3). If there is no trigger in3 whose application protocol (WAP) gateway translating HTML welgpa
identifier matchesd:, id; is popped from the stack. The processis to WML for wireless devices [35]. WML is a lightweight versiof
repeated until an identifier ip's identifier stack matches a trigger HTML designed to run on wireless devices with small screerbs a

t. If no such trigger is found, packetis dropped. If on the other  limited capabilities. In this case, the server can forwérel web
hand, there is a triggerwhose identifier matchesl;, thenid; is page to a third-party servéf that implements the HTML-WML
replaced byt's identifier stack. In particular, if's identifier stack transcoding, which in turn processes the data and sendgttieto
is (z,y), thenp’s identifier stack become@, y, idz, ids). If idy destination via WAP.

is an IP addressy is sent via IP to that address, and the rest of In general, data might need to be transformed by a series of
p's identifier stack, i.e.(id2, id3) is forwarded to the application.  third-party servers before it reaches the destinationodiay’s In-

The semantics ofd: andids are in general application-specific.  ternet, the application needs kmow the set of servers that per-
However, in this paper we consider only examples in which the form transcoding and thezxplicitly forward data packets via these
application is expected to use these identifiers to forwaegacket servers.

after it has processed it. Thus, an application that resedvgacket With 43, this functionality can be easily implemented by using a
with identifier stack(idz, id3) is expected to send another packet stack of identifiers. Figure 4(a) shows how data packetsatoing

with the same identifier stackdz,ids). As shown in the next HTML information can be redirected to the transcoder, angsth

section this allows3 to provide support for service composition. arrive at the receiver containing WML information. The send
Figure 3 shows the pseudo-code of the receiving and forward- associates with each data packet the si@dlyrrr—warr,id),

ing operations executed by @& node. Upon receiving a packet whereid represents the flow identifier. As a result, the data packet

a server first checks whether it is responsible for storirgttig- is routed first to the server which performs the transcodidgxt,

ger matchingpacketp. If not, the server forwards the packet at the server inserts packéid, data) into 43, which delivers it to the
the i3 level. If yes, the code returns the set of triggers that match receiver.



3.2 Heterogeneous Multicast
Figure 4(b) shows a more complex scenario in which an MPEG

video stream is played back by one H.263 receiver and one MPEG

receiver.

To provide this functionality, we use the ability of theceiver
instead of the sender (see Section 2.5), to control theftrana-
tions performed on data packets. In particular, the H.268iver
Rlinsertstriggefid, (idmpec—H.263, R1)), and the sender sends
packets(id, data). Each packet matcheB1’s trigger, and as a
result the packet’s identifieid is replaced by the trigger's stack
(idmpec—H.263, T). Next, the packet is forwarded to the MPEG-
H.263 transcoder, and then directly to receif&r. In contrast, an
MPEG receiverR2 only needs to maintain a triggéid, R1) in ¢3.
This way, receivers with different display capabilitiesicaubscribe
to the same multicast group.

Another useful application is to have the receiver insist ¢l
data go through a firewall first before reaching it.

3.3 Server Selection

13 provides good support for basic server selection through th
use of the lastn—k bits of the identifiers to encode application
preferenced.To illustrate this point consider two examples.

In the first example, assume that there are several web server

and the goal is to balance the client requests among thegerser
This goal can be achieved by setting the- k least significant bits
of both trigger and packet identifiers to random values. Ve
have different capacities, then each server can insert deunf
triggers proportional to its capacity. Finally, one can idevan
adaptive algorithm in which each server varies the numbérigf
gers as a function of its current load.

In the second example, consider the goal of selecting a rserve
that is close to the client in terms of latency. To achieve goal,
each server can use the last-k bits of its trigger identifiers to
encode its location, and the client can use thenastk bits in the
packets’ identifier to encode its own location. In the sirsplmase,
the location of an end-host (i.e., server or client) can ke zip
code of the place where the end-host is located; the longest p
fix matching procedure used b would result then in the packet
being forwarded to a server that is relatively close to thentf

3.4 Large Scale Multicast

The multicast abstraction presented in Sectth#d.2assumes
that all members of a multicast group insert triggers witbnitical
identifiers. Since triggers with identical identifier arerstd at the
samei3 server, that server is responsible for forwarding each mul-
ticast packet to every member of the multicast group. THhistem
obviously does not scale to large multicast groups.

One approach to address this problem is to build a hierarEhy o
triggers, where each membgy;, of a multicast groupd, replaces
its trigger (idy, R;) by a chain of triggersidy, z1), (z1, z2), .. .,

(zi, Ri). This substitution is transparent to the sender: a packet

(idg, data) will still reach R; via the chain of triggers. Figure 5
shows an example of a multicast tree with seven receiversiohw
no more than three triggers have the same identifier. Thisuftley
of triggers can be constructed and maintained either catipely
by the members of the multicast group, or by a third party frex
In [18], we present an efficient distributed algorithm in wiinithe

2Recall that identifiers aren bits long and that is the exact-
matching threshold.

3Here we assume that nodes that are geographically closeho ea
other are also close in terms of network distances, whichots n
always true. One could instead use latency based encoding) m
as in [20].

Figure 5: Example of a scalable multicast tree with bounded
degree by using chains of triggers.

receivers of the multicast group construct and maintairhibeear-
chy of triggers.

4. ADDITIONAL DESIGN AND PERFOR-
MANCE ISSUES

In this section we discuss some additionaldesign and per-
formance issues. Thi& design was intended to be (among other
properties) robust, self-organizing, efficient, secucalable, incre-
mentally deployable, and compatible with legacy applarai In
this section we discuss these issues and some details oésignd
that are relevant to them.

Before addressing these issues, we first review our basigrdes
13 is organized as an overlay network in which every node (sgrve
stores a subset of triggers. In the basic design, at any ntoofien
time, a trigger is stored at only one server. Each end-hostvkn
about one or moré3 servers. When a host wants to send a packet
(id, data), it forwards the packet to one of the servers it knows. If
the contacted server doesn’t store the trigger matchidgdata),
the packet is forwarded via IP to another server. This pmces-
tinues until the packet reaches the server that stores thehing
trigger. The packet is then sent to the destination via IP.

4.1 Properties of the Overlay

The performance of3 depends greatly on the nature of the un-
derlying overlay network. In particular, we need an ovenegt-
work that exhibits the following desirable properties:

e Robustness: With a high probability, the overlay network
remains connected even in the face of massive server and
communication failures.

e Scalability: The overlay network can handle the traffic gen-
erated by millions of end-hosts and applications.

e Efficiency: Routing a packet to the server that stores the
packet’s best matching trigger involves a small number of
servers.

e Stability: The mapping between triggers and servers is rela-
tively stable over time, that is, it is unlikely to change icgr



whpkF

finger

wphpbF

Figure 6: Routing information (finger tables) maintained by
the Chord nodes.

the duration of a flow. This property allows end-hosts to op-
timize their performance by choosing triggers that areestor
on nearby servers.

To implement3 we have chosen the Chord lookup protocol [26],
which is known to satisfy the above properties. Chord usesian
bit circular identifier space whei@ follows 2™ — 1. Each server
is associated a unique identifier in this space. In the calgdiord
protocol, each identifieid is mapped on the server with the clos-
est identifier that followsd on the identifier circle. This server
is called successor @fl and it is denoted byuccessor(id). Fig-
ure 6 shows an example in which there are three nodesyaad3.
Server 2 is responsible for identifiers 0, 1, and 2, server&spon-
sible for 3, 4 and 5, and server 7 is responsible for 6 and 7.

To implement the routing operation, each server maintamsia
ing table of sizen. Thei-th entry in the routing table of server
contains the first server that follows+ 2°~1, i.e., successor(n +
2'=1), This server is called theth finger ofn. Note that the first
finger is the same as the successor server.

Upon receiving a packet with identifiéd, servem checks whether
id lies between itself and its successor. If yes, the servevdats
the packet to its successor, which should store the padkiegger.

If not, n sends the packet to the closest server (finger) in its rout-
ing table that preceded. In this way, we are guaranteed that the
distance tad in the identifier space is halved at each step. As a re-
sult, it takesO(log V) hops to route a packet to the server storing
the best matching trigger for the packet, irrespective ef start-

ing point of the packet, wher® is the number ot3 servers in the
system.

In the current implementation, we assume that all idengifilbat
share the samk-bit prefix are stored on the same server. A simple
way to achieve this is to set the laast— k bits of every node iden-
tifier to zero. As a result, finding the best matching triggauces
to performing a longest prefix matching operation locally.

While 3 is implemented on top of Chord, in principi can use
any of the recently proposed P2P lookup systems such as CZN [2
Pastry [23] and Tapestry [12].

4.2 Public and Private Triggers

Before discussingd’s properties, we introduce an important tech-
nigue that allows applications to usg more securely and effi-
ciently. With this technique applications make a distioctbe-
tween two types of triggerspublic and private This distinction
is made only at the application leveB itself doesn't differentiate
between private and public triggers.

The main use of a public trigger is to allow an end-host toaont
another end-host. The identifier of a public trigger is kndyrall
end-hosts in the system. An example is a web server that anaént
a public trigger to allow any client to contact it. A publicgger can
be defined as a the hash of the host's DNS name, of a web address,
or of the public key associated with a web server. Publiggeig
are long lived, typically days or months. In contrast, piéviggers
are chosen by a small number of end-hosts and they are sreatt li
Typically, private triggers exist only during the duratioha flow.

To illustrate the difference between public and privatggers,
consider a clienfl accessing a web servBrthat maintains a public
trigger (id,us, B). First, clientA chooses a private trigger iden-
tifier id,, inserts trigger(ida, A) into ¢3, and sendsd, to the
web server via the server’s public triggéid,., B). Once con-
tacted, serve3 selects a private identifierl,, inserts the associ-
ated trigger(ids, B) into i3, and sends its private trigger identifier
idy to client A via A’s private trigger(id., A). The client and
the server then use both the private triggers to communicaee
the communication terminates, the private triggers arerolgsd.
Sections 4.5 and 4.10 discuss how private triggers can ke tose
increase the routing efficiency, and the communicationrégcu

Next, we discus$3’s properties in more detail.

4.3 Robustness

13 inherits much of the robustness properties of the overksffit
in that routing of packets withig3 is fairly robust against3 node
failures. In addition, end-hosts use periodic refreshmgaintain
their triggers intoi3. This soft-state approach allows for a simple
and efficient implementation and frees tieinfrastructure from
having to recover lost state when nodes fail. If a triggelos-+
for example, as a result of @ server failure—the trigger will be
reinserted, possibly at another server, the next time thkehest
refreshes it.

One potential problem with this approach is that although th

triggers are eventually reinserted, the time during whiotytare
unavailable due to server failures may be too large for sqopéi-a
cations. There are at least two solutions to address thisigmro
The first solution does not requiiB-level changes. The idea is to
have each receiveR maintain a backup triggefidpqciup, R) in
addition to the primary triggefid, R), and have the sender send
packets with the identifier stadkd, idpacrup). If the server stor-
ing the primary trigger fails, the packet will be then fonded via
the backup trigger td?.* Note that to accommodate the case when
the packet is required to match every trigger in its identigieack
(see Section 3.2), we use a flag in the packet header, whisét, if
causes the packet to be dropped if the identifier at the heéd of
stack doesn't find a match. The second solution is to havevise o
lay network itself replicate the triggers and manage thdiceg.
In the case of Chord, the natural replication policy is tdicgte a
trigger on the immediate successor of the server respafgibthat
trigger [5]. Finally, note that when an end-host fails, itgdgers are
automatically deleted fron8 after they time-out.

4.4 Self-Organizing

13 is an overlay infrastructure that may grow to large sizeusTh
it is important that it not require extensive manual confégion or
human intervention. The Chord overlay network is self-cgunfing,
in that nodes joining the3 infrastructure use a simpleootstrap-
ping mechanism (see [26]) to find out about at least one exisfing
node, and then contacts that node to joinithfrastructure. Sim-

“Here we implicitly assume that the primary and backup trigge
are stored on different servers. The receiver can ensutetisas
the case with high probability by choosii@yqcrup, = 2™ — id.



ilarly, end-hosts wishing to us® can locate at least on8 server
using a similar bootstrapping technique; knowledge of alsiiB
server is all that’s needed to fully utilize thig infrastructure.

4.5 Routing Efficiency

As with any network system, efficient routing is importanttie
overall efficiency ofi3. While 3 tries to route each packet effi-
ciently to the server storing the best matching trigger, rthaing
in an overlay network such as is typically far less efficient than
routing the packet directly via IP. To alleviate this prahlethe
sender caches th@ server's IP address. In particular, each data
and trigger packet carry in their headers a refreshing flag/hen
a packet reaches aB server, the server checks whether it stores
the best matching trigger for the packet. If not, it sets thg flin
the packet header before forwarding it. When a packet resittee
server storing the best matching trigger, the server chiags' in
the packet header, and fifis set, it returns its IP address back to the
original sender. In turn, the sender caches this addressisexlit
to send the subsequent packets with the same identifier.efues
can periodically set the refreshing flggas a keep-alive message
with the cached server responsible for this trigger.

Note that the optimization of caching the sergawhich stores
the receiver’s trigger does not undermine the system rolesst
If the trigger moves to another server (e.g., as the result of a
new server joining the system}y will simply route the subsequent
packets froms to s’. When the first packet reache’s the receiver
will replace s with s’ in its cache. If the cached server fails, the
client simply uses another knowi server to communicate. This
is the same fall-back mechanism as in the unoptimized casa wh
the client uses only on& server to communicate with all the other
clients. Actually, the fact that the client caches tBserver storing
the receiver’s trigger can help reduce the recovery timeekine
sender notices that the server has failed, it can informeheiver
to reinsert the trigger immediately. Note that this solntassumes
that the sender and receiver can communicate via altemggets
that are not stored at the sanseserver.

While caching the server storing the receiver’s triggeruess
the number of3 hops, we still need to deal with the triangle rout-
ing problem. That is, if the sender and the receiver are digse
but the server storing the trigger is far away, the routing be in-
efficient. For example, if the sender and the receiver arb bot
Berkeley and the server storing the receiver’s trigger isondon,
each packet will be forwarded to London before being dedider
back to Berkeley!

One solution to this problem is to have the receivers chdosie t

receiver (R2)

Figure 7: Heterogeneous multicast application. Refer to Kj-
ure 4(b) for data forwarding in 3.

a triggert exceeds a certain threshold, the seetoring the trig-
ger pushes a copy ofto another server. This process can continue
recursively until the load is spread out. The decision of nete
push the trigger is subject to two constraints. Figsshould push
the trigger to the server most likely to route the packetscimiat
that trigger. Second$S' should try to minimize the state it needs
to maintain; S at least needs to know the servers to which it has
already pushed triggers in order to forward refresh messége
these triggers (otherwise the triggers will expire). Withded, one
simple way to address these problems is to always push guets

to the predecessor server.

If there are more triggers that share the sadntat prefix with a
popular triggett, all these triggers need to be cached together with
t. Otherwise, if the identifier of a packet matches the ideattifi
of a cached trigget, we cannot be sure thatis indeed the best
matching trigger for the packet.

4.7 Scalability

Since typically each flow is required to maintain two trigger
(one for each end-point), the number of triggers stored is of the
order of the number of flows plus the number of end-hosts. At fir
sight, this would be equivalent to a network in which eachteou
maintains per-flow state. Fortunately, this is not the céigkile the
state of a flow is maintained by each router along its pathigger
is stored at onlypnenode at atime. Thus, if there amgriggers and
N servers, each server will storg’ N triggers on the average. This
also suggests that can be easily upgraded by simply adding more
servers to the network. One interesting point to note is these

private triggers such that they are located on nearby servers. This nodes do not need to be placed at specific locations in theorietw

would ensure that packets won't take a long detour beforehrea
ing their destination. If an end-host knows the identifiefrshe

nearbyi3 servers, then it can easily choose triggers with identifiers

4.8 Incremental Deployment
Sincei3 is designed as an overlay netwoiR, is incrementally

that map on these servers. In general, each end-host caresamp deployable. At the limit;3 may consist of only one node that stores

the identifier space to find ranges of identifiers that areest@t
nearby servers. To find these ranges, a nddean insert random
triggers (id, A) into ¢3, and then estimate the RTT to the server
that stores the trigger by simply sending packéid, dummy), to
itself. Note that since we assume that the mapping of triggato
servers is relatively stable over time, this operation candbne
off-line. We evaluate this approach by simulation in Settal.

4.6 Avoiding Hot-Spots

Consider the problem of a large number of clients that tryoto-c
tact a popular trigger such as the CNN’s trigger. This mayeahe
server storing this trigger to overload. The classical Sofuto this
problem is to use caching. When the rate of the packets nmgtchi

all triggers. Adding more servers to the system does notirequ
any system configuration. A new server simply joins iBsystem
using the Chord protocol, and becomes automatically respten
for an interval in the identifier space. When triggers witbritifiers
in that interval are refreshed/inserted they will be staaethe new
server. In this way, the addition of a new server is also parent
to the end-hosts.

4.9 Legacy Applications

The packet delivery service implemented #3/is best-effort,
which allows existing UDP-based applications to work c\eeas-
ily. The end-host runs ai3 proxy that translates between the appli-
cations’ UDP packets an@ packets, and inserts/refreshes triggers



on behalf of the applications. The applicationsrdui need to be
modified, and are unaware of th& proxy. Packets are intercepted
and translated by th& proxy transparently. As a proof of concept,
we have implemented the heterogeneous multicast applicpte-
sented in Section 3.2 ovéd. The sender sends a MPEG stream,
and one receiver plays back with a MPEG player (mpky) and

the other with a H.263 player (tmndec), as shown in Figure 7.

In [38], we present a solution using to provide mobility support
for TCP-based legacy applications.

4.10 Security

private triggerids,, and sends this trigger back toover A’s private
triggerid, . Since the sender’s trigger is encrypted, a malicious user
cannot impersonatB.®

4.10.2 Trigger hijacking

A malicious user can isolate a host by removing its publiggter.
Similarly, a malicious user in a multicast group can remotleep
members from the group by deleting their triggers. Whileogimg
a trigger also requires to specify the IP address of the eérigpis
address is, in general, not hard to obtain.

One possibility to guard against this attack is to add arrdével

Unlike IP, where an end-host can only send and receive pack- of indirection. Consider a servet that wants to advertise a public
ets, ini3 end-hosts are also responsible for maintaining the routing trigger with identifierid, . Instead of inserting the triggétd,,, S),

information through triggers. While this allows flexibififor ap-

plications, it also (and unfortunately) creates new opputies for

malicious users. We now discuss several security issueiand
13 addresses them.

the server can insert two triggefsd,,, z) and(z, S), wherez is an
identifier known only byS. Since a malicious user has to knaw
in order to remove either of the two triggers, this simplehtaque
provides effective protection against this type of attatk.avoid

We emphasize that our main goal here is not to design a bullet performance penalties, the receiver can chaesich that both

proof system. Instead, our goal is to design simple and efftci
solutions that makeé3 not worse and in many cases better than
today’s Internet. The solutions outlined in this sectioowdt be
viewed as a starting point towards more sophisticated attgrbe
security solutions that we will develop in the future.

4.10.1 Eavesdropping

Recall that the key to enabling multicast functionality ésal-
low multiple triggers with the same identifer. Unfortunigtea ma-
licious user that knows a host’s trigger can use this fleiybtb
eavesdrop the traffic towards that host by simply insertirigca
ger with the same identifier and its own address. In addrgghis
problem, we consider two cases: (a) private and (b) pubtigérs
(see Section 4.2).

Private triggers are secretly chosen by the applicationpeinats
and are not supposed to be revealed to the outside world efigé
of the trigger’s identifier makes it difficult for a third pgrto use
a brute force attack. While other application constraintshsas
storing a trigger at a server nearby can limit the identifieoice,
the identifier is long enough (i.e256 bits), such that the appli-
cation can always reserve a reasonably large number ofHaits t
are randomly chosen. Assuming that an application chob2g&s
random bits in the trigger’s identifier, it will take an atka 227
probes on the average to guess the identifier. Even in thedface
a distributed attack of say one millions of hosts, it will éa&bout
2127-20 — 9107 probes per host to guess a private trigger. We
note that the technigue of using random identifiers as piitibtit
secure capabilities was previously used in [28, 37].

Furthermore, end-points can periodically change the fwitrég-
gers associated with a flow. Another alternative would betlier
receiver to associate multiple private triggers to the sflove and
the sender to send packets randomly to one of these priiggets.
The alternative left to a malicious user is to intercept gllgte trig-
gers. However this is equivalent to eavesdropping at theué or
taking control of thei3 server storing the trigger, which makés
no worse than IP.

With 43, a public trigger is known by all users in the system, and
thus anyone can eavesdrop the traffic to such a trigger. viate
this problem, end-hosts can use the public triggers to ahaqsair
of private triggers, and then use these private triggerxehange
the actual data. To keep the private triggers secret, oneusan
public key cryptography to exchange the private triggecsinitiate
a connection, a hostl encrypts its private triggeid, under the
public key of a receive3, and then sends it t& via B’s public
trigger. B decryptsA’s private triggerid,, then chooses its own

(idp, ) and(z, S) are stored at the same server. With the current
implementation this can be easily achieved by havidg and x
share the samk-bit prefix.

4.10.3 DoS Attacks

The fact thati3 gives end-hosts control on routing opens new
possibilities for DoS attacks. We consider two types ofckisa (a)
attacks on end-hosts, and (b) attacks on the infrastructaréhe
former case, a malicious user can insert a hierarchy oferg¢see
Figure 5) in which all triggers on the last level point to thetim.
Sending a single packet to the trigger at the root of the hibga
will cause the packet to be replicated and all replicas tod s
to the victim. This way an attacker can mount a large scale DoS
attack by simply leveraging thi infrastructure. In the later case,
amalicious user can create trigger loops, for instance bpecting
the leaves of a trigger hierarchy to its root. In this casehgmcket
sent to the root will be exponentially replicated!

To alleviate these attacka) uses three techniques:

1. Challenges: i3 assumes implicitly that a trigger that points
to an end-hostR is inserted by the end-host itself. AB8
server can easily verify this assumption by sending a chal-
lenge toR the first time the trigger is inserted. The challenge
consists of a random nonce that is expected to be returned by
the receiver. If the receiver fails to answer the challerge t
trigger is removed. As a result an attacker cannot use a hier-
archy of triggers to mount a DoS attack (as described above),
since the leaf triggers will be removed as soon as the server
detects that the victim hasn’t inserted them.

2. Resource allocation:Each server uses Fair Queueing [7] to
allocate resources amongst the triggers it stores. This way
the damage inflicted by an attacker is only proportional to
the number of triggers it maintains. An attacker cannot sim-
ply use a hierarchy of triggers with loops to exponentially
increase its traffic. As soon as each trigger reaches its fair
share the excess packets will be dropped. While this tech-
nique doesn't solve the problem, it givé3 time to detect
and to eventually break the cycles.

To increase protection, each server can also put a bound on
the number of triggers that can be inserted by a particular
end-host. This will preclude a malicious end-host from mo-

5Note that an attacker can still count the number of conneate
quests toB. However, this information is of very limited use, if
any, to the attacker. If, in the future, it turns out that tisisun-
acceptable for some applications, then other security an@éss
such as public trigger authentication will need to be used.



4.5

T T T
- power law random graph
—e— transit-stub

90th Percentile Latency Stretch

25 30 35

15 20
Number of Samples

Figure 8: The 90th percentile latency stretch vs. number of
samples for PLRG and transit-stub with 5000 nodes.

nopolizing a server's resources.

. Loop detection: When a trigger that doesn'’t point to an IP
address is inserted, the server checks whether the nevetrigg
doesn’t create a loop. A simple procedure is to send a special
packet with a random nonce. If the packet returns back to the
server, the trigger is simply removed. To increase the ebus
ness, the server can invoke this procedure periodicalbr aft
such a trigger is inserted. Another possibility to detecpl®
more efficiently would be to use a Bloom filter to encode the
set ofi3 servers along the packet’s path, as proposed in the
Icarus framework [34].

4.11 Anonymity

Point-to-point communication networks such as the Intgone-
vide limited support for anonymity. Packets usually cahg tes-
tination and the source addresses, which makes it relataety
for an eavesdropper to learn the sender and the receiveti-iden
ties. In contrast, withi3, eavesdropping the traffic of a sender will
not reveal the identity of the receiver, and eavesdroppiegttaf-
fic of a receiver will not reveal the sender’s identity. Thedeof
anonymity can be further enhanced by using chain of triggers
stack of identifiers to route packets.

5. SIMULATION RESULTS

In this section, we evaluate the routing efficiencyi®tby sim-
ulation. One of the main challenges in providing efficienitiog
is that end-hosts have little control over the location @ithrig-
gers. However, we show that simple heuristics can signifigan
enhanceid’s performance. The metric we use to evaluate these
heuristics is the ratio of the inter-node latency onih@etwork to
the inter-node latency on the underlying IP network. Thisabed
thelatency stretch

The simulator is based on the Chord protocol and uses iterati
style routing [26]. We assume that node identifiers are rango
distributed. This assumption is consistent with the wayities-
tifiers are chosen in other lookup systems such as CAN [22] and
Pastry [23]. As discussed in [26], using random node idemsfi
increases system robustness and load-balankiie consider the

5We have also experimented with identifiers that have lonati
mantics. In particular, we have used space filling curvesh s
the Hilbert curve, to map @& dimensional geometric space—which

following network topologies in our simulations:

e A power-law random graph topology generated withither
topology generator [16] with 5000 nodes, where the delay of
each link is uniformly distributed in the intervil, 100) ms.
The13 servers are randomly assigned to the network nodes.

A transit-stub topology generated with tba-1T™m topology
generator [11] with 5000 nodes, where link latencies are 100
ms for intra-transit domain links, 10 ms for transit-stutikis

and 1 ms for intra-stub domain links3 servers are randomly
assigned to stub nodes.

5.1 End-to-End Latency

Consider a sourcd that sends packets to a receivevia trigger
(id, R). As discussed in Section 4.5, once the first packet reaches
the serverS storing the triggerid, R), A cachesS and sends all
subsequent packets directly $o As a result, the packets will be
routed via IP fromA to S and then fromS to R. The obvious
question is how efficient is routing throughas compared to rout-
ing directly from A to R. Section 4.5 presents a simple heuristic
in which a receivetk? samples the identifier space to find an iden-
tifier id. that is stored at a nearby server. ThRrinserts trigger
(ide, R).

Figure 8 plots the 90th percentile latency stretch versestim-
ber of samples: in a system withl6,384 i3 servers. Each point
represents the 90th percentile over 1000 measurementsea€br
measurement, we randomly choose a sender and a receiver. In
each case, the receiver generakeiggers with random identi-
fiers. Among these triggers, the receiver retains the trigfogt is
stored at the closest server. Then we sum the shortest patitya
from the sender t& and from.S to the receiver, and divide it by
the shortest path latency from the sender to the receivebtairo
the latency stretch. Sampling the space of identifiers tyréat/-
ers the stretch. While increasing the number of samplesdses
the stretch further, the improvement appears to saturpidlyain-
dicating that in practice, just6—32 samples should suffice. The
receiver doesiot need to search for a close identifier every time a
connection is open; in practice, an end-host can samplepéees
periodically and maintain a pool of identifiers which it cause.

5.2 Proximity Routing in i3

While Section 5.1 evaluates the end-to-end latency expesi:
by data packets after the sender caches the server stogng-th
ceiver’s triggert, in this section, we evaluate the latency incurred
by the sender'sirst packet that matches triggér This packet is
routed through the overlay network until it reaches the sestor-
ing t. While Chord ensures that the overlay route length is only
O(log N), whereN is the number of3 servers, the routintatency
can be quite large. This is because server identifiers agomly
chosen, and therefore servers close in the identifier spacede
very far away in the underlying network. To alleviate thisiplem,
we consider two simple heuristics:

e Closest finger replicaln addition to each finger, a server
maintainsr—1 immediate successors of that finger. Thus,
each node maintains references to aboutlog, N other
nodes for routing proposes. To route a packet, a server se-
lects the closest node in terms of network distance amongst
(2) the finger with the largest identifier preceding the paiske

was shown to approximate the Internet latency well [20]-edhe
one-dimensional Chord identifier space. However, the miakry
results do not show significant gains as compared to the dtmsri
presented in this section, so we omit their presentatioa.her
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case (b).

identifier and (2) the-—1 immediate successors of that fin-
ger. This heuristic was originally proposed in [5].

e Closest finger settach serves choosedog, N fingers as
successor(s + b'), where(i < log, N) andb < 2. To
route a packet, server considers only the closesbg, N
fingers in terms of network distances among alllig, N
fingers.

Figure 9 plots the 90th percentile latency stretch as a fonct
of i3's size for the baseline Chord protocol and the two heuris-
tics. The number of replicas is 10, andb is chosen such that
log, N = r % log, N. Thus, with both heuristics, a server con-
siders roughly the same number of routing entries. We vagy th
number ofi3 servers from2'° to 2!¢, and in each case we aver-
age routing latencies over 1000 routing queries. In all sdlsei3
server identifiers are randomly generated.

As shown in Figure 9, both heuristics can reduce the 90th per-
centile latency stretch up -3 times as compared to the default
Chord protocol. In practice, we choose the “closest fingét se
heuristic. While this heuristic achieves comparable leyestretch
with “closest finger replica”, it is easier to implement armkd not
require to increase the routing table size. The only changbe
Chord protocol is to sample the identifier space using lbase
stead of2, and store only the close&stg, N fingers among the
nodes sampled so far.

5.3 Implementation and Experiments

We have implemented a bare-bones versioi3aising the Chord
protocol. The control protocol used to maintain the overhay-
work is fully asynchronous and is implemented on top of UDe T
implementation uses 256 bitn( = 256) identifiers and assumes
that the matching procedure requires exact matching on 28e 1
most significant bitsk = 128). This choice makes it very unlikely
that a packet will erroneously match a trigger, and at theestime
gives applications up to 128 bits to encode applicationifipen-
formation such as the host location (see SecBof. 3.

For simplicity, in the current implementation we assume #iba
triggers that share the first 128 bits are stored on the samersén

theory, this allows us to use any of the proposed lookup #tgos
that performs exact matching.

Both insert trigger requests and data packets share a common
header of 48 bytes. In addition, data packets can carry & stac
up to four triggers (this feature isn’t used in the experitsgnTrig-
gers need to be updated every 30 seconds or they will expire. T
control protocol to maintain the overlay network is minimgach
server performs stabilization every 30 seconds (see [2B6}r-
ing every stabilization period all servers generate appnakely
N log N control messages. Since in our experiments the number
of serversN is in the order of tens, we neglect the overhead due to
the control protocol.

The testbed used for all of our experiments was a cluster of Pe
tium 111 700 MHz machines running Linux. We ran tests on syste
of up to 32 nodes, with each node running on its own processor.
The nodes communicated over a shared 1 Gbps Ethernet. For tim
measurements, we use the Pentium timestamp counter (T88). T
method gives very accurate wall clock times, but sometimn-it
cludes interrupts and context switches as well. For thisapathe
high extremes in the data are unreliable.

5.4 Performance

In the section, we present the overhead of the main opegtion
performed byi3. Since these results are based on a very prelim-
inary implementation, they should be seen as a proof of bdasi
ity and not as a proof of efficiency. Other Chord related perfo
mance metrics such as the route length and system robustreess
presented in [5].

Trigger insertion:  We consider the overhead of handling an
insert trigger request locally, as opposed to forwardingguest
to another server. Triggers are maintained in a hash tabléhes
time is practically independent of the number of triggenselrting
a trigger involves just a hash table lookup and a memory afloc
tion. The average and the standard deviation of the trigusert
tion operation over 10,000 insertions are 12gec, and 7.12sec,
respectively. This is mostly the time it takes the operatipgtem
to process the packet and to hand it to the application. Bypaom
ison, memory allocation time is just 0.28ec on the test machine.
Note that since each trigger is updated every 30 sec, a ssotgd
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Figure 10: Per packet forwarding overhead as a function of
payload packet size. In this case, thé3 header size is 48 bytes.

be able to maintain up t80 * 80,000 = 2.4 * 10° triggers.

Data packet forwarding: Figure 10 plots the overhead of for-
warding a data packet to its final destination. This involeggking
up the matching trigger and forwarding the packet to itsidatibn
addresses. Since we didn’t enable multicast, in our exparim
there was never more than one address. Like trigger insertio
packet forwarding consists of a hash table lookup. In aoldijtihis
measurement includes the time to send the data packet. tRacke
warding time, in our experiments, increases roughly lityeatth
the packet size. This indicates that as packet size in@easEm-
ory copy operations and pushing the bits through the network-
inate processing time.

13 routing: Figure 11 plots the overhead of routing a packet to
anotheri3 node. This differs from data packet forwarding in that
we route the packet using a node’s finger table rather thamgtger
table. This occurs when a data packet’s trigger is storedoames
other node. The most costly operation here is a linear firgjaet
lookup, as evidenced by the graph. There are two reasonkifor t
seemingly poor behavior. First, we augment the finger talitle av
cache containing the most recent servers that have senbtont
data packets. Since in our experiments this cache is largegén
to store all servers in the system, the number of nodes usedte
a packet (i.e., the fingers plus the cached nodes) increasghly
linearly with the number of nodes in the system. Second, the fi
ger table data structure in our implementation is a list. mae
polished implementation, a more efficient data structurgdarly
needed to significantly improve the performance.

Throughput: Finally, we ran some experiments to see the max-
imum rate at which a node can process data packets. IddaHy, t
should be the inverse of overhead. To test throughput, desing
node is bombarded with more packets than it can reasonahbly ha
dle. We measure the time it takes fop0,000 packets to emerge
from the node to determine throughput. Not surprisinglypasket
payload increases, throughput in packets decreases. itioadave
calculate the data throughput from the user perspectivdy be
payload data is considered; headers are overhead to usersiser
throughput in Mbps increases as the packet payload ingdmse
cause the overhead for headers and processing is roughtathe
for both small and large payloads.
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Figure 11: Per packet routing overhead as a function ofi3
nodes in the system. The packet payload size is zero.

Payload Size| Avg. Throughput (std. dev.) | Avg. Throughput
(bytes) (pkts/sec) (payload Mbps)
0 35,753 (2,406) 0
200 33,130 (3,035) 53.00
400 28,511 (1,648) 91.23
600 28,300 (595) 135.84
800 27,842 (1,028) 178.18
1,000 27,060 (1,127) 216.48
1,200 26,164 (1,138) 251.16
1,400 23,339 (1,946) 261.39

Figure 12: The throughput of the data packet forwarding.

6. RELATED WORK

The rendezvous-based communication is similar in spirtho
tuple space work in distributed systems [2, 14, 36]. A tuplace
is a shared memory that can be accessed by any node in the sys-
tem. Nodes communicate by inserting tuples and retrieviegnt
from a tuple space, rather than by point-to-point commtuiooa
Tuples are more general than data packet&3inA tuple consists
of arbitrary typed fields and values, while a packet congisjsst
an identifier and a data payload. In addition, tuples areapiaed
to be stored until they are explicitly removed. Unforturgtéhe
added expressiveness and stronger guarantees of tuptsspake
them very hard to efficiently implement on a large scale. Bina
tuple spaces usually require nodes to explicitly retriexeheindi-
vidual tuple. Such an abstraction is not effective for higeed
communications.

13’'s communication paradigm is similar to the publish-suliser
notify (PSN) model. The PSN model itself exists in many pro-
prietary forms already in commercial systems [29, 31]. While
matching operations employed by these systems are typioaith
more powerful than the longest prefix matching useddyt is not
clear how scalable these systems are. In addition, thesensys
don’t provide support for service composition.

Active Networks aim to support rapid development and deploy
ment of new network applications by downloading and exeguti
customized programs in the network [33B provides an alterna-
tive design that, while not as general and flexible as Actiet-N
works, is able to realize a variety of basic communicatiowises
without the need for mobile code or heavyweight protocols.

3 is similar to many naming systems. This should come as no
surprise, as identifiers can be viewed as semantic-lesssabme



future research direction is to usg as a unifying framework to
implement various name systems.

eral by allowing an unlimited number of arbitrarily connedtIP
network realms, IPNL provides more efficient routing by asswg

The Domain Name system (DNS) maps hostnames to IP ad- a hierarchical topology with a single “middle realm”. Packa-
dresses [19]. A DNS name is mapped to an end-host as a resultwarding in both TRIAD and IPNL is similar to packet forwardin

of an explicit request at the beginning of a transfer. i3n the
identifier-to-address mapping and the packet forwardiegightly
integrated. DNS resolvers form a static overlay hierarebtyije i3
servers form a self-organizing overlay.

Active Names (AN) map a name to a chain of mobile code re-

sponsible for locating the remote service, and transpgiitis re-
sponse to the destination [30]. The code is executed on natmes
resolvers. The goals of AN an@ are different. In AN, applica-
tions use names to describe what they are looking for, whilg i
identifiers are used primary as a way to abstract away thehestl-
location. Also, while the goal of AN is to support extensityifor
wide-area distributed services, the goalidfis to support basic
communication primitives such as multicast and anycast.

based on identifier stacks 8. However, while with TRIAD and
IPNL the realm-to-realm path of a packet is determined dytime
DNS name resolution by network specific protocols, wishthe
path is determined by end-hosts.

Multi-Protocol Label Switching (MPLS) was recently propads
to speed-up the IP route lookup and to perform route pinnig [
Similar to3, each packet carries a stack of labels that specifies the
packet route. The first label in the stack specifies the ngxt Be-
fore forwarding a packet, a router replaces the label at gl fof
the stack. There are several key differences betwgamd MPLS.
While i3 identifiers have global meaning, labels have only local
meaning. In addition, MPLS requires special protocols toosle
and distribute the labels. In contrast, with identifier stacks are

The Intentional Naming System (INS) is a resource discovery chosen and maintained by end-hosts.

and service location system for mobile hosts [32]. INS uses a

attribute-based language to describe names. Simil&3 identi-
fiers, INS names are inserted and refreshed by the applicdis
also implements a late biding mechanism that integratesdhee
resolution with message forwarding3 differs from INS in that
from the network’s point of view, an identifier does not caaty
semantics. This simplicity allows for a scalable and effitienple-
mentation. Another difference is tha& allows end-hosts to control
the application-level path followed by the packets.

The rendezvous-based abstraction is similar to the IP oasiti
abstraction [6]. An IP multicast address identifies the ixexe of
a multicast group in the same way @& identifier identifies the
multicast receivers. However, unlike IP which allocatepecsl
range of addresses (i.e., class D) to multicé&stoes not put any
restrictions on the identifier format. This givés applications the
ability to switch on-the-fly from unicast to multicast. Indition,
13 can support multicast groups with heterogeneous receivers

Several solutions to provide the anycast service have been r

cently proposed. IP Anycast aims to provide this servicéatP

layer [21]. All members of an anycast group share the same IP

address. IP routing forwards an anycast packet to the meofber
the anycast group that is the closest in terms of routingadis.
Global IP-Anycast (GIA) provides an architecture that &ddes
the scalability problems of the original IP Anycast by diéfatiat-
ing between rarely used and popular anycast groups [17]ohA ¢
trast to these proposal&} can use distance metrics that are only
available at the application level such as server load, asdp-
ports other basic communication primitives such as mustiead
service composition.

Estrin et al. have proposed an attribute-based data communi-

cation mechanism, called direct diffusion, to dissemirgd& in
sensor networks [8]. Data sources and sinks use attriboiielen-
tify what information they provide or are interested in. Aeushat
wants to receive data insertsiaterestinto the network in the form
of attribute-value pairs. At a high level, attributes armitar to
identifiers, and interests are similar to triggers. Howgverdi-
rect diffusion, the attributes have a much richer semantit the
rules can be much more complex than3n At the implementation
level, in direct diffusion, nodes flood the interests to thedigh-

bors, whiles3 uses a lookup service to store the triggers determined

based on the trigger identifier.

TRIAD [3] and IPNL [9] have been recently proposed to solve
the IPv4 address scarcity problem. Both schemes use DNSsname

rather than addresses for global identification. Howev&|AD
and IPNL make different tradeoffs. While TRIAD is more gen-

7. DISCUSSION AND FUTURE WORK

While we firmly believe in the fundamental purpose 8f—
providing a general-purpose indirection service througsirgle
overlay infrastructure—the details of our design are pneiary.
Besides exploring the security and efficiency issues meatian
the paper further, there are areas that deserve significaiti@nal
attention.

A general question is what range of services and applicatian
be synthesized from the fixed abstraction provideddyJntil now
we have developed two applications on top&fa mobility solu-
tion [38], and a scalable reliable multicast protocol [18}hile the
initial experience with developing these applications lbeesn very
promising, it is too early to precisely characterize theitations
and the expressiveness of ti§eabstraction. To answer this ques-
tion, we need to gain further experience with using and deptp
new applications on top aB.

For inexact matching, we have used longest-prefix matchx- Ine
act matching occurs locally, on a single node, so one cowddog
reasonably efficient matching procedure. The question ighvh
inexact matching procedure will best allow applicationghoose
among several candidate choices. This must work for chgosin
based on feature sets.§, selecting printers), locatiore(g, se-
lecting servers), and policy consideratiomsg, automatically di-
recting users to facilities that match their credentialdje chose
longest-prefix match mostly for convenience and familjaaind it
seems to work in the examples we've investigated, but thexg m
be superior options.

Our initial design decision was to use semanticless idendifi
and routing; that is, identifiers are chosen randomly andimgtis
done based on those identifiers. Instead, one could embatidoc
semantics into the node identifiers. This may increase fraesfcy
of routing, by allowing routes to take lower-latent3tlevel hops,
but at the cost of making the overlay harder to deploy, manage
load-balance.

Our decision to use Chord [26] to implemeiitwas motivated
by the protocol simplicity, its provable properties, anddoy famil-
iarity with the protocol. However, one could easily implemhé3
on top of other lookup protocols such as CAN [22], Pastry @3
Tapestry [12]. Using these protocols may present diffetemte-
fits. For instance, using Pastry and Tapestry can reduceatéiedy
of the first packets of a flow, since these protocols find tylpica
routes with lower latencies than Chord. However, note tmateo
the sender caches the server storing the receiver’s triggere will
be little difference between using different lookup pratisc as the



packets will forwarded directly via IP to that server. Stimythe
trade-offs involved by using various lookup protocols t@lement
13 is a topic of future research.

While these design decisions are important, they may have li
tle to do with whethet3 is ever deployed. We don’t know what
the economic model of3 would be and whether its most likely
deployment would be as a single provider for-profit servildes(
content distribution networks), or a multiprovider forefit service
(like ISPs), or a cooperatively managed nonprofit infrastre.
While deployment is always hard to achievg has the advantage
that it can be incrementally deployed (it could even star am-
gle, centrally located server!). Moreover, it does not iegjthe
cooperation of ISPs, so third-parties can more easily pevthis
service. Nonetheless3 faces significant hurdles before ever being
deployed.

8. SUMMARY

Indirection plays a fundamental role in providing solusdior
mobility, anycast and multicast in the Internet. In this @ape pro-
pose a new abstraction that unifies these solutions. Ircpéati we
propose to augment the point-to-point communication absbn
with a rendezvous-based communication abstraction. HEvil |
of indirection decouples the sender and the receiver betsaaind
allows us to provide natural support for mobility, anycastl anul-
ticast.

To demonstrate the feasibility of this approach, we havé auoi
overlay network based on the Chord lookup system. Prelimina
experience withi3 suggests that the system is highly flexible and
can support relatively sophisticated applications thguie mo-
bility, multicast, and/or anycast. In particular, we haeveloped a
simple heterogeneous multicast application in which MPi&w
traffic is transcoded on the fly to H.263 format. In additiore w
have recently developed two other applications: providiagspar-
ent mobility to legacy applications [38], and a large scaléable
multicast protocol [18].
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