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Abstract—Information flow analysis has largely focused on
methods that require access to the program in question or total
control over an analyzed system. We consider the case where
the analyst has neither control over nor a white-box model
of the analyzed system. We formalize such limited information
flow analyses and study an instance of it: detecting the usage of
data by websites. We reduce these problems to ones of causal
inference by proving a connection between noninterference and
causation. Leveraging this connection, we provide a systematic
black-box methodology based on experimental science and
statistical analysis. Our systematic study leads to practical
advice for detecting web data usage, a previously unformalized
area. We illustrate these concepts with a series of experiments
collecting data on the use of information by websites.

Keywords-information flow analysis; causation; online track-
ing; blackbox experiments;

I. INTRODUCTION

Web Data Usage Detection: Suppose you are shown
a car ad by Google while reading an article on a news
webpage. You might wonder whether the ad appears because
you visited a car dealer website earlier in the day. That is,
you would like to know whether information flows from the
car dealers website (to the ad network) to the news webpage.

More generally, concerns about privacy (e.g., [1]) have led
to much interest in determining whether ad networks, such
as Google’s DoubleClick and the Yahoo Ad Exchange, use
certain types of information [2]–[9]. We call this problem
web data usage detection (WDUD). In this paper, we show
how to conduct experiments in a systematic way that can
help answer this and other kinds of privacy-related questions.

While WDUD studies are, in essence, attempting to
track the flow of information from inputs to some system
to outputs of it, they differ from traditional information
flow analyses (IFAs). The traditional motivation for IFA,
designing secure programs, leads to viewing the analyst as
verifying that a system under his control protects information
sensitive to the operator of the system. Thus, the problems
studied and analyses proposed tend to presume that the
analyst has access to the program running the system in
question or total control over its inputs and environment.
(See [10] for a survey.)

In the setting of WDUD, the analyzed system can be
adversarial toward the person studying the system. The
analyst may be aligned with (or even equal to) a data subject,
an entity whose information is collected by the system.

In this setting, the analyst has no access to the program
running the system in question, little control over its inputs,
and a limited view of its behavior. Thus, the analyst lacks
the abilities presupposed by traditional IFAs. To understand
the WDUD problem as an instance of IFA requires a fresh
perspective on IFA.

The original motivation underlying much of IFA research
also obscures its connection to other areas of research. For
example, copyright protection [11], [12], traitor tracing [13],
data leak detection [14]–[18], and the detection of pla-
giarism [19] are all in essence information flow analyses
in which the analyst has limited access to the system in
question (often a person). However, to keep the presentation
clear, we focus on WDUD, leaving a discussion of related
areas to future work.

Contributions: We develop a formal methodology for
conducting IFA for black-box information flow problems,
and for WDUD in particular. The overarching contribution
of this work is relating IFA in these nontraditional settings
to experiments designed to determine causation. We show
that the ability of the analyst to control some inputs enables
information flow experiments that manipulate the system
in question to discover the use of information without a
white-box model of the system. We present an easy-to-
apply, statistically rigorous methodology for information
flow experiments that future studies on WDUD and other
IFAs for black boxes may use to draw statistically sound
conclusions.

Our methodology is supported by a chain of contributions
that follows the paper’s outline:

§ II a systematization of black-box IFA problems
§ III a proof of a connection between IFA and causality
§ IV an experimental design leveraging this connection
§V a rigorous statistical analysis for such experiments

In particular, while the link has been subject to prior com-
ment [20], [21], we believe we are the first to formally prove
a connection between standard notions of information flow
and causation. We are also the first to provide a method for
conducting WDUD studies that comes with a methodology
showing that a positive result entails a flow of information
with a quantified certainty.

These contributions are each necessary for creating a
chain of sound reasoning from intuition about vague prob-
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lems to rigorous quantified results. This chain of reasoning
provides a systematic, unifying view of these problems,
which leads to a concrete methodology based on well studied
scientific methods. While the notion of experimental science
is hardly new, our careful justification provides guidance on
the choices involved in actually conducting an information
flow experiment.

The systematization of experimental approaches to secu-
rity, privacy, and accountability is becoming increasingly
important as technological trends (e.g., Cloud and Web ser-
vices) result in analysts and auditors having limited access to
and control over systems whose properties they are expected
to study. This paper provides a useful starting point towards
such a systematization by providing a common model and
a shared vocabulary of concepts that places problems of
security and privacy into the context of causality, experi-
mentation, and statistical analysis.

Overview: We explore, both empirically and theoret-
ically, how to conduct IFA over black-box systems while
avoiding unjustified assumptions. First, in Section II, we
build upon traditional IFA by starting with noninterfer-
ence [22], a standard formalization of information flow. We
identify the limited abilities of the analyst in these problems
and cast WDUD as a form of analysis between the extremes
of white-box program analysis and black-box monitoring. In
doing so, we shift IFA from its traditional context of program
analysis using white-box models of software to the new
context of investigating black-box systems that hide much
of their behavior and operate in uncontrolled environments.
We thereby highlight an interesting flavor of black-box IFA
that lacks prior formal study.

In particular, we focus on WDUD as it is the least
understood nontraditional IFA problem. We formalize it in
terms of noninterference showing its relationship to IFA. We
prove that sound information flow detection is impossible in
this setting (Theorem 1).

Motivated by this impossibility result, we look for an
alternative statistical approach. To do so, we build upon
research on causality [23], strengthening the connection
between the two research areas. In Section III, we prove
that a system has interference from a high-level user 𝐻 to
a low-level user 𝐿 in the sense of IFA if and only if inputs
of 𝐻 can have a causal effect on the outputs of 𝐿 while
the other inputs to the system remain fixed (Theorem 3).
This connection allows us to appeal to inductive methods
employed in experimental science to study IFA. Such meth-
ods provide precisely what we need to make high-assurance
statistical claims about flows despite our impossibility result.
We leverage this observation to approach WDUD with
information flow experiments.

Section IV discusses the design of information flow ex-
periments. We show a correspondence between the features
of WDUD and the features of a scientific study (Table I).
We discuss the limitations and abilities of experiments to

find interference. In particular, we explain the difficulty
of finding that a single system has interference. We also
identify the ability to find that a system and its environment
acting together has interference. For example, we find that
while we cannot claim Google itself has interference, we
can determine that Google and it’s ad ecosystem does.

In Section V, we review significance testing as a sys-
tematic method of quantifying the degree of certainty that
an information flow experiment has observed interference.
We conduct pilot studies to explore what assumptions, and
therefore statistical analyses, are appropriate for WDUD.
We identify permutation testing [24], a method of signifi-
cance testing, as particularly well suited. In essence, it uses
randomization, similarly to security algorithms, to defeat
adversaries, making it appropriate for a security setting.

Section VI compares our method to those found in prior
WDUD studies. In Section VII, we empirically benchmark
our interpretations of some of their approaches with our own
WDUD study. This WDUD study is the first to come with
a methodology showing its relationship to IFA.

We then provide practical suggestions, summarized in
Section VIII, for systematically conducting future WDUD
studies. We end by discussing directions for new research
that further strengthens the connection between information
flow and causality and applies it to other security problems.

Throughout this work, we present our own experiments
to illustrate the abstract concepts we present. These results
may also be of independent interest to the reader.

A related technical report contains details of experiments
and results, formal models, and the proof of each of our
theorems [25]. The code and data collected are available at
www.cs.cmu.edu/∼mtschant/ife.

Prior Work: Three of the authors augmented our
method and applied it to run information flow experiments
on Google [26]. That paper does not claim the results we
present herein as contributions.

Ruthruff, Elbaum, and Rothermel note the usefulness of
experiments for program analysis [27]. Whereas our work
focuses on problems where traditional white-box analyses
are impossible, their work examines experiments in the more
traditional setting where the analyst has control over the
system in question. Furthermore, we develop a formalism
relating informal flow and causality, provide proofs, and
present a statistical analysis.

While we could not find any prior articulation of the
formal correspondence between informal flow and causality
(our Theorem 3), we are not the first to note such a
connection. McLean [20] and Mowbray [21] each proposed
a definition of information flow that uses the lack of a
causal connection to rule out security violations even if
there is a flow of information from the point of view of
information theory. Sewell and Vitek provide a “causal type
system” for reasoning about information flows in a process
calculus [28]. We differ from these works by showing an
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equivalence between a standard notion of information flow,
noninterference [22], and a standard notation of causality,
Pearl’s [23], rather than using a notion of causality to adjust
an information theoretic notion of information flow. Further-
more, Mowbray’s formalism requires white-box access to the
system while McLean’s only considers temporal ordering
as a source of causal knowledge. More importantly, they
use causality to handle problematic edge cases in their
formalisms whereas we reduce interference to causality so
that we may apply standard methods from experimental
science to IFA.

Our identification of WDUD as an interesting problem
for IFA was inspired by prior WDUD studies. Sweeney
uses a method similar to ours to study how search ads are
affected by search terms [5]. Our work provides a formal
justification of her method in terms of information flows.
Other prior studies either approach the problem with non-
statistical analyses [2]–[4], [6] or make assumptions that
our experiments show unlikely to hold in the setting we
study [7]–[9]. Section VI details these works.

We draw on works from experimental design and statis-
tics, whose discussion we defer until the point of use.

II. INFORMATION FLOW ANALYSIS

In this section, we discuss prior work on information flow
analysis starting with noninterference, a formalization of
information flows. We next discuss the analyses used in prior
work to determine whether a flow of information exists. We
present them systematically by the capabilities they require
of the analyst. We end by discussing the capabilities of
the analyst in our motivating applications, and WDUD in
particular, how prior analyses are inappropriate given these
capabilities, and the inherent limitations of these capabilities.

A. Noninterference

Goguen and Meseguer introduced noninterference to for-
malize when a sensitive input to a system with multiple
users is protected from untrusted users of that system [22].
Intuitively, noninterference requires the system to behave
identically from the perspective of untrusted users regardless
of any sensitive inputs to the system.

As did they, we will define noninterference in terms of a
synchronous finite-state Moore machine. The inputs that the
system accepts are tuples where each component represents
the input received on a different input channel. Similarly, our
outputs are tuples representing the output sent on each output
channel. For simplicity, we will assume that the machine
has only two input channels and two output channels, but
all results generalize to any finite number of channels.

We partition the four channels into 𝐻 and 𝐿 with each
containing one input and one output channel. Typically, 𝐻
corresponds to all channels to and from high-level users,
and 𝐿 to all channels to or from low-level users. The high-
level information might be private or sensitive information

that should not be mixed with public information, denoted
by 𝐿. In the area of taint analysis, the roles are reversed
in that the tainted information is untrusted and should not
be mixed with trusted information on the trusted channel.
However, either way, the goal is the same: keep information
on the input channel of 𝐻 from reaching the output channel
of 𝐿.

We will often have a single user using channels of both
sets since we are concerned with not only to whom infor-
mation flows but also under what contexts. To this end, we
interpret channel rather broadly to include virtual channels
created by multiplexing, such as a field of an HTML form
or the ad container of a web page. We also allow each
channel’s input/output to be a null message indicating no
new input/output.

A system 𝑞 consumes a sequence �⃗� of input pairs where
each pair contains an input for the high and the low input
channels. We write 𝑞(⃗𝚤) for the output sequence �⃗� that
𝑞 would produce upon receiving �⃗� as input where output
sequences are defined as a sequence of pairs of high and
low outputs.

For an input sequence �⃗�, let ⌊⃗𝚤↓𝐿⌋ denote the sequence of
low-level inputs that results from removing the high-level
inputs from each pair of �⃗�. That is, it “purges” all high-level
inputs. We define ⌊�⃗�↓𝐿⌋ similarly for output sequences.

Definition 1 (Noninterference). A system 𝑞 has noninterfer-
ence from 𝐿 to 𝐻 iff for all input sequences �⃗�1 and �⃗�2,

⌊⃗𝚤1↓𝐿⌋ = ⌊⃗𝚤2↓𝐿⌋ implies ⌊𝑞(⃗𝚤1)↓𝐿⌋ = ⌊𝑞(⃗𝚤2)↓𝐿⌋
Intuitively, if inputs only differ in high-level inputs, then

the system will provide the same low-level outputs.
To handle systems with probabilistic transitions, we will

employ a probabilistic version of noninterference similar to
the previously defined P-restrictiveness [29] and probabilis-
tic nondeduciblity on strategies [30]. To define it, we let
𝑄(⃗𝚤) denote a probability distribution over output sequences
given the input �⃗�, a concept that can be made formal given
the probabilistic transitions of the machine [30]. We define
⌊𝑄(⃗𝚤)↓𝐿⌋ to be the distribution 𝜇 over sequences ℓ⃗ of
low-level outputs such that 𝜇(ℓ⃗) =

∑
�⃗� s.t. ⌊�⃗�↓𝐿⌋=ℓ⃗𝑄(⃗𝚤)(�⃗�).

Probabilistic Noninterference compares such distributions
for equality.

Definition 2 (Probabilistic Noninterference). A system 𝑄
has probabilistic noninterference from 𝐿 to 𝐻 iff for all
input sequences �⃗�1 and �⃗�2,

⌊⃗𝚤1↓𝐿⌋ = ⌊⃗𝚤2↓𝐿⌋ implies ⌊𝑄(⃗𝚤1)↓𝐿⌋ = ⌊𝑄(⃗𝚤2)↓𝐿⌋
B. Analysis

Information flow analysis (IFA) is a set of techniques to
determine whether a system has noninterference (or similar
properties) for interesting sets 𝐻 and 𝐿. Examples include
analyses employing type systems [10], [31], model checking
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Figure 1. Taxonomy of analyses

of code [32], or dynamic approaches that instrument the
code running the system to track values carrying sensitive
information (e.g., [33]–[36]).

The above methods are inappropriate for WDUD since
they require white-box access to the program. That is, the
analyst must be able to study and/or modify the code. In our
applications, the analyst must treat the program as a black
box. That is, the analyst can only study the I/O behavior
of the program and not its internal structure. Black-box
analyses vary based on how much access they require to the
system in question. Figure 1 shows a taxonomy of analyses.

Numerous black-box analyses for detecting information
flows operate by running the program rather than analyzing
its code [37]–[41]. They run the program multiple times
with varying inputs to detect changes in output that imply
interference. However, these black-box analyses continue to
require access to the internal structure of the program even if
they do not analyze that structure. For example, the analysis
of Yumerefendi et al. requires the binary of a program to
copy it into a virtual machine for producing I/O traces [37].
In theory, such black-box analyses could be modified to not
require any access to code by completely controlling the
environment in which the program executes. To do so, the
analyst would run a single copy of the program and reset
its environment to simulate having multiple copies of the
system. We call this form of black-box analysis, with total
control over the system, testing as it is the setting typical to
software testing.

Testing will not work for our applications. For example, in
the setting of WDUD, the analyst cannot reset and run the
program multiple times since the analyst has only limited
interactions with the program over a network. Thus, it
cannot force the program into the same initial environment
to reset it. Furthermore, unlike a program, Google’s ad
system is stateful and, thus, modifying its environment alone
would be insufficient to reset it. In this setting, the analyst
must analyze the system as it runs, not a program whose
environment the analyst can change at will.

At the opposite extreme of black-box analysis is monitor-
ing, which passively observes the execution of a system.
While some monitors are too powerful by being able to

observe the internal state of the running system (e.g. [42]),
others match our needs in that the analyst only has access to
a subset of the program’s outputs (e.g., [43]). However, all
monitors are too weak since they cannot provide inputs to
the system as our application analysts can. We need a form
of black-box analysis between the extremes of testing and
monitoring.

Thus, we find no prior work on IFA that corresponds to the
capabilities of the analyst in WDUD or our other motivating
applications.

C. Information Flow Experiments

Unlike the primary motivation of traditional IFA, devel-
oping programs with Mandatory Access Controls (MAC),
our motivating examples involve situations in which the
analyst and the system in question are not aligned. Thus, the
information available to the analyst is much more limited
than in the traditional security setting. In particular, the
analyst

1) has no model of or access to the program running the
system,

2) cannot observe or directly control the internal states
of the system,

3) has limited control over and knowledge of the envi-
ronment of the system,

4) can observe a subset of the system’s outputs, and
5) has control over a subset of the inputs to the system.

We will call performing IFA in this setting experimenting.
Experiments are an interactive extension of a limited form
of execution monitoring that allows analyst inputs but limits
the analyst to only observing a subset of system I/O.

Prior work shows that no monitor can detect information
flows [42], [44], [45]. We argue that experiments, with their
additional ability to control some inputs to the system, do
not improve upon this situation. In particular, we prove that
no non-degenerate experiment can be sound for interfer-
ence or for noninterference, even on deterministic systems.
(Although, we will later show that experiments do enable
statistical analyses with probabilistic soundness properties.)

Experiment Model: We model an experiment as a pair
⟨⃗𝚤, 𝑑⟩ where �⃗� is an input sequence and 𝑑 is a decision
function from the set of output sequences to {ni, ?, in}. �⃗�
represents the sequence of inputs that the analyst supplies
to the system in question and 𝑑 represents how the analyst
goes from the sequence of resulting outputs to either the
conclusion that the system 𝑞 has interference (in), has
noninterference (ni), or that she does not know (?), all for
a fixed 𝐻 and 𝐿. The result of the experiment ⟨⃗𝑖, 𝑑⟩ on the
deterministic system 𝑞 is 𝑑(𝑞(⃗𝚤)). We allow the analyst just
one I/O sequence since the analyst cannot restart the system,
which would include resetting its hard drives, clocks, etc.
to their initial states. The analyst can embed into its single
sequence multiple subsequences each corresponding to a run
of a program on the system.
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Adversary Model: The system in question 𝑞 might be
under the control of an adversary trying to trick the analyst
as to whether the system has interference. We model the
adversary as being able to select any automaton for the
system 𝑞. In essence, the following theorems show that for
any experiment, the adversary can select a system that fools
the analyst.

To prove the unsoundness of black-box experiments for
interference, we consider an arbitrary system 𝑞 for which an
experiment returns a positive result indicating interference.
In our setting, the experiment must base its decision solely
upon its interactions with the system. Thus, it will return the
same positive result for a system 𝑞N that always produces
the same outputs as 𝑞 did irrespective of its inputs. Since 𝑞N
always produces these outputs, it has noninterference making
the positive result false.

Theorem 1 (Unsoundness for Interference). For all experi-
ments ⟨⃗𝚤, 𝑑⟩, if there exists a system 𝑞 such that 𝑑(𝑞(⃗𝚤)) = in,
then there exists a system 𝑞N with noninterference from 𝐻
to 𝐿 such that 𝑑(𝑞N(⃗𝚤)) = in.

The argument for noninterference is symmetric, but re-
quires that interference is possible given the system’s input
and output space. That is, the system must have at least two
high inputs and two low outputs.

Theorem 2 (Unsoundness for Noninterference). If 𝐻 has
two inputs and 𝐿 has two outputs, then for all experiments
⟨⃗𝚤, 𝑑⟩, if there exists a system 𝑞 such that 𝑑(𝑞(⃗𝚤)) = ni, then
there exists a system 𝑞I with interference from 𝐻 to 𝐿 such
that 𝑑(𝑞I(⃗𝚤)) = ni.

Note that these theorems hold even if the analyst can
observe every input in 𝐻 and 𝐿 making the above shift
of focus to the composite system of Google operating in its
environment unsuccessful. However, as we will later see, we
can probabilistically handle the lack of total internal control
of the composite system using statistical techniques. Since
we can never be sure whether we have started a particular
sequence of inputs from the same initial state as another
sequence, we use many instances of each sequence instead
of one for each. Intuitively, if the outputs for one group
of inputs are consistently different from outputs for the
other group of inputs, then it is likely that the difference
is introduced by the difference between the groups instead
of from the initial states differing. We formalize this idea
to present a probabilistically sound method of detecting
interference. We leave detecting noninterference to future
work.

III. CAUSALITY

In this section, we discuss a formal notion of causality
motivated by the studies of the natural sciences. We then
prove that noninterference corresponds to a lack of a causal
effect. This result allows us to repose WDUD as a problem

of statistical inference from experimental data using causal
reasoning.

A. Background

Let us start with a simple example. A scientist might
like to determine whether a chemical causes cancer in mice.
More formally, she is interested in whether the value of the
experimental factor 𝑋 , recording whether the mouse ingests
the chemical, causes an effect to a response variable 𝑌 , an
indicator of mouse cancer, holding all other factors (possible
causes) constant.

Pearl [23] provides a formalization of effect using struc-
tural equation models (SEMs), a formalism widely used
in the sciences (e.g., [46]). A probabilistic SEM 𝑀 =
⟨𝒱en,𝒱ex, ℰ ,𝒫⟩ includes a set of variables partitioned into
endogenous (or dependent) variables 𝒱en and exogenous (or
independent) variables 𝒱ex. 𝑀 also includes in ℰ , for each
endogenous variable 𝑉 , a structural equation 𝑉 := 𝐹𝑉 (�⃗� )
where �⃗� is a list of other variables other than 𝑉 and 𝐹𝑉
is a possibly randomized function. A structural equation is
directional like variable assignments in programming lan-
guages. Each exogenous variable is defined by a probability
distribution given by 𝒫 . Thus, every variable is a random
variable defined in terms of a probability distribution or a
function of them.

Let 𝑀 be an SEM, 𝑋 be an endogenous variable of 𝑀 ,
and 𝑥 be a value that 𝑋 can take on. Pearl defines the sub-
model 𝑀 [𝑋:=𝑥] to be the SEM that results from replacing
the equation 𝑋 := 𝐹𝑋(�⃗� ) in ℰ with the equation 𝑋 := 𝑥.
The sub-model 𝑀 [𝑋:=𝑥] shows the effect of setting 𝑋 to
𝑥. Let 𝑌 be an endogenous variable called the response
variable. We define effect in a manner similar to Pearl [23].

Definition 3 (Effect). The experimental factor 𝑋 has an
effect on 𝑌 given 𝑍 := 𝑧 iff there exists 𝑥1 and 𝑥2 such
that the probability distribution of 𝑌 in 𝑀 [𝑋:=𝑥1][𝑍:=𝑧]
is not equal to its distribution in 𝑀 [𝑋:=𝑥2][𝑍:=𝑧].

Intuitively, there is an effect if 𝐹𝑌 (𝑥1, �⃗� ) ∕= 𝐹𝑌 (𝑥2, �⃗� )
where �⃗� are the random variables other than 𝑋 and 𝑌 .

B. The Relationship of Interference and Causality

Intuitively, interference is an effect from a high-level input
to a low-level output. Noninterference corresponds to lack
of an effect, which Pearl calls causal irrelevance [23]. We
can make this connection formal by providing a conversion
from a probabilistic system to an SEM.

Given a probabilistic Moore Machine 𝑄, we define a SEM
𝑀𝑄. Intuitively, it contains endogenous variables for each
input and output and exogenous variables for each user. In
more detail, for each time 𝑡, 𝑀𝑄 contains the endogenous
variables HI𝑡. It also contains HO𝑡 for high outputs, LI𝑡 for
low inputs, and LO𝑡 for low outputs, all at the time 𝑡. 𝑀𝑄

also has exogenous variables HU𝑡 and LU𝑡 that represent the
behavior of high and low users of the system at time 𝑡.
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The behavior of 𝑄 provides functions 𝐹lo,𝑡 defining the
low output at time 𝑡 in terms of the previous and current
inputs. The output may depend upon previous inputs via
a variable 𝑆𝑡 representing the state of the system. Similar
functions exist for the other variables. For example, the
function 𝐹s,𝑡 for updating the state is determined by the
transition function of 𝑄.

The following lemma shows that 𝑄 and 𝑀𝑄 are equiva-
lent. To state it, we use �⃗� 𝑡 to denote the vector holding those
variables 𝑉𝑡 with an index of 𝑡 or less (in order). We let 𝐼𝑡

represent a similar vector of input variables combining HI𝑡

and LI𝑡. We use �⃗� 𝑡 = �⃗� as shorthand for
⋀𝑡

𝑗=1 �⃗� [𝑗] = �⃗�[𝑗].

Lemma 1. For all 𝑄, 𝑡, �⃗�, and l⃗o of lengths 𝑡 and 𝑡 + 1,

respectively, 𝒫(L⃗O𝑡+1
=l⃗o ∣ do(𝐼𝑡:=⃗𝚤)) = ⌊𝑄(⃗𝚤)↓𝐿⌋(l⃗o).

The key theorem follows from Lemma 1 and the proper-
ties of SEMs and interference:

Theorem 3. 𝑄 has probabilistic interference iff there exists
low inputs l⃗i of length 𝑡 such that H⃗I

𝑡
has an effect on L⃗O

𝑡

given L⃗I
𝑡
:= l⃗i in 𝑀𝑄.

Notice that Theorem 3 requires that the low-level inputs
to the system in question be fixed to a set value l⃗i. This
requirement is a reflection of how noninterference only
requires that low-level outputs be equal when low-level
inputs are equal (Definition 1).

IV. EXPERIMENTAL DESIGN

Having reduced the problem of information flow exper-
iments to that of checking for effects, we can employ the
checking method often used in empirical sciences, random-
ized controlled experiments. However, doing so requires
mapping the features of WDUD and other black-box IFA
problems into the standard terms of experimental design.
Furthermore, it requires scoping the experiment to be within
the limited abilities of the analyst. In particular, we must
respect the requirement of Theorem 3 that the analyst be
able to fix all low-level inputs. We discuss each of these
issues before turning to the actual running of the experiment.

A. The Setup of Experiments

A randomized controlled experiment randomly assigns
each experimental unit, such as a mouse, to either a control
or an experimental treatment. The treatment determines the
value of the unit’s experimental factor, which maps to the
changed variable 𝑋 in Definition 3. The experimenter holds
other factors under her control constant to isolate the effect
of the treatment. These factors map to 𝑍 in Definition 3. The
experimenter measures a response, some feature, of each
unit. The experimenter attempts to determine whether the
treatments have an effect on the measured responses.

For example, consider a WDUD study to determine
whether a pattern of behavior, or profile, affects the ads that

General Terms Chemical Study Behavioral Marketing

natural process cancer marketing
population of units mice browser instances
experimental factor diet visitor behavior
treatments chemical or placebo behavioral profiles
constant factors water allowance IP address etc.
noise factors age, weight, etc. other users, advertisers
response variables tumor count sequences of ads
effect carcinogenic use of data

Table I
GENERAL TERMINOLOGY AND TWO INSTANCES OF EXPERIMENTAL

SCIENCE. IN THE CHEMICAL STUDY, A SCIENTIST STUDIES WHETHER A

CHEMICAL IS CARCINOGENIC WHEN ADDED TO THE DIET OF MICE. IN A

BEHAVIORAL MARKETING STUDY, THE SCIENTIST STUDIES WHETHER

CHANGES IN VISITOR BEHAVIOR CAUSES CHANGES IN ADS.

Google shows to a user. Table I summarizes how to view it
and an archetypal cancer study as experiments.

In the case of WDUD, the natural experimental unit
might appear to be Google. However, since a randomized
controlled experiment requires multiple experimental units
and there is just one Google, we must select some subsets
of interactions with Google as the experimental units. Since
one of the major goals of WDUD is to determine the nature
of Google’s behavioral tracking of people, interactions with
Google at the granularity of people could be an appropriate
experimental unit. However, since we desire automated
studies, we substitute separate automated browser instances
for actual people. In particular, we can use multiple browser
instances with separate caches and cookies to simulate
multiple users interacting with the web tracker. We can
apply treatments to browsers by having them controlled by
different scripts that automate different behaviors.

The treatments are various behavioral profiles that the
analyst is interested in comparing. The constant factors can
include anything the analyst can control: the IP address, the
browser used, the time of day, etc. The response may be the
ads shown to the simulated browser.

B. Scoping the System

Properly scoping an the experiment for WDUD is particu-
larly important. Suppose in the above example, the system in
question is Google. Since the profile of the user is of interest,
it dictates the high-level inputs. Since every input must be
either low-level or high-level, all inputs not determined by
the profile are low-level. These low-level inputs include
some that the analyst cannot observe or control, such as
inputs from advertisers to Google. However, Theorem 3
requires that the all the low-level variables remain fixed.
That is, to use Theorem 3, the analyst must select the system
and its inputs so that she can ensure that the low-level inputs
are fixed.
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The analyst must shrink the set of low-level inputs to just
those that she can fix. One means of achieving this goal is to
consider more inputs high-level, but if the inputs converted
to be high-level are already known to determine the ads
shown (such as inputs from advertisers), then the analysis
would be of little interest. Another means would be to alter
Google so that it no longer accepts such inputs, but the
analyst does not have such control over Google. However,
the analyst does have control over which system she studies.
Rather than study Google in isolation, she could study the
composite system of Google and the advertisers operating in
parallel. By doing so, she converts the uncontrolled low-level
inputs to Google from the advertisers into internal messages
of the composite system, which are irrelevant to whether
interference occurs.

The practical consequences of these limitations for
WDUD is that we cannot determine that Google has in-
terference on its own. Rather, we can only determine that
Google operating in its environment has interference. That
is, we can determine that the composite system consisting of
Google and the other systems making up the ad ecosystem
has interference.

This limitation means that we cannot explain how ob-
served interference occurs. Upon seeing interference, one
explanation is that Google directly used the information
in question to select ads. However, it is also possible that
Google shared the information with an advertiser that used
the information to change its bids, which, in turn, caused
Google to change its ads. If the output to the advertiser is
low-level, then Google itself does not have interference in
the second case.

Nevertheless, we know that some part of the ad ecosystem
used the information. This finding can be useful in its own
right if one is interested in the complete process of how ads
are selected. It could also justify a white-box investigation
by either internal auditors or external regulators who may
compel internal access.

Lastly, note this scoping does not enable sound nor
complete analyses of the composite system: Theorems 1
and 2 continue to apply since they do not require non-empty
sets of low-level inputs. The analyst’s continued inability
to observe the internal state of the system means that the
analyst must still employ statistical analyses.

C. Running the Experiment

With the system properly scoped, we run such a random-
ized controlled experiment as follows:

1) Assign each browser either an experimental or control
profile at random.

2) Each browser instance simulates those profiles by
interacting with webpages.

3) Each browser instance collects ads from (possibly
other) webpages.

4) Compare the collected ads from browsers with one
profile to browsers with the other profile.

In more detail, the analyst prepares a vector �⃗� with a
length equal to the number of units that hold treatment
values. Typically, half will be control treatments and half
experimental treatments. She randomly assigns each experi-
mental unit 𝑘 to an index 𝑖𝑘 of �⃗� so that no unit is assigned
the same index. For each 𝑘, she then applies the treatment in
the 𝑖𝑘th slot of �⃗� to the unit 𝑘, which in our setting implies
providing inputs corresponding to a profile. Units assigned
the same treatment form a group.

Groups may vary due to noise factors, variations among
the experimental units other than those from the application
of treatments. Proper randomization over larger sample sizes
makes negligible the probability that the groups vary in a
systematic manner. If the analyst also ensures that no other
systematic differences are introduced to the groups after the
application of the treatment, the units will not systematically
differ between the groups under the null hypothesis that the
treatment has no effect. Thus, any difference in responses
that consistently shows up in one group but not the other
can only be explained by chance under the null hypothesis.
If given the sample size, this chance is small, then the
analyst can reject the null hypothesis as unlikely, providing
probabilistic evidence of a causal relationship, which we
quantify in the next section. (See [47] for a more detailed
review of these concepts.)

V. STATISTICAL ANALYSIS

To quantify the probability that the collected responses
could appear to show a flow of information due to a chance
occurrence, we use significance testing [48]. A statistical
test of the data provides a p-value, the probability of seeing
results at least as extreme as the observed data under
the assumption that the null hypothesis is true. A small
p-value implies that the data is unlikely under the null
hypothesis. Typically, scientists are comfortable rejecting
the null hypothesis if the p-value is below a threshold of
0.05 or 0.01 depending on the field. Rejecting the null
hypothesis makes the alternative hypothesis that there is an
effect more plausible. In our case, using significance testing
requires selecting a test of independence. We discuss the
process of selecting one and detail the one we have selected,
permutation testing.

A. Selecting a Test of Independence and Pilot Studies

Some tests of independence require assumptions about
the system in question. These assumptions enable powerful
statistical techniques, which in some cases allow smaller
sample sizes or more detailed characterizations of a research
finding.

Parametric tests assume that the behavior of the system
in question is drawn from some known family of distribu-
tions with a small number of unknown parameters. Another
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Figure 2. Ads collected from the first browser instance to visit the Chicago
Tribune. The time interval for collection was one minute. The x-axis is time
measured in hh:mm. The y-axes ranges over unique ads ordered by the time
at which the instance first observed it in the experiment.

common assumption is that, under the null hypothesis, the
responses of the experimental units are independent of one
another and identically distributed (i.i.d.).

Some statistical analyses require that giving or withhold-
ing a treatment from one unit will not have an effect upon
the other units (e.g., [49, p. 19]), that is, the absence of
cross-unit effects.

Given our understanding of how ad networks operate,
these assumptions appear suspicious. The complex behavior
of ad networks makes selecting a family of distributions to
model one difficult. The fact that budgets control the number
of ad impressions creates the possibility that one browser
instance receiving an ad might decrease the probability that
another receives it, invalidating the i.i.d. assumption. Any
choice of experimental unit other than all of Google, which
leads to a sample size of one, will possibly exhibit cross-
unit effects by virtue of units being multiplexed onto a single
system.

To empirically explore how reasonable these assumptions
are in our setting, we conducted two pilot studies, which
show them difficult to defend in our setting.

Experiment 1. We collected ads served by Google on
a third-party website to understand how they vary over
time. Following Balebako et al.’s study [3], we used the
Breaking News page of the Chicago Tribune (http://www.
chicagotribune.com/news/local/breaking/).

To collect ads, we simultaneously started two browser
instances, and collected the ads served by Google on the
webpage. Each instance reloaded the web page 200 times,
with a one minute interval between successive reloads.

Figure 2 shows a temporal plot of the ads served to one of
these instances. The plots suggest that each instance received
certain kinds of ads for a period of time, before being

switched to receiving a different kind, which implies that
ads are not identically distributed across time. This pattern
held using other intervals for reloads.

One explanation for this behavior is that Google associ-
ated users with various ad pools switching users from pool
to pool over time. While hierarchical families of parametric
models could capture this behavior, we are not comfortable
making such an assumption and the resulting models would
be more complex than those typically used in parametric
tests. Thus, parametric tests would employ models of low
confidence.

Our results do not mean that one could not reverse
engineer enough of Google to find an appropriate model.
However, they suggest that such reserve engineering would
be difficult. Furthermore, it runs against the spirit of per-
forming black-box information flow analysis.

Shortly after we conducted these experiments, the
Chicago Tribune stopped hosting text ads from Google.
Thus, when we later wanted to replicate the study, we instead
looked at the Times of India, the BBC, and Fox News.
The ads continued to appear to violate the i.i.d. assumption
with some ads being shown over and over again in streaks.
However, the binning behavior was gone. This difference in
behavior suggests that any success at reverse engineering
Google may be specific to a webpage or short lived as
Google changes its behavior.

We carried out this and all other experiments using Python
bindings for Selenium WebDriver, which is a browser au-
tomation framework. A test browser instance launched by
Selenium uses a temporary folder that can be accessed
only by the process creating it. So, two browser instances
launched by different processes do not share cookies, cache,
or other browsing data. All our tests were carried out with
the Firefox browser. When observing Google’s behavior, we
first “opted-in” to receive interest-based Google Ads across
the web on every test instance. This placed a Doubleclick
cookie on the browser instance. No ads were clicked in an
automated fashion throughout any experiment.

Experiment 2. We studied whether multiple browser in-
stances running in parallel affect one another. We compared
the ads collected from a browser instance running alone
to the ads collected by an instance running with seven
additional browser instances each collecting ads from the
same page.

A primary browser instance would first establish an inter-
est in cars by visiting car-related websites. We selected car-
related sites by collecting, before the experiment, the top 10
websites returned by Google when queried with the search
terms “BMW buy”, “Audi purchase”, “new cars”, “local
car dealers”, “autos and vehicles”, “cadillac prices”, and
“best limousines”. After manifesting this interest in cars, the
instance would collect text ads served by Google on the In-
ternational Homepage of Times of India (http://timesofindia.
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indiatimes.com/international-home). We attempted to reload
the collection page 10 times, but occasionally it would time
out. Each successful reload would have 5 text ads, yielding
as many as 50 ads.

Our experiment repeated this round of interest manifesta-
tion and ad collection 10 times using a new primary browser
instance during each round. We randomly selected 5 of the
rounds to include seven additional browsers. When the ad-
ditional browsers were present, three of them performed the
same actions as the primary one. The other four would wait
doing nothing instead of visiting the car-related websites and
then went on to collecting ads after waiting. All instances
would start collecting ads at the same time.

The experiment showed that the primary browsers ran in
isolation would receive a more diverse set of ads than those
running in parallel with other browsers. We repeated the
experiment four times (twice using 20 rounds) and found
this pattern each time:

Rounds Unique ads in isolation Unique ads in parallel

10 37 25

10 46 33

20 58 47

20 57 52

The presence of this pattern leads us to believe that cross-
unit effects between browser instances exist. While a sta-
tistical test could report whether the observed effect is
significant, doing so would inappropriately shift the burden
of proof: if a scientist would like to use a statistical analysis
that requires an absence of cross-unit effects, then the onus
is on her to justify the absence.

This experiment also leads us to suspect that browser
instances are not identically distributed. In particular, the
nature of the cross-unit effects suggested by the experiment
raises the possibility that the one browser receiving an ad
might decrease the probability for another browser, leading
to non-identical distributions.

Given the results of these experiments, for information
flow experiments, we find each of these assumptions to
be suspect: parametric models, i.i.d. responses, and the
absence of cross-unit effects. Any work employing these
assumptions must take care to justify their use in their
particular experimental design and setting with pilot studies.
Believing that these assumptions do not hold for many
such experiments, we instead choose to focus on statistical
analyses that do not require making such assumptions.

B. The Permutation Test

Let us look at selecting a statistical test from the angle
of security. In our setting, the system in question, not the
analyst, is the adversary. From this angle, the pilot studies
are reflections of the adversary’s ability to violate most

assumptions an analyst might wish to make about it. In
a security setting, one of the few assumptions safe for
the analyst to make is that the adversary cannot guess the
(pseudo-)random numbers she generates. Indeed, selecting a
random key is the core of many security algorithms, such
as encryption.

With the security properties of randomization in mind, we
should adopt a statistical test that leverages randomization
rather than the types of assumptions more typically seen
in statistics. Fortunately, permutation tests (e.g., [24]), also
known as randomization tests, uses randomization to allow
cross-unit interactions [50] and non-i.i.d. responses.

At the core of a permutation test is a test statistic 𝑠. A
test statistic is a function from the data, represented as a
vector of responses, to a number. The vector of responses
�⃗� has one response for each experimental unit. The vector
must be ordered by the random indices 𝑖𝑘 used to assign
each unit 𝑘 a treatment from the treatment vector �⃗� prepared
during the experiment. Thus, the 𝑘th entry of �⃗� received the
treatment at the 𝑘th entry of �⃗�. In particular, 𝑠 could use
the first 𝑛 components of the data vector as the results of
the experimental group and the remaining 𝑚 as the results
for the control group where the groups have 𝑛 and 𝑚 units,
respectively.

For example, consider an experiment on whether visiting
car-related websites impacts the ads one sees. In it, the
experimental group visits such websites while the con-
trol group does not. The analyst could use a keyword-
based test statistic 𝑠kw, which looks at the number of
ads that each instance received containing the keywords
“bmw”, “audi”, “car”, “vehicle”, “automobile”, “cadillac”,
and “limo”, words whose presence we believe to be indica-
tive of an instance being in the experimental group. Let the
value of 𝑠kw be the number of ads that contained any of the
keywords amongst the experimental group less the number
in the control group. Intuitively, a small value would suggest
no noteworthy difference between the groups whereas a large
value would indicate that the experimental group saw more
car ads as a result of visiting car-related websites.

To make this intuition formal, we must quantify “small”
and “large” values. Since the scientist is allowed to pick
any function 𝑠 from response vectors to numbers for the
test statistic, the permutation test needs to gauge whether an
observed data vector �⃗� produces a large value with respect
to 𝑠. To do so, it compares the value of 𝑠(�⃗�) to the value
of 𝑠(𝜋(�⃗�)) for every permutation 𝜋 of �⃗�. Intuitively, this
permuting mixes the treatment groups together and compares
the observed value of 𝑠 to its value for these arbitrary
groupings.

The significance of these comparisons is that under
the null hypothesis of independence (noninterference), the
groups should have remained exchangeable after treatment
and there is no reason to expect 𝑠(�⃗�) to differ in value from
𝑠(𝜋(�⃗�)). Thus, we would expect to see at least half of the
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comparisons succeed. Thus, we call a permutation 𝜋 such
that 𝑠(�⃗�) ≤ 𝑠(𝜋(�⃗�)) fails to hold a rejecting permutation
since too many rejecting permutations leads to rejecting the
null hypothesis.

Formally, the value produced by a (one-tailed signed)
permutation test given observed responses �⃗� and a test
statistic 𝑠 is

pt(𝑠, �⃗�) =
1

∣�⃗�∣!
∑

𝜋∈Π(∣𝑦∣)
𝐼[𝑠(�⃗�) ≤ 𝑠(𝜋(�⃗�))] (1)

where 𝐼[⋅] returns 1 if its argument is true and 0 otherwise,
∣�⃗�∣ is the length of �⃗� (i.e., the sample size), and Π(∣�⃗�∣) is
the set of all permutations of ∣�⃗�∣ elements, of which there
are ∣�⃗�∣!.

Recall that under significance testing, a p-value is the
probability of seeing results at least as extreme as the
observed data under the assumption that the null hypothesis
is true. pt(𝑠, �⃗�) is a (one-tailed) p-value using 𝑠 and ≤ to
define at least as extreme as in the definition of p-value.
To see this, recall that the null hypothesis 𝐻0 is that the
treatments have no effect. Thus, since the order of the
responses in �⃗� is by treatment, which should not matter
under 𝐻0, and otherwise random, any permutation of them
would be equally likely under 𝐻0. Thus,

pt(𝑠, �⃗�) =
∑

𝜋∈Π(∣𝑦∣):𝑠(𝑦)≤𝑠(𝜋(𝑦))

Pr[�⃗� = �⃗� ∣𝐻0] (2)

matches the definition of a p-value. One could use other
definitions of as extreme as by replacing the ≤ in (1) and (2)
by ≥ or by comparing the absolute values of 𝑠(�⃗�) and
𝑠(𝜋(�⃗�)) to check for extremism in both directions (a two-
tailed test).

Good discusses using sampling to make the computation
of pt(𝑠, �⃗�) tractable for large �⃗� [24]. Greenland provides
detailed justification of using permutation tests to infer
causation [51].

C. Discussion

The above method avoids some pitfalls. Most funda-
mentally, we use a statistical analysis whose assumptions
matches those of our experimental design. Assumptions
required by many statistical analyses appear unjustifiable in
our setting.

Remark 1. The permutation test provides a method of
determining whether a system has interference that is prob-
abilistically sound to a degree quantified by the p-value.

Our use of randomization implies that many factors that
could be confounding factors in an unrandomized design
become noise in our design (e.g., [24]). While such noise
may require us to use a large sample size to find an effect,
it does not affect the soundness of our analysis. We expect
our methodology to suggest that an effect exists when one
does not with a probability equal to or less than the p-value.

Remark 2. The permutation test is not sound for finding
noninterference nor complete for finding interference.

Our method might fail to detect some use of information.
For example, the web service’s behavior might vary by some
feature not measured by the test statistic.

Furthermore, we do not claim that results generalize
beyond the setting of the experiment. To do so, our method
may be combined with random sampling and methods to
ensure that the observed system does not attempt to evade
the study.

Lastly, we do not claim that our method shows how the
system in question uses information internally. Any observed
effect may be the result of complex interactions between
the system and other ones in its environment. In particular,
as discussed in Section II-C, our method finds interference
not within the system in isolation, but rather for the system
operating in its environment.

VI. PRIOR STUDIES OF WDUD

Our work was inspired by prior WDUD studies. Table II
provides an overview of those using other methods. The first
four studies used non-statistical analyses, Sweeney’s uses
a method similar to ours, and the last four use statistical
analyses under assumptions that appear not to hold in
the setting we study. Additionally, a recent study under
submission has adopted our method [26].

The method of Guha et al. [2], which Balebako et al. adopt
to study the effectiveness of web privacy tools [3], uses three
browser instances. Two of them receive the same treatment
and can be thought of as controls. The third receives some
experimental treatment. They collect the ads Google serves
each of them, which they compare using a similarity metric.
Based on experimental performance, they decided to use
one that only looks at the URL displayed in each ad. For
each instance, they perform multiple page reloads and record
the number of page reloads for which each displayed URL
appears. From these counts, they construct a vector for each
unit where the 𝑖th component of the vector contains the
logarithm of the number of reloads during which the 𝑖th ad
appears. To compare runs, they compare the vectors resulting
from the instances using the cosine similarity of the vectors.

More formally, their similarity metric is sim(�⃗�, �⃗�) =
coss(ln∗(�⃗�), ln∗(�⃗�)) where �⃗� and �⃗� are vectors that record
the number of page reloads during which each displayed
URL ad appears, ln∗ applies a logarithm to each component
of a vector, and coss computes the cosine similarity of two
vectors. They conclude that a flow of information is likely if
sim(�⃗�c1, �⃗�c2) is much larger than sim(�⃗�c1, �⃗�e) where �⃗�c1 and
�⃗�c2 are the responses from the two control instances and �⃗�e
is the response from the experimental instance.

Wills and Tatar also studied how Google selects ads by
posing as various sorts of website visitors [4]. They drew
conclusions in two ways. The first was similar to Guha
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Work Venue Year Approach Limitations/Assumptions

Guha et al. [2] IMC 2010 cosine similarity lacks test of statistical significance
Balebako et al. [3] Web 2.0 Sec. & Priv. 2012 cosine similarity lacks test of statistical significance
Wills and Tatar [4] WPES 2012 manual examination lacks test of statistical significance
Sweeney [5] CACM 2013 randomized 𝜒2 test over browsers requires a large sample size
Liu et al. [6] HotNets 2013 process of elimination lacks test of statistical significance
Barford et al. [7] WWW 2014 non-randomized 𝜒2 test over ads assumes ads identically distributed
Lécuyer et al. [8] Usenix Security 2014 parametric model over ads correlation; assumes ads identically distributed and model
Englehardt et al. [9] submitted 2014 parametric model over ads assumes independence between ads

Table II
PRIOR WORKS EXPERIMENTING ON ONLINE MARKETING SYSTEMS WITH OTHER METHODS

et al.’s methodology of looking for differences between
the ads seen by various profiles. While their study was
conducted by hand and without statistics, they intuitively
used the keyword test statistic similar to 𝑠kw presented in
Section V-B. The second was to observe Google showing
them ads that included sensitive information they provided
to Google by interacting with a website that uses a Google
service.

Liu et al. provide AdReveal, a system designed to de-
termine the reasons behind the ads a user sees [6]. They
consider three types of ads: (1) ads for particular products
that the user has previously expressed interest in, (2) ads
based on the context of the website, and (3) ads from
behavioral marketing. To check for the first, they check
the webpage for Javascript code that sets up re-marketing
frameworks. To check for the second, they use machine
learning to construct a model that intuitively judges whether
an ad and a webpage cover the same topic. They consider ads
that do not trigger either of these checks to be behavioral.

None of these studies performed a statistical analyses to
show whether or not their results are significant. It remains
possible that the differences observed are simply from
random variations caused by factors other than behavioral
marketing.

Sweeney examined the flow of information from a search
field to ads shown alongside the search results [5]. Among
other things, she found that, compared to characteristi-
cally white names, searching for characteristically black
names yielded more ads for InstantCheckmate that were
suggestive of the searched name having an arrest record.
She randomized the order of names searched [52], which
can enable statistical analyses without making questionable
assumptions. She used the 𝜒2 test to analyze her results and
found them to be significant.

Under some conditions, the 𝜒2 test becomes an approx-
imation of the permutation test [53]. With the size of her
data set, such approximations become not only accurate, but
useful for computational reasons. Indeed, her results are also
statistically significant under the permutation test [52].

We believe that our methodology with permutation testing

provides a foundation for such approximations by linking
them to information flow, especially considering that the
traditional justification of the 𝜒2 test includes an assumption
that the experimental units are independent [54], which
seems unlikely in some cases (Experiment 2). The permuta-
tion test is also more flexible in that it works for any response
variable whereas the 𝜒2 test is only for a single categorical
(binary) response from each experimental unit (e.g., browser
instance). For example, the 𝜒2 test cannot be used if the
response is the number of times a certain ad appears to each
browser since this is not a categorical response.

For each webpage, ad, and user profile, Barford et al. [7]
record the number of times that webpage shows that ad to
a user with that profile as they crawl the web. Using the
𝜒2 test, they identify those ads shown on a webpage to
some profiles more often than others, suggesting behavioral
targeting. However, rather than use randomization for the
purposes of the 𝜒2 test, they counted each ad as an i.i.d.
response [55] (cf. Experiments 1 and 2).

Lécuyer et al. present XRay, a tool that looks for corre-
lations between the data that web services have about users
and the ads shown to users [8]. While their tool may check
many changes to a type of input to determine whether any
of them has a correlation with the frequency of a single
ad, it does not check for causation, as our method does.
Furthermore, they assume identically distributed ads (cf.
Experiment 1).

Englehardt et al. study filter bubbles with an analysis
that assumes a binomial model and independence between
observations [9] (cf. Experiment 2).

VII. COMPARISON OF TEST STATISTICS

Given all the test statistics discussed, one might wonder
how they compare. We will empirically compare a subset
of the test statistics in our motivating setting of WDUD.
However, we caution that our experiment should not be con-
sidered definitive since other WDUD problems may result
in different results. We recommend that each experiment
is preceded by a pilot study to determine the best test(s)
for the experiment’s needs. For example, we have found
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pilot studies useful for selecting distinguishing keywords
to search for in ads. Other work discusses automating this
process for our method [26].

The following experiment also illustrates our experimental
design and statistical analysis. We find that it works as
expected by running it in settings where we can be almost
certain that targeting either is or is not happening.

Experiment 3. Each run of the experiment involved ten
simultaneous browser instances, each of which represents
an experimental unit. We used a sample size of ten due to
the processing power and RAM restrictions of our server.
For each run, the script driving the experiment randomly
assigns five of the instances, the experimental group, to
receive the treatment of manifesting an interest in cars (a
heavily marketed topic). As in Experiment 2, an instance
manifests its interest by visiting the top 10 websites returned
by Google when queried with certain automobile-related
terms: “BMW buy”, “Audi purchase”, “new cars”, “local
car dealers”, “autos and vehicles”, “cadillac prices”, and
“best limousines”. The remaining five instances made up
our control group, which remained idle as the experimental
group visited the car-related websites. Such idling is needed
to remove time as a factor ensuring that the only systematic
difference between the two groups was the treatment of
visiting car-related websites.

As soon as the experimental group completed visiting
the websites, all ten instances began collecting text ads
served by Google on the International Homepage of Times
of India. As in Experiment 2, each instance attempted to
collect 50 text ads by reloading a page of five ads ten times,
but page timeouts would occasionally result in an instance
getting fewer. We repeated this process for 20 runs with
fresh instances to collect 20 sets of data, each containing
ads from each of ten instances.

Across all runs of the experiment, we collected 9832 ads
with 281 being unique. Instances collected between 40 and
50 ads with two outliers each collecting zero. Both outliers
were in the 19th run and in the experimental group. We
analyzed the data with multiple test statistics.

First, we used the permutation test with 𝑠sim, an extension
of Guha et al.’s cosine similarity metric sim for comparing
more than two responses (Section VI), as the test statistic [2].
We first aggregate together multiple URL-count vectors by
computing the average number of times each URL appeared
across the aggregated units. Formally, let avg(�⃗�) compute
the component-wise average of the vectors in �⃗�, a vector of
vectors of URL counts. We can then define the test statistic
𝑠sim(�⃗�) as −sim(avg(�⃗�1:𝑛), avg(�⃗�𝑛+1:𝑛+𝑚)) where �⃗�𝑎:𝑏 is
the sub-vector consisting of the entries 𝑎 though 𝑏 of �⃗�, the
first 𝑛 responses are from the experimental group, and the
next 𝑚 are those from the control group. We use negation
since our permutation test takes a metric of difference, not
similarity. Intuitively, the permutation test using the test

statistic 𝑠sim will compare the between-group dis-similarity
to the dis-similarity of vectors that mix up the units by a
permutation. In aggregate, the dis-similarity of these mixed
up vectors provide a view on the global dis-similarity inherit
in the system.

Observe that there are 10! > 3 million different permu-
tations for the ten instances. However, since sim treats the
response vector provided to it as two sets (intuitively, the
experimental and control groups) many permutations will
produce the same value for 𝑠sim. To speed up the calculation,
we replaced comparing all permutations with comparing all
partitions of the responses into equal sized sets of 5, yielding
only

(
10
5

)
= 252 comparisons.

Second, we tested the statistic 𝑠kw inspired by Wills and
Tatar [4] and discussed in Section V-B, which looks at
the number of ads that each instance received containing
a keyword. As with 𝑠sim, we have at most 252 unique
comparisons to make.

Third, we tested a simplified version of 𝑠kw, 𝑠kw01, that
treats each browser instance as providing a categorical
(binary) response that is 1 if it got any number of ads with
a keyword and 0 if it got none. Comparing 𝑠kw to 𝑠kw01
illustrates the power of non-categorical responses.

Lastly, we conducted the 𝜒2 test on a 2× 2 contingency
table computed from the data from each round. The type
of treatment was represented in rows, while the presence or
absence of keywords was represented in the columns, using
an approach similar to 𝑠kw01 since the 𝜒2 test is limited
to categorical variables. However, our sample size was not
large enough to produce meaningful results from the 𝜒2 test,
which requires that each outcome shows up with a certain
minimum frequency. Thus, we did not consider this test
further.

For comparison purposes, we re-run the above experi-
ment without having the experimental group manifest any
interests. That is, we compared two control groups against
one another expecting not to find statistically significant
differences.

Table III summarizes the results using the standard 𝛼 =
0.05 cutoff for statistical significance. For the experiment-
control setup, in which we do expect to find a difference
between the groups, both 𝑠sim and 𝑠kw reported a positive
result 18 out of 20 times whereas the 𝑠kw01 reported no
significant results. For 𝑠kw, 13 of the p-values were less than
0.004. They show, with high certainty, that Google and its
ad ecosystem has interference from visiting the car related
webpages to the ads that Google shows. Furthermore, these
results show that 𝑠kw is indeed a more powerful test statistic
than 𝑠kw01, which is limited to categorical responses.

As expected with a theoretical false positive rate of 𝛼 =
5% and 20 tests, we found that each of the permutation
tests produced one or fewer statistically significant results
for the experiments with no difference (control-control and
experiment-experiment). We provide no minimal acceptable
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Setup
Actual
positives

Reported positives
𝑠sim 𝑠kw 𝑠kw01

Experiment-control 20 18 18 0

Control-control 0 1 1 1

Experiment-experiment 0 0 1 0

Table III
THE NUMBER OF RUNS OUT OF 20 EXPERIMENTS THAT VARIOUS TESTS

CONSIDER TO SHOW INFORMATION USAGE.

number of true positives for the experiment-control setup
since significance testing does not guarantee any rate.

The wide range of tests might tempt one into running
more than one test on a data set. However, running multiple
tests increases the chance of getting a low p-value for one of
them by an unlucky randomization of units rather from an
effect. Thus, one cannot look just at the test that produced
the lowest p-value. Rather one must report them all or apply
a correction for multiple tests such as those for the false
discovery rate [56].

VIII. CONCLUSIONS AND SUGGESTIONS

Based upon theoretical results, we reduced finding a flow
of information in WDUD and related applications to that of
finding an effect using experiments. Based upon empirical
observations, we recommended an experimental design and
a statistical analysis, based on permutation testing, that is
well suited to studying behavioral marketing. This process
allows us to convert the abstract principles of experimental
design and analysis into concrete suggestions:

1) Use an appropriate statistical test. Attempting to shoe-
horn data into familiar statistics can result in incurring
requirements, such as i.i.d. data, that cannot be met
in our setting. Fortunately, they are not required for
permutation testing.

2) Randomly assign treatments to units. Randomization
provides the justification needed for permutation test-
ing, which allows us to avoid unachievable require-
ments needed for other statistical tests.

3) Use domain knowledge gained during pilot studies to
select a test statistic. Finding the correct keywords to
examine in ads allowed us to not only get results that
were statistically significant, but also intuitive.

While statistical analyses can be intimidating due to
their complex requirements, selecting the correct test is
liberating by also identifying what conditions the analyst
needs not worry about. In addition to not needing i.i.d. data,
permutation testing does not require complete control over
the environment or a lack of cross-unit effects, none of which
are achievable in our setting.

Furthermore, we do not require random samples. Acquir-
ing units by randomly sampling from a more general pop-
ulation will, with high likelihood, provide a representative

sample, which allows findings of effects to generalize to the
population as a whole. While results need not be general
to show that a marketer tracks some behavior, showing that
the marketer often does is more interesting. However, given
that the marketer could alter its behavior in response to the
atypical patterns of access exhibited by experiments, we take
comfort in knowing that our findings of information usage
will hold even if they do not generalize to marketer’s typical
behavior. (Also, it would be odd for a marketer to only
exhibit questionable behavior to those looking for it.)

In general, information flow experiments allow an analyst
to exercise oversight and detect transgressions by an entity
not controlled by the analyst and unwilling or unable to
provide the analyst complete access to the system. We see
this setting becoming ever more common: data lives in the
cloud, jobs are outsourced, products licensed, and services
replace infrastructure. In each of these cases, a party has
ceded control of a resource for efficiency. Nevertheless, each
party must ensure that the other abides by their agreement
and respect privacy policies while having only limited access
to the other. Thus, we envision black-box experimentation
for auditing and accountability playing an increasing role in
information security, privacy, and society in general.

IX. FUTURE DIRECTIONS

Demonstrating Noninterference: The permutation test
requires that the null hypothesis be that the system has
noninterference. Thus, it can only provide a quantitative
measure of the evidence against noninterference. Conceptu-
ally, proving noninterference would require looking at every
test statistic under every input sequence. Since examining an
infinite set of sequences is impossible, using the scientific
method to show that a system has noninterference would
require building a theory of the system’s operation and then
proving noninterference in that theory.

Other Notions of Information Flow and Causation:
We examined only one information flow property, a proba-
bilistic noninterference, and one notion of causality, effect.
Exploring the many alternatives could tighten the connec-
tion between the two fields and further organize each. For
example, some definitions of information flow differ from
noninterference by being epistemic in nature, that is, they are
defined in terms of a change in an agent’s state of knowledge
(e.g., [57]). We believe that this dichotomy is mirrored
in causality by the distinction between causation and as-
sociation (i.e., correlation). Also, differential privacy [58],
being an approximate form of our definition of probabilistic
noninterference, is a causal rather than information theoretic
notion, which explains why it works for all adversaries
regardless of their knowledge.

Formalizing Permutation Testing as IFA: In Sections IV
and V, we leverage the relationship of interference and
causal effects to use a standard experimental design and
statistical analysis to find interference. Future work could
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model the experimental design itself as a network of au-
tomata. Doing so would allow us to formalize permutation
testing in terms of the resulting composite system. Looking
at statistical concepts from the fresh angle of IFA could shed
light on statistical concerns and yield rigorous automated
experiments.

Monitoring and Observational Studies: Passive moni-
toring in IFA corresponds to observational studies. A wide
range of work deals with the cases under which one can infer
causation from a correlation learned from an observational
study (see, e.g., [23]). Future work can import these results
to IFA showing how monitoring could be useful in some
cases despite its inherit unsoundness [42], [44], [45].
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