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1 Introduction

Data centers today form the backbone of cloud opera-
tions. A well provisioned data center network is impor-
tant to ensure that servers do not face bandwidth bottle-
necks to utilization; to isolate services from each other;
and to gain more freedom in workload placement, rather
than having to tailor placement of workloads to where
bandwidth is available [16]. As a result, a significant
body of work has tackled the problem of building high
network capacity interconnects [1, 10–13, 26, 28, 29].

One crucial problem that has been ignored in these de-
signs is that of incremental expansion of the network, i.e.,
adding servers and network capacity incrementally to the
data center. This may be motivated by growth of the user
base, which requires more servers, or by the deployment
of more bandwidth-intensive applications. Such expan-
sion can be made feasible by either planned overprovi-
sioning of space and power, or by an upgrade of the
server base. The latter enables some of the old servers
to be replaced by a larger number of more powerful and,
at the same time, less power-consuming new servers.

Industry experience indicates that incremental expan-
sion is an important problem. Consider the growth
of Facebook’s data center server population from ∼
30,000 in November 2009 to more than 60,000 by June
2010 [24]. While Facebook has added new data cen-
ter facilities too, much of this growth is more incremen-
tal in existing facilities (“adding capacity on a daily ba-
sis” [23]). For instance, Facebook announced that it will
double the size of its facility at Prineville, Oregon by
early 2012 [9]. Industry experts have also identified in-
cremental build-out as a useful strategy to reduce cap-ex
up-front [20].

Do current high-bandwidth data center network pro-
posals allow incremental growth? Consider the fat-tree
proposal [1] as an illustrative example. The entire struc-
ture is completely determined by the port-count k of the
switches available. This is limiting in at least two ways.
First, it makes the design space very coarse: full bisec-
tion bandwidth fat-trees can only be built at sizes 3456,
8192, 27648, and 65536 corresponding to the commonly

∗Fittingly, a coin-toss decided the first among the first two authors.

available port counts of 24, 32, 48, and 64. Second,
even if (for example) 50-port switches were available,
the smallest incremental upgrade from the 48-port switch
fat-tree would be 3,602 servers. Moreover, this “incre-
mental” growth would require replacing all the 48-port
switches by 50-port switches. There is, of course, the
possibility of making localized changes like replacing a
switch with one with larger port count – this necessarily
requires either the servers in the vicinity to share capacity
unevenly compared to the rest of the server pool. Thus,
without compromise on its structure, bandwidth or cost,
a fat-tree is not amenable to incremental growth. Other
topologies have similar problems: a hypercube [3] al-
lows power-of-2 sizes, a de Bruijn-like construction [27]
allows power-of-3 sizes, etc.

Since it seems that structure hinders incremental ex-
pansion, we propose the opposite: a random network in-
terconnect. The approach, which we call Jellyfish, con-
structs a random graph topology at the switch layer. The
inherently sloppy nature of this design has the potential
of being significantly more flexible than past designs.
Additional components – racks of servers or switches
to improve capacity – can be incorporated with a few
random edge swaps. The design naturally supports het-
erogeneity, allowing the addition of newer network el-
ements with higher port-counts as they become avail-
able, unlike past proposals which depend on certain reg-
ular port-counts [1, 11–13, 26, 28]. Jellyfish also allows
construction of arbitrary-size networks, unlike past pro-
posals discussed above which limit the network to very
coarse design points dictated by their structure.

Are we sacrificing high bandwidth for incremental
growth? No. To the contrary, we show that Jellyfish sup-
ports more servers at full bisection bandwidth than an
equal-cost fat-tree [1] and with lower mean path length.
Jellyfish also provides high connectivity and path diver-
sity. In addition, as we discuss later, Jellyfish is resilient
to failures and miswirings during construction.

On the other hand, a random data center network
presents several interesting and important challenges that
must be addressed for it to be viable. Among these are
a suitable routing mechanism (schemes depending on a
structured topology are not applicable), physical con-
struction, and cabling layout. We discuss these chal-
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lenges and potential directions for solutions. We argue
that given Jellyfish’s dramatic flexibility and improved
efficiency, these challenges are worth an exploration.

We next discuss related work (§2) and the Jellyfish
topology (§3). We then outline opportunities which Jel-
lyfish offers (§4), and the key challenges it faces (§5).

2 Related Work

Several recent data center network proposals [1, 11, 26]
for full bisection bandwidth have been based on a special
Clos network, called a fat-tree. Later work has employed
servers as network forwarding elements [12, 13, 30].
All these designs are based on the application of spe-
cial structure for the topology and routing. Moreover,
carefully-structured expander graphs have been studied
extensively in the high-performance computing litera-
ture [19].

However, none of these architectures address the is-
sue of incremental expansion of the network. For some
of these, adding servers while preserving the structural
properties would require replacing a large number of net-
work elements and extensive rewiring. MDCube [30] al-
lows expansion at a very coarse rate (several thousand
servers). DCell and BCube [12, 13] allow expansion to
an a priori known target size, but require servers with
free ports reserved for planned future expansion.

A recent approach to high-bandwidth interconnects
exploits optical or wireless networking technology [10,
15, 18, 28, 29] to set up on-demand high-bandwidth net-
work connections where required. However, this work
does not address incremental network expansion. In ad-
dition, this work only applies to data centers which see
sparse traffic patterns and not high volume all-to-all traf-
fic (like high-performance computing [17]).

To the best of our knowledge, the only work which
directly addresses incremental growth of a data center is
LEGUP [8]. LEGUP starts with a Clos network and adds
servers and switches by solving an optimization problem
(approximately) to determine the best network updates.
However, such approaches are fundamentally limited by
the need to emulate a given network structure and by
starting the upgrade process from a given rigid structure.
For this reason, approaches like LEGUP can still result in
significant overhauls of the topology even when adding
just a few new servers, or can compromise the available
bisection bandwidth. In this paper, we show that Jelly-
fish provides a simple model to expand the network to
almost any desirable scale. In addition, we show that
Jellyfish networks are inherently less expensive than fat
trees, which are representative Clos topologies (widely
used for datacenter interconnects [1, 11, 26]). A quanti-
tative comparison with LEGUP would be an interesting
subject of future work.

Scafida [14] proposes using a degree-constrained
modification of scale-free graphs in the data center. This
improves on a fat-tree because it can produce networks
of any given size, and has lower mean path length. How-
ever, the topology construction does not support incre-
mental expansion. Also, Scafida has slightly lower bi-
section bandwidth and marginally higher diameter than
an equal-cost fat-tree.

Random graphs have been examined in the context of
communication networks [22]. The novelty of our pro-
posed research agenda is to apply random graphs to allow
incremental expansion in data center networks.

3 Jellyfish Topology

The Jellyfish approach is to construct a random graph at
the switch layer. Each switch i has some number ki of
ports, of which it uses ri to connect to other switches,
and uses the remaining ki − ri ports for servers. In the
simplest case, which we consider by default throughout
this paper, every switch has the same number of ports
and servers: for all i, k = ki and r = ri. We let N be the
number of switches, so the network supports N(k − r)
servers. In this case, the network is a random regular
graph, which we denote as RRG(N , k, r). The particular
topology is uniform-randomly sampled from the sample
space of all such topologies. This is a well known con-
struct in graph theory and has several desirable properties
as we shall discuss later.
Why should this work? Intuitively, random graphs
fulfill two key goals. First, they are very efficient: the-
oretical results show that almost every RRG has low di-
ameter and high bisection bandwidth [4, 6]. Second, they
are highly flexible: they can be built with any number of
nodes and regular or heterogeneous degree distributions,
and as we describe, are easy to modify incrementally.
Construction: Formally, RRGs are sampled uniformly
from the space of all r-regular graphs. This is a complex
problem in graph theory [21]; however, a simple pro-
cedure can produce a “uniform-enough” random graph
which empirically gives us the desired bisection band-
width and path length distribution. One can simply pick
a random pair of nodes with free ports (preferring node-
pairs that are not already neighbors), join them with an
edge, and repeat until no further edges can be added. If
a switch remains with ≥ 2 free ports, these can be incor-
porated by removing a random existing link, and linking
its endpoints to two free ports. Thus only a single un-
matched port might remain across the whole datacenter.

Using the above idea, we generate a topology blueprint
for the physical interconnection. Note that allowing hu-
man operators to ‘wire at will’ may result in poor topolo-
gies due to the inherent bias involved (for instance, favor-
ing shorter cables over longer ones). We briefly discuss
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physical construction in terms of cabling later in §5.

4 Benefits of Jellyfish

We elaborate on the flexibility and efficiency of Jellyfish
below. In general, we only sketch the benefits; quanti-
tative measures and comparisons to other designs are a
necessary avenue for a complete study in the future.

4.1 Flexibility

Incremental Expandability: Jellyfish’s construction
makes it amenable to incremental expansion by means of
adding either servers and/or network capacity (if it’s not
full-bisection bandwidth already), with the increments
being as small as just one switch or a switch together
with some servers. Jellyfish can be expanded such that
rewiring is limited to only twice the number of ports be-
ing added to the network; and the desirable properties
are maintained: high bandwidth and short paths at low
cost.

As an example, consider an expansion from an
RRG(N , k, r) topology to RRG(N + 1, k, r). In other
words, we are adding one switch u (that will be con-
nected to k previously existing switches), together with
r new servers. To connect the newly added switch, we
pick a random link (v, w) such that this new switch is
not already connected with either v or w, remove it, and
add the two links (u, v) and (u,w), thus using 2 ports on
u. This process is repeated until all ports are filled (or
a single odd port remains, which could be matched with
another free port on an existing switch, used for a server,
or left free). This completes incorporation of the new
switch (with servers), and can be repeated for as many
new switches as desired.

We note that our expansion procedure may not pro-
duce uniform-random RRGs. Verifying that the ex-
panded topologies maintain the desirable properties is
the subject of future research. As preliminary evidence,
we compared the average path length and diameter in
RRGs which we generated from scratch at different sizes,
with the average path length and diameter in an RRG
which begins at 1,200 servers and evolves incrementally
according to the above procedure. These turn out to be
nearly identical (Fig. 1).

A similar procedure can be used to expand network
capacity for an under-provisioned Jellyfish network. In
this case, instead of adding a switch with servers, we only
add the switch, connecting all its ports to the network.

Jellyfish also allows for heterogeneous expansion:
nothing in the procedure above requires that the new
switches have the same number of ports as the existing
switches. Thus, as new switches with higher port-counts
become available, they can be readily used, either with
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Figure 1: RRG path length versus number of servers, with k =
48 port switches of which r = 36 connect to other switches
and 12 connect to servers. Each data point is derived from 10
graphs.

servers, or by themselves to augment the interconnect’s
bandwidth.
Arbitrary-sized Networks: Several existing proposals
provide only the construction of interconnects with very
coarse parameters. For instance, a 3-level fat-tree allows
only k3/4 servers with k being restricted to the port-
count of available switches, unless some ports are left
unused. This is an arbitrary constraint, extraneous to op-
erational requirements. In contrast, Jellyfish permits any
number of racks of servers to be networked efficiently.
Resilience to Failures: Jellyfish provides good path
redundancy; in particular, an r-regular random graph is
almost surely r-connected [5]. Also, the randomness of
the topology implies that the graph maintains its structure
(or rather, the lack of it!) in the face of link or node fail-
ures – a random graph topology with one switch failure
is just another random graph topology of slightly smaller
size, with a few unmatched ports on some switches.
Resilience to miswirings: Intuitively, a few mis-
wirings just make it a different random graph than the
one ‘planned’. Unless these are very numerous and bi-
ased, Jellyfish will continue to preserve its properties.

4.2 Efficiency

Capacity: In addition to Jellyfish’s incremental ex-
pandability, Jellyfish is also a more bandwidth-efficient
topology than a fat tree. We use both bisection band-
width and throughput under random permutation traffic
as metrics for topology capacity. Bisection bandwidth,
denoted by B, measures the worst-case bandwidth be-
tween two equal-size partitions of the network. This can
be normalized to a value between 0 and 1 by dividing
it by the total line-rate bandwidth of the servers in one
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Figure 2: Jellyfish vs. fat-tree: (a) Normalized bisection
bandwidth versus the number of servers supported; equal-cost
curves, (b) Equipment cost versus the number of servers for
commodity-switch port-counts 24, 32, 48, 64, 96, 128.

partition.
Fig. 2(a) shows that to support a given number of

servers (x axis) with full bisection bandwidth (B = 1),
Jellyfish uses significantly fewer switches. For instance,
at the same cost as a fat-tree with 16,000 servers, Jelly-
fish can support > 20,000 servers at full bisection band-
width. Also, Jellyfish allows the freedom to accept lower
bisection bandwidth, in exchange for supporting more
servers (as in Fig. 2(a)) or cutting costs by using fewer
switches.

Fig. 2(b) shows that the cost of building a full
bisection-bandwidth network increases more slowly with
the number of servers for Jellyfish than for the fat-tree,
especially for high port-counts. Also, the design choices
for Jellyfish are essentially continuous, while the fat-tree
allows only certain discrete jumps in size which are fur-
ther restricted by the port-counts of available switches.

The above figures are computed via explicitly setting
parameters for the fat tree. For Jellyfish they are com-

puted via a lower bound of Bollobás [4]: in almost every
r-regular graph with N nodes, every set of u = N/2

nodes is joined by at least N( r4 −
√
r ln 2
2 ) edges to the

rest of the graph. Thus, the bisection bandwidth B for
RRG(N , k, r) is at least

min

(
N( r4 −

√
r ln 2
2 )

N(k − r)/2
, 1

)
= min

(
r/2−

√
r ln 2

k − r
, 1

)
.

As this expression is independent of N , bisection band-
width stays constant as the network grows. However,
the end-to-end capacity of the network is determined not
only by the bisection bandwidth of the network, but also
by the path length. As N increases and r remains con-
stant, the average path length increases, which in turn
reduces the capacity of the network. But since path
length increases very slowly (as discussed below), band-
width per server is likely to remain high even for rel-
atively large factors of growth in N . Thus, operators
can keep the servers-per-switch ratio constant even un-
der large expansion, with only minor bandwidth loss.
Path Length: Short path lengths are important to
ensure low latency, and to minimize network utiliza-
tion. In this context, we note that the theoretical upper-
bound on the diameter is fairly small: Bollobás and de
la Vega [6] showed that in almost every r-regular graph
with N nodes, the diameter is at most 1 + dlogr−1((2 +
ε)rN logN)e for any ε > 0. Thus, the server-to-server
diameter is at most 3 + dlogr−1((2 + ε)rN logN)e.
Thus, the path length increases logarithmically (base r)
with the number of nodes in the network.

The average path length and diameter (Fig. 1) in Jel-
lyfish is much smaller than in the fat-tree. For example,
for RRG(3200, 48, 36) with 38,400 servers, the average
path length between switches is < 2.7 (Fig. 1), while
the fat-tree’s average is ∼ 4. While the diameter for the
largest Jellyfish topology in our experiment, RRG(3200,
48, 36), is the same as the fat-tree - 4, the 99.99th per-
centile switch-to-switch path-length across 10 runs did
not exceed 3 for any of the topology sizes in Fig. 1.

5 Research Challenges

While random network topologies offer significant op-
portunities in flexibility, incremental expansion, and ef-
ficiency, they represent a dramatic departure from past
data center network architectures, putting forth several
challenges.
Routing: While structure has been the lead villain in
our story so far, it lends itself to simple and efficient
routing schemes. However, techniques such as spanning
trees, which are used in switched networks, are not ap-
plicable to other recently proposed architectures either,
because they do not exploit path diversity. Fat-tree-like
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Figure 3: Physical layout and incremental expansion.

topologies can benefit from Valiant Load Balancing over
ECMP [11] but even there, prior work has shown a gap
of ∼ 20% from the optimal throughput [2]. This has led
recent work to propose a centralized controller to route
elephant flows, and a randomization-based strategy for
the mice [2, 25]. This should work well for Jellyfish too;
a quantitative study remains the subject of future work.

Cabling: While the number of cables needed for a given
bisection bandwidth in Jellyfish is smaller than that in the
fat-tree, the randomness works against obvious cabling
optimizations. However, prior work indicates that most
of the cabling expenditure (which itself is only 3-8% of
network equipment cost in typical data center designs)
goes towards manual labor, and depends more signifi-
cantly on the ‘spread’ of cabling, than on the number or
length [27]. Schemes which result in a small number of
parallel aggregates of cables are thus more desirable in
comparison to schemes which run similar number/length
of cables without aggregation. Cable aggregates are also
likely to reduce spatial footprint of cabling and make ca-
ble management easier. With these motives, we discuss a
first-cut approach to cabling in Jellyfish which attempts
to organize cabling to target aggregation of cables.

Fig. 3 illustrates a physical Jellyfish layout. The core
idea is to form clusters of racks with aggregated cables
running between clusters. To connect N racks, we group
them into N/T clusters of size T each. The switches
for all racks of servers in a cluster could be placed at the
cluster-center, with server racks around them. Using the
interconnection blueprint, we can find the set of connec-
tions between each pair of clusters and run consolidated
cable assemblies between these. This leads to all the long
cables being in these cable assemblies. This motivates
using a small number of dense clusters. However, pack-
aging a large number of racks in a cluster is challeng-
ing because of physical space constraints. We consider
T =

√
N a reasonable middle-ground choice, which

changes slowly with N and leads to a small number of
cable aggregates; a small number of intra-cluster cables;

and small lengths for intra-cluster cables. For example,
consider a full-bisection Jellyfish data center with 30,000
servers built using 48-port switches. This requires at
most 2,500 switches (based on the bisection bandwidth
lower bound [4]), each connected to 12 servers. Thus,
we create 50 clusters of 50 racks each (note that we use
the term rack here to refer to the servers connected to
the same switch rather than a physical rack). Compared
with a fat-tree with 27,648 servers, this Jellyfish topol-
ogy supports 8% more servers with 13% fewer cables,
and the number of long cable assemblies which run be-
tween clusters is

(
50
2

)
= 1,225. The 12 cables from each

server-rack to its corresponding switch in its cluster can
also be aggregated and will be only a few meters long.

Incremental addition of racks requires either creation
of new clusters (which need not be ‘full’) or expansion
of existing clusters. The T parameter may diverge from√
N , but given the

√
N scaling, this should not cause sig-

nificant problems for reasonable expansions. In Fig. 3,
we add a new rack of servers X to a cluster. A new switch
for this rack is added to the cluster’s rack of switches, and
additional cables are added to existing cable aggregates
to connect X’s switch to other clusters. The ports for
these connections are vacated by picking random edges
to break, as described in §4.
Debugging: Given the overwhelming size and com-
plexity of data center networks, even structured topolo-
gies do not offer ‘easy’ debugging. This has prompted a
trend towards automated debugging applicable to general
topologies [7], from which Jellyfish will also benefit.

6 Conclusion

We argue that random graphs are a highly flexible ar-
chitecture for data center networks. They represent a
novel approach to the significant problems of incremen-
tal and heterogeneous expansion, still enabling high ca-
pacity, short paths, and resilience to failures and mis-
wirings. While the issues of routing, cabling layout, mul-
tipath congestion control, etc. demand more analysis, the
direction appears promising.
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