
Leveraging SDN Layering to Systematically Troubleshoot
Networks

Brandon Heller† Colin Scott∗ Nick McKeown† Scott Shenker�∗

Andreas Wundsam‡� Hongyi Zeng† Sam Whitlock� Vimalkumar Jeyakumar†

Nikhil Handigol† James McCauley�∗ Kyriakos Zarifis§ Peyman Kazemian†
†Stanford University ∗UC Berkeley ‡Big Switch Networks �ICSI §USC

ABSTRACT
Today’s networks are maintained by “masters of complexity”:
network admins who have accumulated the wisdom to trou-
bleshoot complex problems, despite a limiting toolset. This
position paper advocates a more structured troubleshooting
approach that leverages architectural layering in Software-
Defined Networks (SDNs). In all networks, high-level in-
tent (policy) must correctly map to low-level forwarding be-
havior (hardware configuration). In SDNs, intent is explic-
itly expressed, forwarding semantics are explicitly defined,
and each architectural layer fully specifies the behavior of
the network. Building on these observations, we show how
recently-developed troubleshooting tools fit into a coherent
workflow that detects mistranslations between layers to pre-
cisely localize sources of errant control logic. Our goals are
to explain the overall picture, show how the pieces fit to-
gether to enable a systematic workflow, and highlight the
questions that remain. Once this workflow is realized, net-
work admins can formally verify that their network is op-
erating correctly, automatically troubleshoot bugs, and sys-
tematically track down their root cause – freeing admins to
fix problems, rather than diagnose their symptoms.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer -
Communication Networks—Network Communications

Keywords
SDN, Software-Defined Networks, OpenFlow, Network Ar-
chitecture, Troubleshooting

1. INTRODUCTION
Debugging a network is notoriously difficult. Network fail-

ures could be caused by acts of humans (invalid configura-
tion, careless backhoe operators, malicious attacks), acts of
protocols (route flapping, protocol interactions), or acts of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

nature. These problems occur frequently: according to a re-
cent survey of network operators, 35% of networks generate
more than 100 tickets per month [27].
To diagnose these problems, the majority of network op-

erators employ ping, traceroute, and SNMP agents “often”
or “very often” [27]. These tools deserve credit for keeping
our networks up; they provide crucial visibility into end-
to-end connectivity, routes, and traffic totals. Admins use
them to diagnose the most difficult problems, such as loops
caused by undefined interaction between spanning tree pro-
tocols, by combining their knowledge of protocol operation
with the partial view provided by each tool.
Nevertheless, network troubleshooting today is still a

largely ad hoc process. Given the critical role of networks,
one might expect networking to have a more well-developed
toolkit and methodology for tracking down bugs. This does
not appear to be the case, especially when compared with
the well-honed toolchains used to verify silicon and software.
Diagnosing problems takes time: 24.6% of admins reported
that tickets take over an hour on average to resolve [27].
Diagnosing problems also takes skill: understanding proto-
col interactions and driving the tools requires domain ex-
pertise. The requisite time and domain expertise for the
current troubleshooting workflow is substantial.
When asked to describe their ideal tool, most admins said

“automated troubleshooting” [27]. If such a tool could (1)
detect errant behavior and (2) precisely locate its cause, ad-
mins could focus on (3), actually fixing (or working around)
bugs. For example, the tool might point the admin toward
a low-level issue, like a switch adding the wrong VLAN tag
for a subnet, or it might point the admin higher, toward
an incorrectly enforced access control policy. Ideally, the
tool would even catch errors before they cause an issue (e.g.,
detecting a potential loop before it occurs).
Why are automated, complete troubleshooting tools ab-

sent, despite the desire for them? As explained in §6, such
tools are impractically difficult to build within a traditional
network; the limitations of our current ad hoc troubleshoot-
ing toolset are a direct consequence of the architecture in
which these tools must operate. Fortunately, the recent
development of Software-Defined Networks (SDNs) changes
the architecture of the network control plane, creating a rare
opportunity to re-think the troubleshooting workflow.
In this position paper, we articulate how a shift to SDN

enables a more systematic troubleshooting workflow. We
observe that most errors in an SDN are mistranslations be-
tween architectural layers. By bringing together a range of
SDN troubleshooting tools from the research community [5,

!"#$%&#'(

!"#$%&#'(

!"#$%&#'(

)'*%+#,(-.(

)'*%+#,(/01'#2"3+#(

411(411(411(

State Layers!

Logical View!

Physical View!

Device State!

Hardware!

Policy!

Example Errors!

Configuration
Parsing Error!

Tenant isolation breach!
(policy mistranslation)!

Failover logic error,!
synchronization bug!

Register misconfiguration,!
Router memory corruption!

Code Layers!

Figure 1: The SDN Stack: state layers are on the
left, code layers are in the center, and example bugs
are on the right.

10, 13, 14, 16, 17, 22, 25, 27], operators can readily detect
problems and pinpoint their root cause, potentially in a fully
automated way (similar in goals, but not approach, to the
Knowledge Plane [7]).
This paper does not propose any new system; instead, it

builds an overall picture of systematic troubleshooting in
SDNs. We show how an expanding suite of SDN tools can
diagnose or prevent problems across layers – from high-level
policy errors to low-level hardware bugs.

2. THE SDN STACK
SDN factors the network control plane into functionally

distinct layers, as depicted in Figure 1. State layers hold
a representation of the network’s configuration, while code
layers implement logic to maintain the mapping between
two state layers. State changes propagate in two directions:
policy changes from above map to configurations (i.e., for-
warding entries) of lower layers, while network events from
below, such as link failures, map to view changes above.
At the highest layer are “control applications” (e.g., Open-

Stack Quantum [2]) that specify routing, access control, or
quality of service policies by configuring the logical view.
The logical view is a simplified, abstract representation of
the network (often a single logical switch) designed to make
it easy for the control application to specify policies. The
network hypervisor maps the configuration of the logical en-
tities to one or more physical entities in the physical view.
The physical view has a one-to-one correspondence with the
physical network, and it is the job of the network operating
system (e.g., Onix [15], NOX [9]) to configure the corre-
sponding network devices through a protocol such as Open-
Flow [20]. Finally, the firmware in each network device maps
forwarding tables to hardware configuration.
A key observation is that the purpose of the entire ar-

chitecture is to translate human intent to the low-level be-
havior of the network, and each layer performs one piece of
this translation process. Therefore, at any point in time,
every state layer should be correctly mapped to every other
state layer, a property we loosely call “equivalence”. Errors
within the SDN control stack always result in broken equiva-
lence between two or more layers. For example, a breach of

tenant isolation manifests itself as an inconsistency between
a policy specified at the logical view (“Network A should
not be able to see network B’s packets”) and the state of the
physical network (“One of the switches is sending packets
to the wrong destination network”). If all state layers are
equivalent, but unwanted behavior persists, it must be the
case that the configured policy does not match the opera-
tor’s intent, or hardware beyond the control plane’s view,
such as an optical repeater, is broken.1

When the behavior of the network does not match an op-
erator’s intent, the operator must localize the symptoms to
the system components that are responsible. As we show
in §3, the layered architecture of SDN enables both humans
and programs to reason about the fault localization process
in a straightforward manner. Since errors manifest them-
selves as mistranslations between state layers, localizing the
faulty component involves identifying the specific two state
layers that are inconsistent. And because the interfaces be-
tween layers are well-defined (e.g., OpenFlow between the
network operating system and switches [20], or OpenStack
Quantum’s web API between the control application and
the network hypervisor [2]), we can readily build tools to
check for equivalence between any two layers.

3. TROUBLESHOOTING WORKFLOW
Figure 2 shows a workflow for troubleshooting SDNs based

on these observations. At a high level, this workflow con-
sists of two phases: (1) a binary search through the control
stack to identify the first code layer where a mistranslation
occurs, followed by (2), a search within that layer to reduce
the scope of those elements responsible for the invariant vi-
olation (e.g. ports, tables, rules, and code paths). Our goal
in this section is to present a general search process; the ex-
act search order depends on the available tools, and could
differ from the order shown in Figure 2.

3.1 Find the Code Layer
Each step checks for equivalence between two state layers.

If the state layers are equivalent, the problem is outside the
covered layers; if not, we continue on a subset of the covered
layers. The search starts by checking whether any network
behavior appears broken.
A: Does the Actual Network Behavior Match the Policy?

If yes, then the policy itself is the problem, and a human
must resolve the discrepancy. If no, we continue.
B: Does the Device State Match the Policy? If yes, then

the control plane is behaving properly; the problem must be
lower in the stack, either in firmware code, or a hardware
component itself (e.g., a link, port, or table), and Question
D follows. If no, the problem is somewhere in the control
plane, and we continue to Question C.
C: Does the Physical View Match the Device State? If

yes, the actual device state is correctly synchronized with
the physical view, then the problem must be above; go to
Question E. If no, the network operating system is to blame;
example bugs that could cause these layers to diverge include
incorrect link event handling during a controller failover [22],
unimplemented synchronization messages [11], parsing er-
rors (e.g. a silent MAC address drop [3]), and single-bit
memory corruption [1],
D: Does the Device State Match the Hardware? If yes,

the network is not functioning correctly though the hard-
1Unless, of course, the monitoring tool itself is broken.

[Operator Intent]!

Logical View!

Device State!

State! Code!

“Apps”!

NetHypervisor!

Firmware!
Hardware!

Phase 1:!
Reducing the scope between state layers

(to one code layer)!

Phase 2:!
Reducing the scope!
 within a code layer!

Identify minimal policy
declaration set!

Identify minimal input
sequence, lines of code !

Identify minimal switch,
rule, and port sets!

NetOS!

Physical View!
Identify minimal control
messages!

Policy is broken; human
must diagnose!

Hardware is broken;
human must diagnose!

Policy!

[Actual Behavior]!

~!?!

A: Policy ~
Actual
Behavior?!

~!?!

B: Policy ~
Device
State?!

C: Physical
View ~ !
Device State?!

D: Device
State ~
Hardware?!

E: Logical !
View ~ !
Physical View?!

~!?!

~!?!

Equivalence
Checks:!

Yes!
Yes!

Yes!

Yes!

Yes!
No!

No!

No!

No! No!
~!?!

Figure 2: Bugs manifest themselves as non-equivalence (an improperly maintained mapping) between state
layers. Our troubleshooting procedure: binary search to reduce the scope of a bug, by checking state layers
for equivalence, then further localize within the identified code layer.

ware is configured correctly, which strongly indicates buggy
hardware. If no, the firmware is to blame; example bugs in-
clude incorrectly mapping a single virtual forwarding table
to multiple physical forwarding tables or incorrectly config-
uring TCAM or port group registers.
E: Does the Logical View Match the Physical View? If

yes, the Apps layer is specifying the policy incorrectly to
the logical view. If no, the network hypervisor is incor-
rectly translating from a logical to a physical mapping, pos-
sibly because of an incorrect view of the physical network.
For example, undesirable behavior such as a tenant isolation
breach can occur because the network hypervisor overlooks
a link in the physical network topology, or path allocations
computed by a traffic engineering application might fail to
obey bandwidth constraints because the network hypervisor
reports incorrect link capacities.

3.2 Localize Within a Code Layer
With the code layer identified, the next phase aims to

further reduce the scope of the problem. The goal here is to
be as precise as possible when localizing the root cause; for
example, a firmware error would ideally be narrowed down
to a single incorrectly configured forwarding rule.
Two general techniques help to localize within a code

layer. Model checking automatically finds buggy code paths
before they occur in practice, but can be computationally ex-
pensive. Alternately, once a problem has been observed, log-
ging (coupled with post-processing) can programmatically
hone in on its root cause.
As will become clear in §5, the tools used to localize within

a layer differ, because the code may have wildly different im-
plementations: firmware tends to use a lower-level language
with a relatively constrained state space, while controller
software tends to use a higher-level language with an effec-
tively unbounded state space.

3.3 Workflow Examples
The workflow we have described naturally lends itself to

automation. It suggests a path toward SDN troubleshoot-
ing that automatically localizes the source of many network
problems, by leveraging the structure of control-plane layers,
rather than the expertise of a master network admin.
We now show an example to help clarify the workflow

steps. Network admin Alice has specified that no packets
are allowed from the guest subnet to database backends.
In the first scenario, Alice’s controller application translates
the policy incorrectly. In the second scenario, a new vendor
switch has a firmware bug. For both scenarios, Alice ob-
serves that some of the background test traffic from the guest
network is reaching the databases, which answers question
A, “Does the Actual Network Behavior Match the Policy?”

Scenario One. For question B, “Does the Device State
Match the Policy?”, Alice uses a tool that answers “no”; the
problem must be somewhere in the network OS or hyper-
visor. Next, asking question C, “Does the Physical View
Match the Device State?”, Alice finds out the answer to this
question is “yes”. She proceeds to question E, “Does the Log-
ical View Match the Physical View?”, and realizes that the
network hypervisor is not causing the error; she concludes
that her controller app must be the source of the problem.
Her tools further localize the problem to a sequence of in-
put messages. With a detailed, repeatable bug report, she
verifies her bug fix and adds it to a regression suite for ev-
ery controller build in the future, so that this specific input
sequence will never break her security policy.

Scenario Two. For question B, “Does the Device State
Match the Policy?”, Alice uses a tool that answers “yes”;
the problem must be somewhere below the interface to the
switches. Moving to question D: “Does the Device State
Match the Hardware?”, her tool answers “no”, so Alice con-

cludes that the new firmware has a bug somewhere. Her
tools further localize the problem to one switch that received
a specific input message that configured the hardware incor-
rectly. With a detailed, repeatable bug report, she contacts
her vendor and verifies that their firmware update correctly
handles this specific input sequence.
In both scenarios, Alice followed steps that eliminate a

class of hypotheses, making continuous forward progress in
her search, regardless of the type of bug.

4. TOOLS FOR FINDING THE CODE
LAYER

This section and the next describe implemented systems
that can help realize the troubleshooting workflow. Due to
space limits, we focus on SDN-specific tools.

4.1 A: Actual Behavior ∼ Policy?
This check requires the observation of real packets pass-

ing through the network, to verify that their behavior is
compliant with the high-level policy. The tools shown here
do not currently check directly against the high-level policy,
but this is a natural next step for them.

Automatic Test Packet Generation (ATPG) verifies
full reachability by sending packets to and from test termi-
nals [27]. ATPG employs a model of the complete network
forwarding state to build a list of test packets, where each
test packet corresponds to a forwarding equivalence class at
an input port. Rather than send the full list, ATPG finds a
smaller test packet set that covers all forwarding rules, us-
ing an heuristic solver for the min-set-cover problem. Then
ATPG sends test packets, looking for consecutive drops in-
dicative of persistent software or hardware errors.
A second method is passive, in that it generates no

new packets at test terminals. The Network Debugger
(NDB) [10] is like a network-wide, path-aware tcpdump.
NDB builds packet backtraces, which in addition to the
packet headers, reveal the network path of a packet, any
modifications along the path, and the full state of each
switch when it forwarded a packet. Network analysis ap-
plications atop the stream of NDB-created packet histories
can verify whether each observed path fits the policy, such
as checking that each packet exited at an egress port.

4.2 B: Device State ∼ Policy?
Example errors at this layer include loops, blackholes, and

disconnectivity; each tool below uses a different technique
to verify these configuration correctness properties.

Anteater translates connectivity invariants into boolean
satisfiability problems, then checks them against the data-
plane state using a general solver [17]. If there is configu-
ration error, the approach returns a counterexample. Using
a general solver simplifies the implementation but prevents
network-specific algorithm optimizations.

Header Space Analysis (HSA) defines a “network alge-
bra” where packet headers are represented by n-dimensional
bit fields and switches and routers become functions on bit
fields [13]. Atop this general representation for network for-
warding state, HSA implements connectivity, isolation, and
loop checking algorithms by enumerating the expected path
of every group of packets that should traverse the same for-
warding state. By employing lazy evaluation and compres-
sion methods, this all-pairs computation becomes feasible,

and a recent extension makes the computation distributed
and incremental [12].

VeriFlow is a related approach to incrementally verify
dynamically changing network configurations [14]. VeriFlow
constructs a model of the network state by monitoring con-
trol plane messages. It employs a multi-dimension prefix
tree (trie) representation for network state, which is also
used in packet classification.

4.3 C: Physical View ∼ Device State?
We next check if the control plane’s view of the network

state matches the actual state of the forwarding devices.
OFRewind provides a start; it records all control plane

messages in the network for offline processing and helps to
detect control plane bugs such as OpenFlow parsing errors
or non-compliant switch behavior, for a single controller [25].
Of all the stages, this is the most unexplored; we expect to
see other methods built on distributed systems concepts like
periodic verification of causally consistent snapshots [6].

4.4 D: Device State ∼ Hardware?
The next check is whether the abstract configuration

of each network device, e.g., a single match-action table,
matches the low-level, hardware-specific configuration, e.g.,
registers to configure a forwarding pipeline. With knowledge
of hardware internals, one could check for equivalence be-
tween simulated low-level hardware and a higher-level func-
tional model (e.g., a Python-based switch) for any switch
configuration and sequence of packet events (such as those
captured by NDB).
However, a more general, proactive, black-box approach

is the one taken by SOFT [16], which symbolically executes
inputs to switches to identify where implementations’ out-
puts diverge; this approach captures both implementation
bugs and ambiguity in the specification of switch behavior.

4.5 E: Logical View ∼ Physical View?
The last check is whether the abstract logical view seen

by the control applications properly maps to the physical
view configured by the network hypervisor. One example,
Correspondence Checking, verifies that each path in the
logical view has a corresponding path in the physical view
by computing the transitive closure of possible headerspace
transformations in the network configuration [23].

5. TOOLS FOR LOCALIZING WITHIN A
CODE LAYER

At this point, the problem has been narrowed to a single
code layer. The tools to further localize problems fall into
two categories: those designed for controller software, and
those designed for firmware running at forwarding devices.

5.1 Localizing Within the Controller
Localization within the controller generally involves two

tasks: (1) identifying the events that lead up to the bug,
and (2) finding the responsible line(s) of code.
Replay techniques such as OFRewind [25] support the

first task, helping to retroactively infer OpenFlow events
that triggered a bug observed in logs. A more programmatic
approach is Retrospective Causal Inference (RCI) [22],
which automatically infers the minimal set of inputs to con-
trol software that is sufficient for triggering a bug observed in

a trace of network events. To find the minimum causal set,
RCI iteratively prunes events to find the smallest sequence
that causes the same buggy outcome.
Traditional source-level debuggers are a common tool for

the second task, locating the responsible code line(s). Model
inference tools such as Synoptic [4] can help developers
build a state-transition model to identify errant state transi-
tions. Another approach is model-checking: NICE [5] enu-
merates all code paths (where computationally tractable)
taken by OpenFlow control software and identifies message
sequences that lead to invalid network configurations.

5.2 Localizing Within the Switch Firmware
Localization within the switch generally involves (1) iden-

tifying the network device responsible for the problem, and
(2) finding an errant device parameter or line of code.

NDB’s tracing mechanism and ATPG’s triangulation
mechanism naturally reduce the scope of a bug to a single
node, link, or forwarding entry [10, 27]. Model checking is
particularly amenable for localizing bugs within firmware,
where the state space is more limited than general software.
SOFT [16] model checks OpenFlow agents, helping to catch
and localize tricky OpenFlow compliance bugs.

6. IS SDN NECESSARY?
This section contrasts requirements to realize our work-

flow on an SDN versus a more traditional network.
Knowing the operator’s intent: Automated trou-

bleshooting requires a clear description of “correct opera-
tion”: the network operator’s intent. In an SDN, policy can
be a first-class citizen; intent can be explicitly expressed at
the policy layer, while code compiles the policy description
into lower-level configuration. To express a tenant isolation
policy, like “A should be able to talk to B, but not C”, an
admin can define a virtual networks for A, B and C with
connectivity between A and B [2]. Their intent is clear.
In a traditional network, it is practically impossible to

unambiguously discern the operator’s intent; it is implic-
itly expressed as the combination of all protocol configura-
tions over all nodes. For example, an admin might isolate
tenants by inserting A and B on the same VLAN with a
static rule to prevent the IP prefix range of C’s VLAN com-
municating with A and B’s VLAN.2 To infer intent, one
must gather this state from every node, understand mul-
tiple vendor-specific and protocol-specific formats (different
protocol configs), understand the composition of each proto-
col config (the precedence rules between protocols operating
at the same data-plane layer), and implement logic to infer
intended network behavior from configuration. This is no
trivial exercise.

Checking network behavior against intent: Auto-
mated troubleshooting requires a way to compare operator
intent against state in forwarding elements. In an SDN, for-
warding state is protocol-independent, accessible, and sim-
ply described; it is explicitly exposed as the device state and
used directly by many tools.
In a traditional network, forwarding state is determined

by independent switches and routers running distributed
protocols, which communicate until they converge on sta-
ble forwarding state. Reading the complete distributed for-
warding state requires either generating a consistent snap-
2Actually, this description leaves out a number of steps [18].

shot [6] or centrally collecting logs with precisely synchro-
nized timestamps. These features are missing today for in-
dividual protocols, let alone every protocol together. As a
consequence, the troubleshooting process must analyze the
network with no guarantee that its view of the network state
is consistent. Contrast this with SDN, where the job of the
controllers is to maintain a consistent view of the network
state; this architectural layer avoids the need to understand
the combined operation of every interacting network proto-
col. Even if traditional networks were somehow augmented
to provide state snapshots, and administrators had some
way to convey their intent, checking network behavior would
still require making sense of the combined operation of every
active protocol.
To summarize, one could augment a traditional network

to automate troubleshooting, but you would have to over-
come daunting practical challenges. Although SDN was not
specifically conceived to simplify troubleshooting, a simpli-
fied troubleshooting workflow seems to naturally follow from
the layering inherent to the architecture.

7. UNANSWERED QUESTIONS
Many aspects of SDN troubleshooting remain unexplored;

this section describes related questions that we find exciting.
How can we integrate program semantics into

network troubleshooting tools? Since SDNs are pro-
grams operating on a network view, they might benefit from
network-specific versions of standard software engineering
tools like debuggers (e.g., gdb), memory leak checkers (i.e.,
valgrind), profilers, (e.g., gprof), and race condition check-
ers, all of which use program semantics to execute a modi-
fied version of the code. Extending troubleshooting tools to
understand network program semantics enables new possi-
bilities, like bug reports that detail the program states and
inputs that triggered an errant network state, as well as de-
buggers that handle breakpoints at each SDN state layer.

How can we integrate troubleshooting knowledge
into network control programs? Going the other direc-
tion, providing troubleshooting state to network programs
might enable automatic recovery from software crashes [21]
or safely divert traffic away from a switch whenever an input
sequence triggers an implementation bug [26].

How can we improve invariant checkers? Invariant
checkers now run in real-time [13, 14], but the evaluations
use relatively static IP and VLAN rule sets with few packet
modifications, one controller, no stateful middleboxes, and
few topologies. We should understand and improve their
costs for larger, more dynamic networks, plus those not us-
ing destination-based IP forwarding, such as scale-out data
centers or WANs with integrated load balancing. Addition-
ally, checkers could integrate invariants for QoS, traffic en-
gineering, fault tolerance, and security.

How can we troubleshoot mixed networks with
legacy devices? Commercial SDN deployments will in-
clude legacy devices, complicating the task of obtaining a
consistent network view and checking layer equivalence.

What abstractions are useful for troubleshooting?
Abstractions for programming SDNs can eliminate certain
classes of bugs such as network loops, as well as simplify the
creation of network control programs [8, 19]. Yet, aside from
the packet backtrace construct in NDB, we are unaware of
similar abstractions that simplify the creation of new tools
explicitly designed to aide troubleshooting [10]. Extracting

simplicity out of complex networks and into abstractions
leads to better systems that we can more easily build and
reason about [24].

8. DISCUSSION
Other industries have well-developed methodologies and

tools for tracking down and finding the root cause of bugs,
based on formal models and clear abstractions. SDN brings
the same opportunity to networking, by clarifying the role of
each layer in the control hierarchy and enabling us to com-
pare the operator’s intent with the actual network operation
in a way that was not previously practical. Over the next
few years, we expect a proliferation of tools to emerge for
testing different parts of the SDN hierarchy. Our systematic
approach provides a framework to bring current systems, as
well as the ones we expect to see soon, into a coherent whole.

9. ACKNOWLEDGMENTS
This research is supported by NSF grants CNS-1040838,

CNS-1015459, CNS-1040190 (NEBULA), CNS-0832820
(POMI), and CNS-1040593 (FIA), as well as the Open Net-
working Research Center (ONRC).

10. REFERENCES
[1] Amazon S3 Availability Event: July 20, 2008.

http://status.aws.amazon.com/s3-20080720.html.
[2] OpenStack Quantum.

http://wiki.openstack.org/Quantum.
[3] NOX commit c3fa89a8e5. http://noxrepo.org/git/

nox-classic/commit/c3fa89a8e5, 2010.
[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and

M. D. Ernst. Leveraging existing instrumentation to
automatically infer invariant-constrained models. FSE,
2011.

[5] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE Way to Test OpenFlow
Applications. In NSDI, 2012.

[6] K. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Transactions on Computer Systems (TOCS), 1985.

[7] D. Clark, C. Partridge, J. Ramming, and
J. Wroclawski. A knowledge plane for the internet. In
SIGCOMM, 2003.

[8] N. Foster, R. Harrison, M. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. ACM SIGPLAN
Notices, 2011.

[9] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an
Operating System for Networks. CCR, 38, 2008.

[10] B. Heller, N. Handigol, V. Jeyakumar, N. McKeown,
and D. Mazières. Where is the debugger for my
Software-Defined Network? In HotSDN, August 2012.

[11] HP Switch Software OpenFlow Supplement.
http://bizsupport2.austin.hp.com/bc/docs/

support/SupportManual/c03170243/c03170243.pdf,
2012.

[12] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real Time Network
Policy Checking Using Header Space Analysis. In
NSDI, 2013.

[13] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking For Networks. In
NSDI, 2012.

[14] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and
P. Brighton Godfrey. VeriFlow: Verifying
Network-Wide Invariants in Real Time. In NSDI,
2013.

[15] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale
Production Networks. OSDI ’10, 2010.

[16] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and
D. Kostic. A soft way for openflow switch
interoperability testing. In CoNEXT, 2012.

[17] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. SIGCOMM ’11, 2011.

[18] The Modular Network-in-a-Box: What Could Happen
if SDN Thinks Big. http://packetpushers.net/
the-modular-network-in-a-box.

[19] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walke. Composing software-defined networks.
NSDI, 2013.

[20] The OpenFlow Switch.
http://www.openflowswitch.org.

[21] F. Qin, J. Tucek, and Y. Zhou. Treating bugs as
allergies: a safe method for surviving software failures.
HotOS, 2005.

[22] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang,
K. Zarifis, and S. Shenker. How Did We Get Into This
Mess? Isolating Fault-Inducing Inputs to SDN Control
Software. Technical Report UCB/EECS-2013-8, EECS
Department, University of California, Berkeley, 2013.

[23] C. Scott, A. Wundsam, K. Zarifis, and S. Shenker.
What, Where, and When: Software Fault Localization
for SDN. Technical Report UCB/EECS-2012-178,
EECS Department, University of California, Berkeley,
2012.

[24] S. Shenker. The Future of Networking, and the Past of
Protocols. In Open Networking Summit, October 2011.

[25] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: enabling record and replay
troubleshooting for networks. In USENIX Annual
Technical Conference, 2011.

[26] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak.
Crystalball: predicting and preventing inconsistencies
in deployed distributed systems. NSDI, 2009.

[27] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. In CoNEXT, 2012.

http://status.aws.amazon.com/s3-20080720.html
http://wiki.openstack.org/Quantum
http://noxrepo.org/git/nox-classic/commit/c3fa89a8e5
http://noxrepo.org/git/nox-classic/commit/c3fa89a8e5
http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c03170243/c03170243.pdf
http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c03170243/c03170243.pdf
http://packetpushers.net/the-modular-network-in-a-box
http://packetpushers.net/the-modular-network-in-a-box
http://www.openflowswitch.org

	Introduction
	The SDN Stack
	Troubleshooting Workflow
	Find the Code Layer
	Localize Within a Code Layer
	Workflow Examples

	Tools for Finding the Code Layer
	A: Actual Behavior Policy?
	B: Device State Policy?
	C: Physical View Device State?
	D: Device State Hardware?
	E: Logical View Physical View?

	Tools for Localizing Within a Code Layer
	Localizing Within the Controller
	Localizing Within the Switch Firmware

	Is SDN Necessary?
	Unanswered Questions
	Discussion
	Acknowledgments
	References

