
1

Load Balancing in Structured P2P Systems
Ananth Rao Karthik Lakshminarayanan Sonesh Surana Richard Karp Ion Stoica

�ananthar, karthik, sonesh, karp, istoica�@cs.berkeley.edu

Abstract—
Most P2P systems that provide a DHT abstraction dis-

tribute objects among “peer nodes” by choosing random
identifiers for the objects. This could result in an O(log N)
imbalance. Besides, P2P systems can be highly heteroge-
neous, i.e. they may consist of peers that range from old
desktops behind modem lines to powerful servers connected
to the Internet through high-bandwidth lines. In this paper,
we address the problem of load balancing in such P2P sys-
tems.

We explore the space of designing load-balancing algo-
rithms that uses the notion of “virtual servers”. We present
three schemes that differ primarily in the amount of infor-
mation used to decide how to re-arrange load. Our simu-
lation results show that even the simplest scheme is able to
balance the load within 80% of the optimal value, while the
most complex scheme is able to balance the load within 95%
of the optimal value.

I. INTRODUCTION

In this work, we address the problem of load balancing
in peer-to-peer (P2P) systems that provide a distributed
hash table (DHT) abstraction ([1], [2], [4], [5]). In such
structured systems, each data item that is stored is mapped
to a unique identifier ID. The identifier space is partitioned
among the nodes and each node is responsible for storing
all the items that are mapped to an identifier in its portion
of the space. Thus, the system provides an interface com-
prising two functions: put(ID, item), which stores the item
associating an identifier ID with it, and get(ID) which re-
trieves the item corresponding to the identifier ID.

While peer-to-peer algorithms are symmetric, that is, all
peers play the same role in the protocol, P2P systems can
be highly heterogeneous. A P2P system like Gnutella or
Kazaa may consist of peers that range from old desktops
behind modem lines to powerful servers connected to the
Internet through high-bandwidth lines.

If node identifiers are chosen at random (as in [1],
[2], [4], [5]), a random choice of item IDs results in an
������� imbalance factor in the number of items stored
at a node. Furthermore, applications may associate seman-
tics with IDs, which means that IDs are no longer uni-

This research was supported by the NSF under Cooperative Agree-
ment No ANI-0225660 (http://project-iris.net), ITR Grant No ANI-
0081698, and Career Award No ANI-0133811.

formly distributed. For example, in a database application,
each item can be a tuple whose ID represents the value of
its primary key [6].

A popular technique to deal with hot-spots is caching.
However, caching will not work for certain types of re-
sources such as storage. Furthermore, if the load is caused
by the popularity of a large number of small items (as can
be expected in database applications), then caching has to
push out a significant fraction of the items before it is ef-
fective. On the other hand, the techniques we propose are
not very effective in dealing with hot-spots. Therefore, we
believe that caching is both orthogonal and complemen-
tary to the load-balancing techniques we describe in this
paper.

This paper presents three simple load-balancing
schemes that differ primarily in the amount of information
used to decide how to rearrange load. Our simulation re-
sults show that even the simplest scheme is able to balance
the load within 80% of the optimal value, while the most
complex scheme is able to balance the load within 95% of
the optimal value.

II. PRELIMINARIES

In this work, we use the concept of virtual servers [3]
for load balancing. A virtual server looks like a single peer
to the underlying DHT, but each physical node can be re-
sponsible for more than one virtual server. For example,
in Chord, each virtual server is responsible for a contigu-
ous region of the identifier space but a node can own non-
contiguous portions of the ring by having multiple virtual
servers. The key advantage of splitting load into virtual
servers is that we can move a virtual server from any node
to any other node in the system. This operation looks like a
leave followed by a join to the underlying DHT, and hence
is supported by all DHTs. In contrast, if each node has only
one virtual server, it can only transfer load to nodes that are
its neighbors in the ID space (for example, its successor
and predecessor in Chord). Even though splitting load into
virtual servers will increase the path length on the overlay,
we believe that the flexibility to move load from any node
to any other node is crucial to any load-balancing scheme
over DHTs.

Even though a large number of applications have been
suggested in the literature for DHT-based P2P systems, lit-

2

tle can be predicted about which applications will eventu-
ally turn out to be popular or about the typical workloads
that might be experienced. Since it is very hard to address
the load balancing problem in its full generality, we make
some simplifying assumptions, which we believe are rea-
sonable in practice. First, while we do not restrict our-
selves to a particular type of resource (storage, bandwidth
or CPU), we assume that there is only one bottleneck re-
source we are trying to optimize for. Second, we consider
only schemes that achieve load balancing by moving vir-
tual servers from heavily loaded nodes to lightly loaded
nodes. Such schemes are appropriate for balancing stor-
age in distributed file systems, bandwidth in systems with
a web-server like load, and processing time when serving
dynamic HTML content or performing distributed join op-
erations [6]. Third, we assume that the load on a virtual
server is stable (or can otherwise be predicted, as in a dis-
tributed join operation) over the timescale it takes for the
load balancing algorithm to operate.

III. LOAD-BALANCING SCHEMES

In this section, we present three simple load-balancing
schemes. All these schemes try to balance the load by
transferring virtual servers from heavily loaded nodes to
lightly loaded nodes. The key difference between these
three schemes is the amount of information required to
make the transfer decision. In the simplest scheme, the
transfer decision involves only two nodes, while in the
most complex scheme, the transfer decision involves a set
consisting of both heavy and light nodes. Before delving
into the details of the schemes, we first define the notion
of light and heavy nodes more precisely.

A. Heavy and Light Nodes

Let �� denote the load of node �, where �� represents
the sum of the loads of all virtual servers of node �. We
assume that every node also has a target load (��) chosen
beforehand. A node is considered to be heavy if �� � ��,
and is light otherwise. The goal of all our load balancing
algorithms is to decrease the total number of heavy nodes
in the system by moving load from heavy nodes to light
nodes.

While this binary modeling of the state of a node may
seem very restrictive at first glance, we believe that it
is both simple and sufficient for a number of applica-
tions. For systems with a well-defined cliff in the load-
response curve, the load at which the cliff occurs is a nat-
ural choice for the target load. On the other hand, if the
goal is to equalize the load on all the nodes in the sys-
tem, we can choose the target close to average load in the
system (a rough estimate by random sampling might be

good enough). Assume that �� denotes the capacity of a
node1, and that the goal is to divide the load in proportion
to the capacity. Ideally, we want the load on node � to be
���� �����, where � is the total number of nodes in the sys-
tem, the average load �� � �

�
�

��� ����� , and the average
capacity �� � �

�
�

��� ����� . However, since in practice
this target may be hard to achieve, we approximate it with
�� � ���� �� � Æ���, where Æ is a slack variable and rep-
resents a trade-off between the amount of load moved and
the quality of balance achieved.

B. Virtual Server Transfer

The fundamental operation performed for balancing the
loads is transferring a virtual server from a heavy node to
a light node. Given a heavy node 	 and a light node
, we
define the best virtual server to be transferred from 	 to

 as the virtual server � the transfer of which satisfies the
following constraints:
1. Transferring � from 	 to
 will not make
 heavy.
2. � is the lightest virtual server that makes 	 light.
3. If there is no virtual server whose transfer can make 	
light, transfer the heaviest virtual server � from 	 to
.

Intuitively, the above scheme tries to transfer the mini-
mum amount of load to make 	 light while still maintain-
ing
 light. If this is not possible, the scheme will trans-
fer the largest virtual server that will not change
’s status.
The idea is to increase the chance of 	 finding another light
node that eventually will allow 	 to shed all its excess load.

Note that this scheme guarantees that a transfer can only
decrease the number of heavy nodes. In addition, we do
not consider transfers between nodes of the same type (i.e.,
when both nodes are either heavy or light). This way, we
guarantee that when the load in the system is high (�� �
��), no thrashing will occur. Also, we can stop at any time
if the desired performance is reached.

C. Splitting of Virtual Servers

If no virtual server in a heavy node can be transferred
in its entirety to another node, then a possibility is to split
it into smaller virtual servers and transfer a smaller vir-
tual server to a light node. While this would improve the
time taken to achieve balance and possibly reduce the total
load transferred, there is a risk of excessively fragmenting
the identifier space. An increase in the number of virtual
servers would imply an increase in the overlay hop length
and size of routing tables. Hence, a scheme to periodically
merge virtual servers would be needed to counteract the
increase in the number of virtual servers caused by split-
ting.

�For example, the up-link bandwidth in the case of a web server

3

Since this would complicate our algorithms consider-
ably, we consider only load-balancing schemes that do
not need to split virtual servers. Instead, we assume that
the load of all virtual servers is bounded by a prede-
fined threshold. Each node is responsible for enforcing this
threshold by splitting the virtual servers when needed. In
our simulations, we set the threshold for splitting to �� .
This choice has the property that if the target is achiev-
able (�� � ��), no more than � virtual servers need to be
split. Recall that � is the number of nodes in the system.

D. One-to-One Scheme

The first scheme is based on a one-to-one rendezvous
mechanism, where two nodes are picked at random. A vir-
tual server transfer is initiated if one of the nodes is heavy
and the other is light.

This scheme is easy to implement in a distributed fash-
ion. Each light node can periodically pick a random ID and
then perform a lookup operation to find the node that is re-
sponsible for that ID. If that node is a heavy node, then a
transfer may take place between the two nodes.

In this scheme only light nodes perform probing; heavy
nodes do not perform any probing. There are three advan-
tages of this design choice. First, heavy nodes are relieved
of the burden of doing the probing as well. Second, when
the system load is very high and most of the nodes are
heavy, there is no danger of either overloading the network
or thrashing. Third, if the load of a node is correlated with
the length of the ID space owned by that node, a random
probe performed by a light node is more likely to find a
heavy node.

E. One-to-Many Scheme

Unlike the first scheme, this scheme allows a heavy node
to consider more than one light node at a time. Let 	 de-
note the heavy node and let
�
� � � �
� be the set of light
nodes considered by 	. For each pair �	
�� we pick a vir-
tual server �� using the same procedure described in Sec-
tion III-B. Among the virtual servers that this procedure
gives, we choose the lightest one that makes heavy node 	
light. If there is no such a virtual server, we pick the heav-
iest virtual server among the virtual server �� �	 � � � ��
to transfer.

We implement this scheme by maintaining directories
that store load information about a set of light nodes in the
system. We use the same DHT system to store these direc-
tories. Assume that there are � directories in the system,
where � is significantly smaller than the number of phys-
ical nodes � . A light node
 is hashed into a directory by
using a well-known hash function 	� that takes values in
the interval
� ��. A directory � is stored at the node which

is responsible for the identifier 	���, where 	 is another
well-known hash function.

A light node
 will periodically advertise its target load
and current load to node � � 	�	��
��, which is respon-
sible for directory 	��
�. In turn, the heavy nodes will pe-
riodically sample the existing directories. A heavy node
� picks a random number � �
� �� and sends the infor-
mation about its target load and the loads of all its virtual
servers to node � � 	�	�����. Upon receiving such a mes-
sage, node � looks at the light nodes in its directory (i.e.,
directory 	����) to find the best virtual server that can be
transferred from � to a light node in its directory. This pro-
cess repeats until all the heavy nodes become light.

F. Many-to-Many Scheme

This scheme is a logical extension of the first two
schemes. While in the first scheme we match one heavy
node to a light node and in the second scheme we match
one heavy node to many light nodes, in this scheme we
match many heavy nodes to many light nodes.

We first start with the description of a centralized
scheme that has full information about all nodes in the sys-
tem. Our goal is to bring the loads on each node to a value
less than the corresponding target. To allow many heavy
nodes and many light nodes to interact together, we use
the concept of a global pool of virtual servers, an interme-
diate step in moving a virtual server from a heavy node to
a light node. The pool is only a local data structure used
to compute the final allocation; no load is actually moved
until the algorithm terminates.

The scheme consists of three phases:
� unload: In this phase, each heavy node � transfers its
virtual servers greedily into a global pool till it becomes
light. At the end of this phase, all the nodes are light, but
the virtual servers that are in the pool must be transferred
to nodes that can accommodate them.
� insert: This phase aims to transfer all virtual servers
from the pool to light nodes without creating any new
heavy nodes. This phase is executed in stages. In each
stage, we choose the heaviest virtual server � from the
pool, and then transfer it to the light node � determined
using a best-fit heuristic, i.e., we pick the node that mini-
mizes �� � �� subject to the condition that ��� � ��� �

������. This phase continues until the pool becomes
empty, or until no more virtual servers can be transferred.
In the former case, the algorithm terminates, as all the
nodes are light and there are no virtual servers in the pool.
In the latter case, the algorithm continues with the dislodge
phase.
� dislodge: This phase swaps the largest virtual server �
from the pool with another virtual server �� of a light node

4

� such that ���
�������
������� � ��. Among all light
nodes, we pick the one from which we can remove the
lightest virtual server. If we cannot identify a light node
� such that
������� �
������, the algorithm terminates.
Otherwise the algorithm returns to the insert phase. Since
we are considering nodes from the pool in descending or-
der of their load, insert might work for the next node in the
pool.

To implement this scheme in a distributed fashion we
can use similar techniques as in the One-to-Many scheme.
The main difference in this case is that we hash heavy
nodes into directories as well. In particular, each node �
chooses a random number � between 	 and � (where �
is the number of directories) and then sends its complete
load information to node � � 	�	�����. After it receives
information from enough nodes, node � performs the al-
gorithm presented above and then sends the solution back
to these nodes. The solution specifies to each node the vir-
tual servers it has to transfer. The algorithm continues with
nodes rehashing periodically to other directories. In the
distributed version, at any stage if an insert fails, we have
the choice of either going into the dislodge phase or just
moving the virtual server � being considered back to the
node from which it came into the pool. After re-hashing,
we may be able to find a better light node to move � to
in the next round. Thus, we avoid the overhead of moving
load out of a light node at the cost of having to go through
more rounds.

IV. SIMULATIONS

We simulated all three algorithms under a variety of
conditions to understand their performance and their lim-
itations. The goal of our simulations is to understand the
fundamental trade-offs in the different approaches; we do
not claim that we have a bullet-proof algorithm that can be
used efficiently in all DHT based systems. Given the lack
of information about applications and their workloads, we
only make conservative assumptions that stress our algo-
rithms. We consider two types of distributions to generate
the load on a virtual server.
� Gaussian distribution Let � be the fraction of the iden-
tifier space owned by a given virtual server. This fraction
is assumed to be exponentially distributed (this is true in
both Chord and CAN). The load on the virtual server is
then chosen from a Gaussian distribution with mean ��
and standard deviation �

�
� . Here, � and � are the mean

and the standard deviation of the total load on the system
(we set ��� � 	���). This distribution would result if the
total load on a virtual server is due to a large number of
small items it stores, and the individual loads on the items
are independent.

� Pareto distribution The load on a virtual server is cho-
sen from a power-law distribution with exponent 3 and
mean �� . The standard deviation for this distribution is
�. The heavy-tailed nature of this distribution makes it a
particularly bad case for load balancing.

We consider two key metrics in our simulations: the to-
tal load moved between the nodes to achieve a state where
all nodes are light, and the number of probes (or the num-
ber of rounds). The second metric gives us an idea of the
total time taken to converge and the control traffic over-
head caused by the load balancing algorithm.

Scalability: First, we look at the scalability of the dif-
ferent algorithms. In the one-to-many and the many-to-
many schemes, the fraction of load moved and the num-
ber of probes per node depend only on ���, where � is
the number of nodes in the system and � is the number of
directories. This is because each directory contains a ran-
dom sample of size ���, and the characteristics of this
sample do not depend on � for a large enough � . A sim-
ilar argument holds for the one-to-one scheme also. Thus,
all three schemes do very well in terms of scalability. In
the remainder of this section we consider only simulations
with 4096 nodes. However, from the above reasoning, the
results should hold for larger systems as well.

Efficiency: Next, we look at the efficiency of the dif-
ferent schemes in terms of the amount of load transferred.
Figure 1 plots the the total load moved (as a fraction of
the total load of the system) as a function of ��� �� for dif-
ferent schemes when the load is Pareto-distributed. Due to
space limitations we do not present the results for Gaussian
distribution. However, we note that, not surprisingly, all
schemes perform better under Gaussian distribution. The
plot in Figure 1 shows the trade-off between the slack Æ
(defined in Section III) and the load moved in the system.
There are two points worth noting. First, the load moved
depends only on the distribution of the load and not on the
particular load balancing scheme. This is because all three
schemes do only “useful” moves and hence move only the
minimum required to make nodes light.

Second, we plot a point in this graph only if all 10 runs
of the simulation result in a scenario where all nodes are
light. This means that the range on the �-axis of a line
is the range of loads over which the algorithm converged.
Thus, the many-to-many scheme is capable of balancing
the load within a factor of 0.94 from the ideal case (i.e.,
the case when Æ � �), whereas the other two algorithms
are able to balance the load only within a factor of 0.8
from the ideal case. The reason why the many-to-many
scheme performs better than the other two schemes is that
it uses a best-fit heuristic to match a set of heavy nodes to
a set of light nodes. In contrast, with the first two schemes,

5

there is a higher chance that a very light node � may not
be able to accept a large virtual server �, despite the fact
that
������ � �����. This can happen when other heavy
nodes with smaller virtual servers contact node � first. To
conclude, the many-to-many scheme is capable of achiev-
ing balance even at very small Æ within a reasonable num-
ber of rounds 2, whereas the other two schemes cannot.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

F
ra

ct
io

n
of

 th
e

lo
ad

 m
ov

ed
 to

 a
ch

ie
ve

 b
al

an
ce

Load/Target

One-to-Many - centralized directory
One-to-Many - 50 nodes/directory

Many-to-Many - Centralized
Many-to-Many - 50 node rounds w/o dislodge

One-to-One

Fig. 1. The fraction of the total load moved for different
schemes. In the beginning, each node is assigned 5 virtual
servers at random.

Total number of probes: The above results show that
the one-to-one scheme achieves similar results with re-
spect to load moved and the quality of balance achieved
as the one-to-many scheme. But the main problem for the
one-to-one scheme is the number of probes, which nega-
tively impacts both the convergence time and the control
traffic overhead. To quantify this overhead, in Figure 2 we
plot the total number of probes performed by heavy nodes
before they completely shed their excess load. A probe is
considered useful if it results in the transfer of a virtual
node. This graph shows that the one-to-one scheme may
be sufficient if loads remain stable over long time scales,
and if the control traffic overhead does not affect the sys-
tem adversely.

Effect of size of directory: Given that we need to look
at more than two nodes at a time to reduce the number of
probes, the question arises as to how many nodes we must
look at to perform efficiently in terms of control traffic. To
answer this question, we look at the effect of the size of
the directory on the number of probes in the one-to-many
scheme. In Figure 3, the �-axis shows the average size of
a directory ���, and the �-axis shows the total and the
useful number of probes performed. Note that the initial
number of heavy nodes is a lower bound on the number

�approximately 50 rounds with the Pareto distribution with ��� �� �

����

of probes. The graph shows that even when ��� � 	,
most heavy nodes are successful in shedding their load by
probing only one directory. We have observed the same
trend in the number of rounds taken by the many-to-many
scheme.

0

5000

10000

15000

20000

25000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

N
um

be
r

of
 p

ro
be

s
to

 a
ch

ie
ve

 b
al

an
ce

Load/Target

One-to-One - Total Probes
One-to-One - Useful Probes

One-to-Many - 50 nodes/directory

Fig. 2. The number of probes (total over all nodes) required for
all nodes to become light.

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

0 10 20 30 40 50 60 70

N
um

be
r

of
 p

ro
be

s
to

 a
ch

ie
ve

 b
al

an
ce

(Number of Nodes)/(Number of Buckets)

Gaussian - Total
Gaussian - Useful

Gaussian - initial # of overloaded nodes
Pareto - Total

Pareto - Useful
Pareto - initial # of overloaded nodes

Fig. 3. The number of probes needed as a function of the ex-
pected number of nodes that will get hashed into a single
directory (��� �� � ����).

Trade-off involved in doing dislodge: In the the many-
to-many scheme with dislodge, it is no longer true that
only useful moves are done. We found that with dislodge
enabled, around 10% to 20% more of the total load was be-
ing moved than with dislodge disabled. The natural ques-
tion is whether the extra load moved is justified by the re-
duction in the number of rounds. Figure 4 shows that dis-
lodging is useful only when �� is very close to �� even if
we are trying to optimize only for the number of rounds.
Also, note that even when the number of rounds required
to make all nodes light is as high as 40, almost 95% of

6

the heavy nodes became light after the first round. So, we
conclude that dislodge may not be a useful operation in
practice.

0

10

20

30

40

50

60

70

80

90

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r

of
 r

ou
nd

s

Load/Target

Many-to-Many - 20 node rounds w/o dislodge
Many-to-Many - 20 node rounds w/ dislodge

Fig. 4. The effect of dislodges on the number of rounds. The
load distribution is Gaussian.

V. RELATED WORK

Most structured P2P systems ([1], [2], [4], [5]) assume
that object IDs are uniformly distributed. Under this as-
sumption, the number of objects per node varies within a
factor of �������, where � is the number of nodes in
the system. CAN [1] improves this factor by considering a
subset of existing nodes (i.e., a node along with neighbors)
instead of a single node when deciding what portion of the
ID space to allocate to a new node. Chord [2] was the first
to propose the notion of virtual servers as a means of im-
proving load balance. By allocating ���� virtual servers
per real node, Chord ensures that with high probability
the number of objects per node is within a constant factor
from optimal. However, to achieve load balancing, these
schemes assume that nodes are homogeneous, objects have
the same size, and object IDs are uniformly distributed.

CFS [3] accounts for node heterogeneity by allocating
to each node, some number of virtual servers proportional
to the node capacity. In addition, CFS proposes a simple
solution to shed the load from an overloaded node by hav-
ing the overloaded node remove some of its virtual servers.
However, this scheme may result in thrashing as removing
some virtual nodes from an overloaded node may result in
another node becoming overloaded, and so on.

Douceur and Wattenhofer [7] have proposed algorithms
for replica placement in a distributed filesystem which are
similar in spirit with our algorithms. However, their pri-
mary goal is to place object replicas to maximize the avail-
ability in an untrusted P2P system, while we consider the
load-balancing problem in a cooperative system.

Triantafillou et al. [9] have recently studied the problem
of load-balancing in the context of content and resource
management in P2P systems. However, their work consid-
ers an unstructured P2P system, in which meta-data is ag-
gregated over a two-level hierarchy. A re-assignment of
objects is then computed using the aggregated global in-
formation.

VI. CONCLUSIONS AND FUTURE WORK

We have presented three simple techniques to achieve
load-balancing in structured peer-to-peer systems. The
simulation results demonstrate the effectiveness of these
schemes by showing that it is possible to balance the load
within 95% of the optimal value with minimal load move-
ment.

We plan to extend this work along three directions.
First, we plan to study the effectiveness of our schemes in
a dynamic system where items are continuously inserted
and deleted, or/and where the access patterns of the items
changes continuously. Second, we plan to develop the
theoretical underpinnings of the proposed schemes. This
would allow us to study the trade-offs between the trans-
fer overhead and the effectiveness of each scheme better.
Third, we plan to build a prototype of the load-balancing
schemes on top of the Chord lookup system.

REFERENCES

[1] S. Ratnasamy and P. Francis and M. Handley and R. Karp and S.
Shenker. “A Scalable Content-Addressable Network”, Proc. ACM
SIGCOMM 2001.

[2] I. Stoica and R. Morris and D. Karger and M. F. Kaashoek and H.
Balakrishnan. “Chord: A scalable Peer-to-Peer Lookup Service
for Internet Applications”, Proc. ACM SIGCOMM 2001.

[3] F. Dabek and M. F. Kaashoek and D. Karger and R. Morris and
I. Stoica. “Wide-area Cooperative Storage with CFS”, Proc. ACM
SOSP 2001.

[4] K. Hildrum and J. Kubiatowicz and S. Rao and B. Y. Zhao. “Dis-
tributed Object Location in a Dynamic Network”, Proc. ACM
SPAA, 2002.

[5] A. Rowstron and P. Druschel. “Pastry: Scalable, Distributed Ob-
ject Location and Routing for Large-Scale Peer-to-Peer Systems”,
Proc. IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, pages 329-350,
November, 2001.

[6] M. Harren and J. M. Hellerstein and R. Huebsch and B. T. Loo,
S. Shenker and I. Stoica. “Complex Queries in DHT-based Peer-
to-Peer Networks”, Proc. IPTPS 2002.

[7] J. R. Douceur and R. P. Wattenhofer. “Competitive Hill-Climbing
Strategies for Replica Placement in a Distributed File System”,
Lecture Notes in Computer Science, Vol. 2180, 2001.

[8] J. R. Douceur and R. P. Wattenhofer. “Optimizing File Availabil-
ity in a Secure Serverless Distributed File System”, Proc. of 20th
IEEE SRDS, 2001.

[9] P. Triantafillou and C. Xiruhaki and M. Koubarakis and N. Ntar-
mos. “Towards High Performance Peer-to-Peer Content and Re-
source Sharing Systems”, Proc. of CIDR, 2003.

