
Loss and Delay Accountability for the Internet

Katerina Argyraki
EPFL, Switzerland

Petros Maniatis
Intel Research Berkeley

Olga Irzak
EPFL, Switzerland

Subramanian Ashish
EPFL, Switzerland

Scott Shenker
UC Berkeley

Abstract- The Internet provides no information on the fate
of transmitted packets, and end systems cannot determine who
is responsible for dropping or delaying their traffic. As a
result, they cannot verify that their ISPs are honoring their
service level agreements, nor can they react to adverse network
conditions appropriately. While current probing tools provide
some assistance in this regard, they only give feedback on probes,
not actual traffic. Moreover, service providers could, at any time,
render their network opaque to such tools.
We propose AudIt, an explicit accountability interface, through

which ISPs can pro-actively supply feedback to traffic sources
on loss and delay, at administrative-domain granularity. Notably,
our interface is resistant to ISP lies and can be implemented with
a modest NetFlow modification. On our Click-based prototype,
playback of real traces from a Tier-I ISP reveals less than 2%
bandwidth overhead. Finally, our proposal benefits not only end
systems, but also ISPs, who can now control the amount and
quality of information revealed about their internals.

I. INTRODUCTION

The Internet is built around a best-effort service model
that provides no guarantees ahead of time about when, or
even if, packets will be delivered. Many have argued that this
lack of guarantee played a key role in the Internet's success,
enabling IP to run over a wide range of network technologies
using simple and scalable algorithms. While some clamor for
augmenting best-effort with quality-of-service assurances, few
if any believe that the best-effort model should be discarded.

The Internet has also adopted the philosophy of not provid-
ing any after-the-fact information about the fate of packets.
The rationale for not providing advance assurances enabling
flexibility of network technologies and simplicity of the for-
warding path does not apply to monitoring and reporting.
The lack of such on-line monitoring tools (as opposed to
probing tools, which we discuss later) more likely arises from
strict adherence to layering and transparency according to
which, from a host's perspective, all that matters is whether
and when a packet was delivered, which can be determined by
the endpoints themselves without help from the network. This
line of thinking has resulted in an Internet that is transparent
to success but opaque to failure.

It has long been a central Internet tenet that applications
should adapt to current network conditions, but often the
notion of adaptation was limited to purely end-to-end con-
siderations such as congestion control and adaptive coding
techniques. In such cases, not knowing where packet loss or
delays occurred is no hindrance; all that matters is that they
did occur and endpoint measurements are enough to establish
that fact. However, there have been several recent efforts to
extend adaptation to edge-controlled routing. Proposals such as

TRIAD [13], NIRA [30], and Platypus [26], allow end systems
to control the domain-level path of their packets. To make an
informed decision about such paths when current service is
poor, an end system needs to know which domains are cur-
rently dropping or delaying its packets. We therefore contend
that the Internet should not remain "opaque to failure" but
should instead provide information about where packets are
being dropped or delayed so that end systems (whether these
be the source hosts themselves, or the originating domain) can
intelligently adapt to current conditions.

There is also a simpler rationale for providing this informa-
tion. Internet service is a contractual business; end users pay
their ISP, and ISPs have either customer-provider or peering
arrangements with each other. Providing some form of perfor-
mance feedback would help establish whether providers (and
peers) are adequately performing their duty. Laskowski and
Chuang have showed that, without such accountability, optimal
routes and innovation in the Internet are impossible [23].

Existing Internet probing tools such as ping and traceroute
can help debug network problems. These tools are very
effective in pinpointing long-lasting outages or persistent high-
drop rates. However, because they only reveal how the network
reacts to probe packets, not to previously sent packets, they fail
to capture low-rate or sporadic misbehavior (e.g., an intermit-
tent router failure, or malicious low-rate drop patterns [22]).
As such, they have limited value when trying to make finely-
tuned decisions about the reliability of a provider's service.
More importantly, even if the Internet's behavior on probe
traffic were enough to detect all problems, such probing
tools reveal information at router granularity, at the border
and within the interior of ISPs alike. One cannot expect
that ISPs will remain so transparent to these tools: in what
other industry do organizations allows free inspection of their
internal infrastructure? We think it likely that the current
trend of ISPs befuddling these tools will increase, preventing
unauthorized probing.

Based on these considerations, we think the Internet would
be well-served to move beyond the current situation, where
there is no systematic way to learn the fate of packets, and
all such performance monitoring relies on an ad hoc set of
probing tools that provide more information than an ISP would
like to reveal (its internal structure) and less information than
an end system would like to know (what happened to the
previously sent packets). We propose instead AudIt, an explicit
accountability interface, through which ISPs report on their
own performance. We argue that this is better than probing,
both for the end systems and the ISPs: the former learn what

1-4244-1588-8/07/$25.00 ©2007 IEEE 194

happens to their traffic, not just their probes; the latter control
what information they release regarding their business. We
show that ISPs cannot misuse our interface to lie about their
(or other ISPs') performance. We also present two case studies
on implementing the interface to report on TCP traffic and
demonstrate that it can be done with a modest NetFlow [1]
modification and a reasonable amount of resources.

After a problem statement (§11) we define AudIt (§111) and
describe how it can be used in the face of both honest and
dishonest ISPs (§IV). Next, we present our case studies: first
a straightforward implementation that provides accurate loss
feedback (§V), then an extension that provides accurate delay
feedback (§VI); we evaluate them in a software prototype
(§VII). We close with a discussion of the bigger picture beyond
what is covered in this paper (§VIII), related work (§IX) and
our conclusions (§X).

II. PROBLEM SETUP

A. Goals
With this work, we wish to enable traffic sources to deter-

mine which administrative domains are losing and/or delaying
their packets; an administrative domain (AD) is defined as a
contiguous network administered by a single authority. Each
administrative authority that provides accountability is free to
choose how to present itself: an AD can correspond to a single
Autonomous System (AS), a group of peering ASes, an entire
ISP, or even a coalition of neighboring ISPs.
More specifically, our first goal is to provide a traffic

source with enough feedback to determine: (1) a measure of
how much of its outgoing traffic was dropped at which AD
and (2) a measure of the delay experienced by its outgoing
traffic through each traversed AD. The granularity of these
"measures" can be very fine (e.g., per-packet metrics) or
coarser (e.g., aggregate metrics over multiple packets).

It is critically important to ensure that the measures de-
scribed above cannot be arbitrarily skewed by a malicious
AD on the traffic path or off the path. Our second goal is
to guarantee an upper bound on the error that a malicious
AD can unobtrusively induce in each measure. We define a
"malicious AD" in the threat model, below.
The flip side of the second goal is our third goal: when

tampering of our monitoring metrics violates the error bound,
this tampering should be attributable to a specific link between
the tampering AD and its peer. In other words, egregious
tampering should be localizable.

Our final goal is to "do no harm": our solution should not
enable previously impossible attacks against innocent ADs; for
example, we should not make denial-of-service attacks easier
than they are now.

B. Threat Model
Our threat model allows an AD to be benign that is,

report what it measures dutifully or malicious that is, report
inflated or deflated measurements for traffic traversing its
infrastructure, including reporting having seen packets it did
not, and reporting having not seen packets it did see. We place

agg Type Packet or TCP flow
aggld Packet with digest D or TCP flow with

specified {ToS, src IP/port, dst IP/port} tuple
handoifPoint Inter-AD link #5 to AD X or

all inter-AD links to AD X
direction Incoming or outgoing
numPkts 10
avgTime 2007-08-08 18:02:49 and 454 msec CEST

TABLE I. Feedback entry fields and example contents.

no restrictions on the ability of ADs to collude with other ADs
(neighboring or otherwise).
Our threat model does not allow a malicious AD to modify

or otherwise tamper with traffic reports from other ADs that it
forwards. We justify this restriction by observing that, though
ADs make no guarantees with regards to their own traffic
(including reporting traffic they generate), they sign legally
binding service-level agreements with their peers, which they
would openly violate by manipulating neighbors' reporting
packets; we believe that the majority of ISPs today would
avoid such open violations. In Section VIII-A, we discuss
expanding our threat model by removing this restriction, to
address stronger adversaries, which we consider unrealistic for
today's but perhaps not tomorrow's Internet.

III. ACCOUNTABILITY INTERFACE

In this section, we present an initial interface-level defini-
tion of the accountability facilities we propose. This is not
intended as a rigorous mathematical background to feedback
reporting and comprehension; rather, it is meant to illustrate
the accountability facilities we advocate. In later sections we
explain how a source AD can use the interface to determine
the loss and delay of its own traffic.

A. AudIt Definition
A reporting AD organizes its feedback in feedback packets,

each one including its identity and a set of feedback entries.
At a high level, a feedback entry specifies a unidirectional
traffic aggregate, a hand-off point where packets from this
aggregate entered or exited the reporting AD, how many such
packets were observed at this hand-off point, and when they
were observed. This information is encoded in the feedback-
entry fields stated in Table I; in the rest of this section, we
discuss them in more detail.
The aggType and aggld fields together specify the traffic

aggregate a feedback entry refers to. The interface allows for
multiple aggregate types, so that each AD can choose its own
granularity of reporting aggregates as we discuss later, this
choice affects the quality-overhead trade-off of the mechanism.
Any rule that unambiguously specifies a set of packets sent by
a source AD can be used to define an aggregate type; the only
restriction is that aggregate types must be such that any two
aggregates either have no packets in common or one is a subset
of the other. For example, two aggregate types that honor this
restriction are packets and TCP flows (as defined in §V-C).

The handoffPoirnt field describes a connection between
the reporting AD and one of its peers, through which aggld

195

packets transitioned from one AD to the other. It can specify
one or more inter-AD links or the peer itself (implying that
this connection consists of all inter-AD links with the specified
peer). In this way, each AD can choose the level of detail at
which it exposes its structure for instance, by exposing one
hand-off point per peer, an AD provides no information on the
number of its inter-AD links. An AD makes publicly available
the identities of its hand-off points, as well as the maximum
acceptable delay across each hand-off point as agreed upon
with the corresponding peer "acceptable" in the sense that, if
it is exceeded, the corresponding inter-AD links are considered
to have failed.

The direction field specifies whether aggld packets entered
or exited the reporting AD at handofRfoirnt. The numPkts
field is a count of the aggld packets observed at handofRfoirnt,
while avgTime is a timestamp that corresponds to the (abso-
lute) average time at which these packets were observed.

B. An Informal Aggregate and Feedback Algebra
To express the relationship between two aggregates a and Q

of traffic originating at certain source AD, we use set notation.
Any two such aggregates are combinable iff

* a C Q, all of a's packets also belong to Q, or
* Q C a, all of Q's packets also belong to a, or
* a n Q = 0, a and Q have no packets in common.

To express the combination of two or more combinable
aggregates, we use the union operator. For example, if a C Q,
then a U Q = . As with set union, combination is associative
and commutative (e.g., Uvi{ai} = ak U (Uvi,i k{fai})).

To denote a particular feedback entry, we use vector no-
tation, e.g., x. To denote a particular field within feedback
entry , we use notation xc.(field name), e.g., x.aggld. As a
convention, we use the same symbol to denote an aggregate
and its identifier. Feedback entries from the same AD and with
the same direction can be combined (using the combinator +)
to form feedback entries for the combined aggregates. For
instance, if a given AD's feedback entries x and y refer to
aggregates a and Q, respectively, then the feedback entry x +y
refers to the aggregate a U Q. Recall that not all aggregates
can be combined. Table II defines the combinator +.

IV. USING AUDIT

In this section we present how AudIt can be used to provide
traffic sources with performance feedback. We first describe
how sources can decipher reports from honest ISPs, then how
dishonest reports can be detected via feedback inconsistencies,
leading to lie localization.

A. Honest Reporters
In the absence of dishonest feedback reporters, a source

can combine a collection of feedback entries on aggregate a
from multiple ADs to determine av's AD-level path. It can also
combine the packet counts and average timestamps collected
at all the entrances and exits of each reporting AD to compute
the number of a packets dropped or the delay incurred by a

packets per AD along that path.

x. aggld
x. handofRfoint
x. direction
x. rnumPkts
x. avgTime

uvif{x.aggld}
Uvi{i .handoffPoint}
x-. direction
DVj {xi . numPkts}
ZEi {xi.nurmPkts.x,i. avg Timre}

x. numPkts

TABLE II. Definition of x = +xi, when all feedback entries xi are
produced by the same AD, they all have the same direction xj.direction,
and all aggregates x1.jaggld are combinable.

More specifically, if AD X produced feedback entry x
on aggregate a, and AD Y produced feedback entry y, the
source can determine that X delivered a packets to Y, if
x.handofRfoint = y.handofRfoint, x.directiori out, and
y.direction = in. Given all feedback entries xi produced by
AD X on a, the source can determine the following:

1) The number of a packets lost within X is L
xout.numPkts xn . numPkts, where
Xin = {i,xi.direction=injf}.{x} and

Xout = {i,xZ.direction=out}{Si }-
2) The average delay incurred by a packets within X is

Coutr*avgTimer-Srin .avgTime, if L = .l1
Since different ADs may report on different aggregate types,

it is up to the source to do the necessary combinations (by
applying the simple algebra of §111-B). We illustrate with
a simple example. Suppose an aggregate that consists of
three packets crosses a hand-off point from AD X to AD
Y. In response, X produces one feedback entry x on the
entire aggregate, whereas Y produces three feedback entries
Yi, Y2, and y3, one for each packet. It is up to the source
to determine that Yi, Y2, and y3 are combinable, and that
x = Yl + U2 + fi3. Then, the source can order the reports
to determine the aggregate's path, as well as individual packet
loss and delay measures on each AD.

B. On-path Lies

We now turn to the case in which an AD misrepresents
its performance when reporting on a particular aggregate. We
seek to answer two questions: when can a source detect such
lies and, when it does, can it identify the liars?

1) Detection: We start with the observation that correct
feedback entries from two peering ADs on the same traffic
aggregate satisfy certain consistency conditions, as long as the
inter-AD links between the two ADs do not drop, reorder, or
inconsistently delay packets. If the two ADs' feedback entries
on the same aggregate disagree on (1) how many packets the
earlier AD delivered to the later AD, or (2) when, on average,
it delivered them, then either one of them is lying, or there is
a problem with the inter-AD link between them.

Definition: Consider a traffic aggregate a that crosses a hand-
off point from AD X to AD Y; the two ADs produce
feedback entries on a, denoted by x and y, respectively, with
x.handoffPoint = y.handoffPoint. Feedback entries x and y
are consistent with each other, iff

'This does not mean that an AD cannot provide delay feedback on traffic
that incurs loss; we show how to do that in §VI.

196

y. numPkts n.riumPkts
*y.avgTime -.avg Time < T, where T is the maximum
acceptable one-way delay across x.handoffPoint.

A second observation is that, when feedback entries on the
same aggregate are consistent, an involved AD can only lie
about its performance by implicating one or more of its peers.
We illustrate with two examples.

Consider again traffic aggregate a and ADs X and Y from
the definition above. Suppose Y drops one of the packets,
but, instead of admitting the loss, it claims it never got the
lost packet in the first place, i.e., it reports receiving from
X one fewer packet than it actually did (or y.numPkts
x.numPkts -1); this implies that either X did not deliver to
Y all a packets that it reported, or the inter-AD link between
X and Y is lossy.
Now suppose Y tries to hide some of the delay incurred by

a in its network, by claiming that, on average, it received a
packets 10 msec later than it actually did (or y.avgTime-
x.avgTime= T + 10 msec). This necessarily implies that
either X delivered the packets at that time, or the inter-AD
link between X and Y introduced an additional 10-msec delay.

In both examples, Y is essentially blaming its own loss or
delay on X; alternatively, it could blame them on the next AD
on a's path.

Definition: Consider a traffic aggregate a that crosses a hand-
off point from AD X to AD Y; the two ADs produce
feedback entries on a, denoted by x and y, respectively,
with E.handoffPoint = y.handoffPoint. Suppose X delivers
through this hand-off point p packets of aggregate a to Y at
average time t. We say that:

. "Y blames loss 6p on X" with respect to a,
if y. numPkts = p -p.

. "Y blames average delay St on X" with respect to a,
if y.avgTime = t+T+5t.

. "X blames loss 6p on Y" with respect to a,
if n.riumPkts = p + 5p.

. "X blames average delay St on Y" with respect to a,
if x.avgTime = t-T- t.

Finally, we observe that, if an AD blames loss and/or aver-
age delay on one of its peers, unless the peer is in on the lie, the
lie is bound to result in inconsistent feedback entries between
the liar and the peer for instance, X reports delivering p
a packets to Y, while Y reports receiving p -p a packets
from X. Inconsistency alerts the receiver of the corresponding
feedback entries to the fact that something is wrong (either an
AD is lying or an inter-AD link is problematic), triggering
further investigation. So, one measure of the harm a lying AD
can do is the extent to which it can blame an innocent peer
without causing any feedback inconsistencies.
Lemma 4.1: IfAD X produces correctfeedback entries on

traffic aggregate a, then none ofX's peers can blame any loss
or average delay on X with respect to a without causing a
feedback inconsistency (we omit the straightforward proof for
lack of space).

Interestingly, the converse is also true: when AD X does
not report on a traffic at all, then its peers can cause X to
be reported incompetent with respect to a. This is one of the
basic incentives for deploying our accountability interface: the
more information an AD generates about its performance, the
more difficult it is for its peers to undetectably blame their
faults on it.

Note that Lemma 4.1 holds even when peering ADs use
different aggregate types. For instance, consider traffic aggre-
gate a that crosses a hand-off point from AD X to AD L (L
for "liar"). Suppose X produces a single feedback entry on
a, whereas L produces one feedback entry for each a packet.
Now L can lie about which individual a packets X delivered,
but it must still ensure that the total number of received packets
it reports is equal to the number of delivered packets reported
by X. Similarly, L can lie about the time it received each
individual packet, but it must still choose the reported entry
times such that their average is equal to the average exit time
reported by X. Essentially, L can wrongly accuse X of losing
or delaying an individual a packet (and X cannot dispute
the claim, because it is not reporting on each packet), but it
cannot blame any loss or average delay on X with respect to
a without causing feedback inconsistencies.

Between successive ADs, feedback inconsistencies are in-
escapable at the granularity of the nearest common superset
of the aggregates reported for the same traffic. Being able to
find that nearest common superset efficiently (that is, without
combinatorial searches over all feedback entries received at the
source) is an essential criterion determining which aggregate
types are compatible with AudIt.

2) Localization: When source S receives inconsistent feed-
back entries from a pair of ADs X and Y, either one of them
is lying about its performance, or at least one inter-AD link
between them is faulty. The source cannot determine which of
these are true, but it can narrow down the problem to the X-
Y pair. This may be useful to the source (e.g., if the source
is connected though multiple ISPs, it may be able to route
its traffic avoiding the suspicious X-Y link altogether), but it
is not enough for accountability: if ADs can lie about their
performance and then point fingers at their peers, there is no
incentive to tell the truth.
We address this problem by exposing lying ADs to the peers

they implicated. Continuing with the above example, if source
S receives inconsistent feedback entries from X and Y, it
subsequently asks X and Y for a signed version of these
entries. If an AD responds with a signed entry that differs
from the original (unsigned) one, then S concludes that AD
is lying (within our threat model). If both ADs insist on their
original reports, S sends both signed entries to both X and Y.
From that point on, it is up to the two peers to sort out their
differences: if both ADs insist they are telling the truth, they
can investigate their inter-AD link; if no problems are found
with the link, i.e., the inconsistency was due to a lie, then the
lying AD is exposed to the peer it implicated.

AudIt does not mandate how peering ADs investigate and
resolve their disputes over feedback inconsistencies that de-

197

pends on the debugging tools they have at their disposal as
much as their business relationship. Whatever the process, it
provides a strong incentive for ADs to be honest: if lying
means implicating a peer, who will deterministically learn that
it has been implicated, then lying means entering a (potentially
legal) dispute with that peer and damaging the corresponding
business relationship. Given the nature of today's ISP business,
in which peers sign either provider-customer SLAs or peering
agreements, we believe that an ISP would not risk losing a
peer's trust.

3) The Role of Inter-AD Links: One could argue that feed-
back inconsistencies between two peering ADs are impossible
to properly ascribe when in fact it is the inter-AD link between
them that has failed. In practice, an innocent AD should
be able to discover the truth: An inter-AD link can be a
physical link connected at each end to elements belonging
to the two ADs; the only way for such a link to introduce
loss or unpredictable delay is for it to be physically damaged,
which is straightforward to debug with the right equipment.
Alternatively, an inter-AD link can consist of two physical
links plugged into a switch located at an Internet exchange
point; in this case, investigating an inconsistency involves
verifying the health of the physical links as well as the loss
and delays introduced by the switch.
Of course, we cannot preclude the case where an inter-AD

link goes through a sophisticated exchange point that intro-
duces multiple active elements in the datapath. In that case,
however, the exchange point itself becomes an administrative
entity that receives and delivers packets, which means that
it should also support AudIt, otherwise ADs will be free to
blame their faults on it. In general, the idea is that hard-to-
debug entities export the accountability interface, so that faults
can be tracked down to a pair of such entities and an easy-
to-debug element between them, like a physical link; then,
when two entities send inconsistent feedback, it is easy for an
innocent entity to determine whether the other one is lying or
the element between them has failed.

C. Off-path Lies

Besides lying about its forwarding performance, a malicious
AD may also choose to lie about having seen an aggregate
when it, in fact, has not. We refer to this misbehavior as
"off-path lying." An adversary's impersonating a legitimate
on-path AD (i.e., forging feedback entries for another AD) is
an authentication issue that is handled in an implementation-
specific fashion (see §V-E).
When all ADs on an aggregate's path provide feedback,

the source will not be tempted to consider feedback from an
AD L situated off the actual path of the aggregate: if no AD
downstream of the source designates L as the next hop, L
cannot present itself as "on path." An on-path AD M that
misrepresents its next hop to be L is itself malicious and can
be caught by the same feedback inconsistencies described in
the previous section: M's downstream AD would report M as
the previous hop for the aggregate in conflict to M's reporting
of L as its next hop for the aggregate.

In general, an off-path AD L cannot blame loss or delay
with respect to aggregate a on an innocent AD any more than
an on-path AD can i.e., not at all, as long as the innocent AD
produces correct feedback on a. In a scenario where not all
ADs on a's path provide timely feedback, and, moreover, the
source does not know a's AD-level path, L may be able to
produce credible feedback on a and present itself as being
on path; however, it cannot blame any loss or delay with
respect to a on any AD correctly reporting on a. Note that,
to produce credible feedback, L needs help by an on-path
colluder; without it, L would be hard pressed to pick the right
number of packets, a consistent average entry time, etc., at the
risk of being identified as a generator of false feedback and
penalized in its business with its partners.

V. BASIC FEEDBACK ON TCP TRAFFIC

We now present our first case study: how an ISP can imple-
ment AudIt for reporting TCP-flow statistics, in particular, the
number of packets lost and, if that is zero, the average delay
incurred by each TCP flow within its network.

A. Checkpoints
Statistics are collected at designated checkpoints, located on

inter-AD links. Physically, a checkpoint can be a monitoring
module running inside a border router, or a separate box
positioned to passively tap the link. Conceptually, it consists
of a link tap, a clock, short- and long-term state and a sending
buffer.
An AD places checkpoints on all the links through which

traffic enters and exits its network. Each checkpoint typically
plays two roles: as an entry point, it collects statistics on traffic
entering the AD; as an exit point, it collects statistics on traffic
exiting the AD.

Each AD must keep its checkpoint clocks roughly synchro-
nized. One option is to use NTP and get an accuracy of a few
hundred microseconds (as long as each checkpoint is located
in the same local network with an NTP server) [11]; a better
one is to equip each checkpoint with a GPS receiver (currently
costing about $200) and get an accuracy of 340 nsec [4].
Checkpoints from different ADs located on the same inter-
AD link need only keep track of their clock drift.

B. The Accountability Center
Each AD maintains an accountability center as part of

its network management platform. Physically, this can be a
module running inside a management node, or a cluster of
nodes, depending on the size of the AD and the amount of
traffic it generates and forwards.
An accountability center exports two interfaces. As part

of a source AD S, it exports a feedback receiver interface,
where reporting ADs can send their feedback regarding traffic
generated by S; the address of this interface is publicly
available through DNS. As part of a reporting AD X, it exports
a follow up interface (e.g., over HTTPS), where feedback
receivers can request/provide signed statements in case of
feedback inconsistencies (see §IV-B.2), or verify that a certain
IP address corresponds to a checkpoint from X.

198

tcpld ToS, src IP/port, dst IP/port 104
numPkts Number of packets with tcpld 8

observed at this checkpoint
firstArrival Time the first packet was 32

observed at this checkpoint
lastArrival Time the last packet was 32

observed at this checkpoint
avg Time Average time at which 32

the packets were observed
closed Is this piece of state "closed"?

TABLE III. Short-term state maintained per TCP flow at each checkpoint.
All the timestamps are in milliseconds.

C. Packet Classification per TCP Flow and Short-term State
A checkpoint considers a sequence of packets to belong

to the same aggregate of type "TCP flow," when both of the
following conditions are true:

. all packets have the same {ToS, src IP/port, dst IP/port}
tuple, and

. any FIN or RST packet is the last one.
Each checkpoint maintains short-term state per TCP flow,

which is organized in flow records (see Table III). The only
difference between a NetFlow cache and a checkpoint's short-
term state is that the latter includes the average time at which
each flow's packets were observed.
A record is "closed," i.e., stops getting updated, for any

of the following reasons: (i) The flow ended, i.e., a FIN or
RST packet from that flow was observed. (ii) Inactivity, i.e.,
currentTimer - lastArrival > maxldle; in our implemen-
tation, we use maxldle = 15 sec, i.e., the NetFlow default
for maximum packet inter-arrival time within a flow. (iii)
Age, i.e., currentTimer - firstArrival > maxAge; we use
maxAge = 60 sec (less than the 30-minute NetFlow default),
because we want to collect aggregate statistics on a long flow
at least every minute. (iv) The number of packets exceeded
the corresponding field size (numPkts > 255).

D. Determining Where to Report
To send collected feedback to the corresponding source

ADs, the accountability center of each reporting AD builds a
feedback-receiver map, which maps IP prefixes to their origin
ADs and the corresponding feedback-receiver addresses; this
table is then distributed to all the checkpoints of the AD. The
accountability center builds the feedback-receiver map in two
stages: first, it compiles an IP-prefix-to-origin-AD map using
BGP data from the AD's border routers; then it looks up
the feedback-receiver address for each origin AD and adds
that information to the map. Given that IP-prefix-to-AD maps
computed from BGP tables are known to be ambiguous [25],
we explain next why these limitations have no impact on our
mechanism.

In the past, IP-prefix-to-AD maps have been compiled in
the context of AS-level traceroute [25], i.e., when trying
to map the source addresses of ICMP TIME-EXCEEDED

messages to ASes. Mapping those addresses (which belong
to IP-router interfaces) can be tricky in several scenarios.
First, ASes do not always advertise the addresses of their
router interfaces. Second, some router interfaces are physically
located at exchange points and may be advertised by more
than one AS. Third, if a non-BGP speaking network has
multiple providers, each one of them advertises the network's
prefixes, which, as a result, appear to belong to multiple ASes.
The first two scenarios are not relevant to our mechanism,
because we only need to map addresses of TCP sources, never
private infrastructure. The third scenario is straightforward to
handle: multi-homed, non-BGP speaking networks, either do
not receive feedback or receive feedback through their BGP
speaking providers.

E. Long-term State and Statistics Reporting

Each checkpoint reads its short-term state every T, seconds,
creates feedback entries from its closed records, packages them
per source AD (using the feedback-receiver map), copies them
to local storage (from where they expire after T1 hours), and
sends them to the corresponding feedback receiver via UDP.
Source ADs that do not advertise a feedback-receiver address
do not get any feedback on their traffic. Feedback packets
lost due to congestion can be recovered through the follow-up
channel (see §V-F).

To identify and drop spoofed feedback packets, a feedback
receiver uses a lightweight authentication scheme, reminiscent
of SYN-cookies [10]. When first contacted by a checkpoint,
the feedback receiver verifies that the sender's address indeed
corresponds to a checkpoint; then it responds with a random
nonce, which it stores locally. All subsequent reports from
that checkpoint to the feedback receiver carry increments of
that nonce, much like a TCP sequence number. The feedback
receiver periodically changes the nonce for each checkpoint
and establishes it with a new handshake.
When a flow record is closed due to inactivity, age, or

overflow of the numPkts field, the corresponding feedback
entry can temporarily lead the source AD to wrong conclu-
sions. For example, if a transit AD delays a packet by more
than maxldle, the exit point will close the corresponding
flow record before observing the delayed packet, potentially
"breaking" the flow into two separate feedback entries; after
receiving the first feedback entry, the source AD may falsely
conclude that the reporting AD lost the second part of the
flow. Such errors are corrected once the corresponding TCP
flow has ended, and the source AD has collected all related
feedback entries.

F Follow-up Channel

If a feedback receiver is missing expected feedback or
identifies a feedback inconsistency, it uses the follow-up
interfaces of the involved ADs to resolve the issue as described
in §IV-B.2. Upon receiving a request, the accountability center
retrieves the relevant information from the corresponding
checkpoints and puts together the requested statement. Feed-
back receivers do not directly contact checkpoints.

199

Field name Description # bits

Fig. 1. AD-granularity view of the paths taken by a source's aggregate to a
remote destination.

G. Limitations

The benefit of the implementation presented in this section
is simplicity: each checkpoint collects NetFlow-style statistics
and sends them to the corresponding source ADs. There are
two cases, however, in which providing per-TCP-flow statistics
is insufficient to characterize AD performance with respect to
TCP traffic; we discuss these cases here, before addressing
them in the next section.

The first case is split TCP flows. Consider the following
scenario: In Figure 1, traffic from S to D is normally routed
through checkpoints 3, 5, 6, 9 and 11; the typical delay be-
tween checkpoints 9 and 11 is 10 msec. Then X malfunctions
(e.g., a link goes down) and routes two packets from the same
TCP flow through different paths; as a result, W receives the
two packets through different entry points. The first packet
follows the normal path (and incurs the typical 10-msec delay),
but the second one follows a longer path and incurs a 100-ms
delay within W's network. In this scenario, AD W introduces
higher average delay than normal into a TCP flow as a result
of a malfunction in a previous AD. Yet, if W collects per-
TCP-flow statistics (i.e., exports the average entry and exit
time for the two packets), a source receiving its feedback can
only determine that the average delay across W was 55 msec
and potentially conclude that W's performance decreased.
The other case is long, delay-sensitive TCP flows that incur

packet loss. It is possible that the source of such a flow would
want to know the average delay incurred within each AD
by the packets that were successfully delivered by that AD.
Reporting the average time at which the flow's packets entered
each AD is not enough to compute this information, because
that corresponds to all the packets that entered the AD, not
the ones that made it to the exit.

VI. ACCURATE DELAY FEEDBACK ON TCP TRAFFIC

We now show how an ISP can extend the implementation
presented in §V to accurately report on the average delay
incurred in its network by split TCP flows and/or flows that
incur packet loss.

This case study concerns ADs whose internal paths do not
reorder same-class packets, i.e., if two packets from the same
class of service follow the same sequence of router interfaces
within the AD, they are guaranteed to enter and exit the AD
in the same order. Although the IP protocol itself does not

Field name |Description |# bits
entryPoi'nt Identity of entry checkpoint 16
entryTime Average entry time of the packets 32

observed at this exit point

TABLE IV. Short-term state maintained at each exit point per single-path
TCP flow. The entry time is in milliseconds.

provide this guarantee, to the best of our knowledge, modern
routers (and the providers that use them) generally do.2

A. Packet Classification per Single-path TCP Flow
A checkpoint considers a sequence of packets to belong to

the same aggregate of type "single-path TCP flow," when these
packets

. belong to the same TCP flow (as defined in §V-C) and

. cross the same entry and exit checkpoints of this AD.
Note that collecting packet counts and average timestamps

at the granularity of single-path TCP flows overcomes the
limitations described in §V-G: First, using these statistics, a
source AD can compute the average delay incurred by a split
flow across each individual intra-AD path of the reporting
AD. Second, since packets are assigned to flows based on
their entry and exit checkpoints, the average entry and exit
timestamps reported by an AD on a certain flow always
refer to the same set of packets, which allows a source AD
to accurately compute the average delay incurred by these
packets within the reporting AD.

B. Short-term State

Checkpoints collect different types of statistics depending
on their role: entry points maintain state per TCP flow, whereas
exit points maintain state per single-path TCP flow. The latter
is also organized in records, each one including the fields of
Table III plus two extra fields summarized in Table IV: an
entryPoirnt field (which specifies the entry point for this flow)
and an entryTime field (which specifies the average time at
which this aggregate's packets entered this AD).

It may seem counter-intuitive, at first, that we maintain the
average entry time of an aggregate at the corresponding exit
point. The reason is that an entry point cannot assign packets
to single-path TCP flows (and compute the corresponding
average timestamps), because it cannot know if and where
each observed packet will exit the AD.

C. Statistics Collection
We have established that the right place to assign packets

to a single-path TCP flow and compute their average entry
time is the exit point that observes these packets. This creates
an implementation challenge: an exit point must be able to
determine where and when each observed packet entered the
AD. One would think that at least the "where" question could

2An exception is Juniper's M160 OC192 linecard, which introduced packet
reordering due to its parallel structure [6]. Reordering was eliminated in the
company's next core router [7] after bad publicity notably a comparison test
with Cisco's highest-end, at the time, router, showing that the latter introduced
no reordering [5].

200

be answered based on routing state; unfortunately, interior and
external routing tables are generally insufficient [18].
A seemingly straightforward solution is packet annotation:

When a checkpoint observes a packet entering its AD, it
reads the packet's TCP/IP headers, updates its (per TCP
flow) state accordingly, and annotates the packet with its IP
address and the current time; the checkpoint that observes
the packet exiting the AD uses the annotation to compute the
entryPoirnt and entryTime fields and update its (per single-
path TCP flow) state accordingly. Albeit conceptually simple,
this approach would face deployment issues: even though
packet size and content modification at line speed is within
the capabilities of modern hardware, ISPs are typically not
equipped to perform it, especially at the Internet core.

Fortunately, in a typical modern AD, it is feasible to
"emulate" packet annotation: Inter-AD routes do not change
all that frequently, which allows an exit point to correctly guess
with a high probability the entry point of an observed packet.
Moreover, modern routers do not arbitrarily reorder packets,
which allows an exit point to bound the delay incurred by a
packet without knowing its exact entry time. Based on these
observations, we propose a solution, where the exit point is
not explicitly told the entry point and time of each observed
packet, but rather performs informed guesses and fixes any
mistakes after the fact.

1) Entry-point Disambiguation: Each entry point processes
the source and destination addresses of observed packets and
builds a history of source-destination prefix pairs. All entry
points of a given AD periodically send updates of their history
to the AD's accountability center, which uses them to build
an entry-point map from source-destination prefix pairs to
candidate entry points. Updates of this map are periodically
distributed to all exit points of the AD, which use it to
determine potential entry points for observed flows.

2) Entry-time Disambiguation: Moreover, each entry point
sends to each exit point a marker, i.e., a control packet that
includes a timestamp corresponding to its birth time, every
T, time units. Whenever an exit point observes a non-marker
packet, it can determine a lower bound on the packet's entry
time, by assuming the packet entered the AD right after the
last marker from the corresponding entry point. For instance,
suppose checkpoint 6, in Figure 1, observes a packet exiting
AD Y and guesses that this packet entered at checkpoint
5; if the last marker from checkpoint 5 bore timestamp t,
checkpoint 6 concludes that the packet cannot have entered
Y before time t. For lack of space, we omit the details
of handling routing changes, multiple intra-AD paths and
multiple service classes.

3) Short-term State Update: Whenever an exit point ob-
serves a new TCP flow, it first uses the entry-point map
to guess a set of candidate entry points, then creates one
flow record for each one of them. Upon observing subse-
quent packets from the same TCP flow, the exit point up-
dates the numPkts, firstArrival, lastArrival, avgTime, and
entryTime fields of all the corresponding records. To update
the entryTime field, the exit point assumes that the packet

entered right after the last marker from the corresponding
entryPoint. When there are no routing changes and no
entryPoint errors (see next paragraph), this overestimates the
average delay incurred by a flow at most by T,.

4) Error Correction: It is possible that the version of the
entry-point map at a certain exit point is temporarily outdated:
an entry point has observed a new {source prefix, destination
prefix} pair, but the corresponding update has not reached the
accountability center or the exit point yet. This may result in
the exit point observing a new TCP flow and failing to create
a flow record that corresponds to its actual entry point. To deal
with this case, each exit point remembers the prefix pairs it
looked up recently and the flow records it created; if it receives
an update of the entry-point map that concerns one of these
prefix pairs, it creates a new flow record according to the new
mapping, assuming that all packets of the flow incurred the
maximum possible delay.

D. Statistics Reporting

Each exit point reads its short-term state every T, seconds,
organizes closed flow records per entryPoirnt, and sends
them to the corresponding entry point. Whenever an entry
point receives a record from an exit point, it looks up the
corresponding tcpld in its local state and associates the record
with the matching local one; if no match is found, the record
is discarded. Eventually, an entry point associates each local
TCP flow record with one or more matching single-path TCP
flow records sent by exit points, produces a set of "coalesced"
feedback entries (avoiding to repeat the 104-bit long tcpld
with every entry), copies them to local storage, and sends them
to the corresponding source AD. To compute the number of
packets from each TCP flow that entered/exited the reporting
AD and the corresponding average timestamps, the source AD
must combine all feedback entries on single-path TCP flows
with the same tcpld and direction sent by the reporting AD.
We illustrate with an example. In Figure 1, source AD S

sends out TCP flow f, which consists of 3 packets. The three
packets enter X at times 9, 10, and 11. X loses the first one,
delivers the second one to Y at time 20, and the third one
to Z at time 26. The first packet enters W at time 50 and is
delivered to D at time 60, while the second one enters W at
time 55 and is delivered at time 155. Table V describes the
content of the (honest) feedback entries produced by X and
W on f. To compute the number of f packets that exited X
and their average exit time, S combines the feedback entries
produced by checkpoints 3 and 4 (3rd and 5th line in Table V).
Similarly, to compute the number of f packets that entered
W and their average entry time, S combines the feedback
entries produced by checkpoints 9 and 10 (6th and 9th line
in Table V).

E. Limitations

In the beginning of this section, we set out to produce accu-
rate delay statistics for TCP flows that are split across multiple
paths and/or incur loss. We mentioned packet annotation as a
conceptually straightforward but expensive solution; then we

201

agg Type aggld handoff
Point

dir num
Pkts

1 TCP f 1-2 in 3 10
2 SP TCP f, 2-3 1-2 in 1 10
3 SP TCP f, 2-3 3-5 out 1 20
4 SP TCP f, 2-4 1-2 in 1 11
5 SP TCP f, 2-4 4-7 out 1 26
6
7
8
9
10
11

TCP
SP TCP
SP TCP
TCP
SP TCP
SP TCP

f
f, 9-11
f, 9-11
f
f, 10-11
f, 10-11

6-9
6-9
11-12
8-10
8-10
11-12

in
in
out
in
in
out

1
2
2
1
2
2

TABLE V. Feedback sent by ADs X (top half) and W (bottom half) in
Figure I to source AD S regarding TCP flow f. "SP TCP" stands for "single-
path TCP flow." The format of the aggld field depends on aggType: for TCP
flows, it consists of tcpld; for single-path TCP flows, it consists of tcpld
and an entryPoint-exitPoint pair.

"approximated" that solution with a cheaper one at the cost
of introducing certain inaccuracies in the collected statistics.
We now discuss these inaccuracies and how they qualitatively
affect the provided feedback.
When a flow enters an AD through multiple entry points,

the corresponding exit points have no way of guessing which
packet entered at which entry point; the best they can do is
assume that the entire flow entered at each of the candidate
entry points and compute the corresponding average entry
times. This may not reveal the exact delay incurred by the
flow along each path, but does provide information on the
performance of each path that carried the flow. For instance,
consider again the scenario depicted in Figure 1: Checkpoint
11 guesses that flow f entered through checkpoints 9 and/or
10, creates two flow records (one for each entry point), and
updates both of them with every observed f packet. The
resulting feedback entries (see Table V, lines 7 and 8 for the
path between checkpoints 9 and 11, and lines 10 and 11 for
the path between checkpoints 10 and 11) allow S to estimate
the performance of the two W paths specifically, what the
average delay incurred by f within W would have been, if
both f packets had entered W through checkpoint 9 or 10.

Marker-based estimation of a packet's entry time relies
on the assumption that same-class packets are not reordered
along a single intra-AD path; a router malfunction that causes
reordering can also cause an exit point to produce wrong
entry-time estimates. Although, in practice, there are ways to
alleviate the effects of such malfunctions, there is no clean
way to provably bound the error they can introduce at least
not without assuming a maximum intra-AD delay. Both this
and the previous limitation are due to the use of markers and
can be avoided at the cost of using packet annotation.
We close with the observation that Lemma 4.1 does not

apply to single-path TCP flows: unlike a TCP flow, a single-
path TCP flow is unique to the AD that produced it, because it
consists of the packets that were successfully delivered from a
specific entry point to a specific exit point of that AD; hence,
no two ADs can produce feedback on (and be inconsistent
with each other with respect to) such a flow. For instance,

W cannot lie about f's average exit time from its network
(because that would cause an inconsistency with f's average
entry time in D), but it can lie about the exit time of each of
the two f packets that it successfully delivered (as long as D
does not report the entry time of each individual f packet).
In general, the extent to which an AD can lie depends on the
detail at which its peers report their performance; if all peers
report on TCP flows, an AD is free to report any performance
it wants for its internal paths, as long as the average per-TCP-
flow performance across all paths matches the peers' reports.

VII. OVERHEAD EVALUATION

We now evaluate the implementation proposed in §VI, based
on a software prototype and real traces from OC-48 links of
a Tier-I ISP (obtained from CAIDA [3]).

A. Processing and Memory Overhead

We implemented a checkpoint prototype using the Click
modular router [21]. Our prototype consists of a NetFlow-
like traffic monitoring module and an accountability module.
The former observes forwarded packets and collects per-TCP-
flow state (as an entry point) and per-single-path-TCP-flow
state (as an exit point). The accountability module periodically
reads the collected statistics, packs closed flows into feedback
packets, and sends them to the corresponding entry points (as
an exit point) or source ADs (as an entry point); it is also
responsible for sending and processing marker packets. We
deployed this prototype on two PCs, each with a Xeon 3.8
GHz processor and 4 Gbytes of memory. We set up a simple
testbed, where one PC acted as an entry point and the other
as an exit point.
The goal of the experiment was to evaluate the performance

of the accountability module in an actual checkpoint im-
plementation, the traffic-monitoring module would be imple-
mented in hardware, close to the data path, e.g., as a NetFlow
engine. More specifically, our goal was to test whether an
off-the-shelf processor with a credible amount of memory
can process per-flow statistics collected at a high-speed link
and generate the corresponding feedback in real time. To
this end, we emulated an OC192 link to our entry and from
our exit point, i.e., we caused the traffic-monitoring modules
running on the two PCs to generate 250, 000 new flow records
per second assuming 5, 000 bytes per flow, this corresponds
roughly to 10 Gbps; each flow lasted for 20 seconds, leading to
a total of 5 million concurrent flows. Moreover, we emulated
a 100-checkpoint topology, i.e., the exit point thought it was
sending its feedback to 99 entry points, whereas the entry point
thought it was collecting its feedback from 99 exit points.
We used Ts = 10 sec, T1 = 5 h, and T, = 5 msec. Our
accountability modules successfully sustained this flow rate;
they started falling behind under a load of 500, 000 new flows
per second.
As far as state is concerned, each checkpoint maintains two

types: the short-term state described in Tables III and IV (38
bytes per single-path TCP flow) and a history of the statistics it
has produced within the last T, hours. With 1 GB of memory

202

386 833 330 294
10.9 9.8 11.8 9
0.8 0.9 0.8 1

115 145
6.5 5.2
1.4 1.8

TABLE VI. Trace characteristics (rate and average flow size) and bandwidth
overhead. TS = 10 sec and T1 = 5 h.

and 200 GB of storage, a checkpoint could handle roughly 20
million concurrent TCP flows and keep a 5-hour history on a

billion flows per hour.

B. Bandwidth Overhead

Our implementation introduces three types of bandwidth
overhead: the overhead due to marker packets incurred by
each reporting AD, the (also intra-AD) overhead of sending
feedback from exit to entry points, and that of receiving
feedback from multiple ADs incurred by each source AD. We
examine each one below.
The intra-AD overhead introduced by markers is inde-

pendent of the amount of forwarded traffic: 64 bytes (the
minimum packet size) every T, time units for every entry-
exit point pair that exchanges traffic. Each AD can use T,
as a knob to determine the balance between overhead and
feedback quality. For instance, to achieve delay accuracy

T, = 5 msec, each pair of entry-exit points must exchange
100 Kbps of marker traffic; for an AD with 100 inter-AD links,
this corresponds to a total of 10 Mbps of marker traffic per

checkpoint (in each direction).3
The intra-AD overhead introduced by feedback flowing

from exit to entry points depends on (1) the average TCP
flow size and (2) the size of the flow records sent by exit
points, which is 18 bytes in our implementation (we omit the
formatting details for lack of space). To get an estimate of the
average TCP flow size, we looked at six traces from a Tier 1

ISP, provided by CAIDA (see Table VI); we chose 5, 000 bytes
per flow as a representative number, as all our traces showed
a higher average flow size, which would reduce the overhead
thanks to amortization. Assuming this average flow size and a

single exit point per TCP flow as the common case, feedback
introduces roughly 0.36% bandwidth overhead per entry point,
where the percentage is computed over the throughput of the
traffic observed by the entry point.

Similarly, the overhead incurred by a source AD depends on

the average TCP flow size and the size of the feedback entries
sent by each AD (in our implementation, 23 bytes per single-
path TCP flow), but also the average number of ADs per flow
path. Suppose ISPs report at the granularity of ASes; given that
75% of AS pairs are less than 4 ASes apart [24], using 4 as

the average number of ADs per flow path seems a reasonable,
albeit rough, estimate note that this number is consistent with
the average AS path length observed in current BGP tables [8].
Assuming this number, 5, 000 bytes per flow, and non-split

3Currently, according to data from Route Views [2], more than 99.5% of
ASes have fewer than 100 inter-AS connections. ASes with more interconnec-
tions would have to be broken to multiple ADs to remain within this marker
overhead, without necessarily exposing their internal compartmentalization to
feedback receivers.

TCP flows as the common case, feedback introduces in each
source AD roughly 1.85% bandwidth overhead over the AD's
exported traffic. To put this overhead in context, it is worth
noting that the IPv6 header would introduce 5% bandwidth
overhead, assuming an average packet size of 400 bytes.

VIII. DISCUSSION

A. Feedback Tampering

One limitation of our threat model and the presented imple-
mentations is the assumption that malicious routers will not
selectively tamper with the feedback they observe. In practice,
this assumption is justified because an ISP that engages in such
feedback tampering is violating legally binding agreements
with its peers; moreover, to the best of our knowledge, traffic
tampering by malicious on-path routers is not currently known
to be a typical Internet problem. However, it could become a

problem in the future, unless we provide a way to prevent or

expose such malicious behavior.
We are considering two approaches towards dealing with

feedback tampering. The simplest one is to enable provider-
receiver pairs to detect (but not necessarily localize) feedback
tampering, so they can negotiate alternative delivery paths.
This can be done by enhancing feedback packets with message

authentication codes (MACs). For instance, consider a source

AD S, a transit AD X that forwards some of S's traffic, and
a malicious entity M on the path from X to S. If M modifies
the content of X's feedback packets, S can detect it, as long as

each packet carries a MAC. If M drops X's feedback packets,
S can detect it, as long as it knows that X is part of the AD-
level path and expects to receive feedback from it. In that case,

it can issue a follow-up request to X and verify that X did
indeed send feedback to S that was dropped along the way.

A more complete, but expensive approach is to force
feedback to flow hop by hop through the checkpoints that
observed the corresponding traffic. In this way, the AD-level
path that delivers each piece of feedback becomes visible,
making it possible to investigate feedback-tampering incidents
and expose the culprits as with feedback inconsistencies.

B. Flow Sampling
Another limitation is that each checkpoint must observe

every single packet in order to produce accurate statistics; in
practice, ISPs prefer to use sampled NetFlow, which monitors
only a configurable percentage of forwarded traffic and, thus,
allows them to control the resources spent in monitoring. We
are considering adapting our implementation to work with
sampled or adaptive [17] NetFlow at the cost of reduced (but
bounded) accuracy in the reported statistics.

C. Reflector Attacks

One aspect that we have considered, but left outside this
paper for lack of space, is how to prevent reflector attacks.
In such attacks, compromised nodes spoof the victim's source

address and use it to send a large volume of TCP packets to
various destinations, in order to cause the victim to receive a

large volume of feedback entries on traffic it did not generate.

203

Trace rate (Mbps)
Avg flow size (KB)
BW overhead (%)

A key observation that helps us address this problem is that,
in order to launch a successful reflector attack, the attacker
must generate unusually small (in terms of packets) TCP
flows; hence, by packaging feedback on small flows separately,
reporting ADs enable feedback receivers to efficiently classify
suspicious feedback. Another key observation is that, by
studying the feedback received through a reflector attack, the
intended victim can trace every single attacking source back to
its AD, i.e., a fortuitous side-effect of deploying accountability
is that spoofing becomes localizable.

IX. RELATED WORK

Our work was originally inspired by Hash-based Trace-
back [27]; we share common mechanisms with that architec-
ture, albeit with different goals. In both architectures, traffic
leaves a trail on its path. In our case, this trail is per-flow
state recorded at the entry and exit points between ADs and is
used to send pro-active feedback to source ADs; in Hash-based
Traceback, the trail consists of packet digests recorded at each
router and is used to send reactive information to destinations.

Accountability has also been studied in the context of
Byzantine fault detection in distributed systems [31]: CATS
provides accountability for network storage [32], while Peer-
Review addresses the more general problem of accountability
in any distributed system that can be modeled as a collection
of deterministic state machines [20]. Both systems provide
secure logs of the messages sent and received by each node
and identify faulty nodes by processing their logs. Our work
is similar in spirit: one can view each AD sequence as a
distributed system that keeps "logs" (flow records) of the
"messages" (packets) that enter and exit each "node" (AD).
Our approach differs mainly in functionality (we measure each
node's performance rather than detect Byzantine behavior)
and domain specificity: Since our "messages" correspond to
packets transmitted over high-speed links, it is still impractical
today to produce secure logs of all messages exchanged
between nodes. Moreover, because our "nodes" are admin-
istrative domains engaged in business with their peers, we do
not seek to globally prove a node's misbehavior (in our case,
lying) to all other nodes exposing it to the implicated peer(s)
is a sufficient deterrent against misbehavior.
A more theoretical perspective on network accountability is

offered in [19]. The authors prove that, to perform accurate
fault localization in the presence of malicious entities that
can add, drop or modify traffic (including feedback), every
feedback provider must share keys with the corresponding
feedback receiver and use them to perform cryptographic
operations. The same work also presents the Optimistic and
Statistical FL (fault localization) protocols, which address a
different threat model than AudIt (arbitrary traffic tampering
by malicious on-path entities), but are related to the extensions
we mention in §VIII: Optimistic FL is similar to the hop-
by-hop feedback propagation scheme we mention in VIII-A,
although the former performs corruption and loss localization
and does so per packet, whereas we are interested in delay and
loss localization per aggregate. Statistical FL is related to the

sampling approach we mention in VIII-B, in that it considers
a subset of the observed packets and estimates the average
corruption/loss rate per link; however, it requires sources to
trust their destinations and feedback producers to engage
in probing sessions with each destination, whereas we are
interested in delay/loss localization that is practical to deploy
without needing to involve destination hosts or domains.

Another related line of work is Trajectory Sampling, in
which routers within an ISP sample packets and record their
digests. The key point is that all routers sample the same
packets, which allows the ISP to combine the recorded di-
gests and reconstruct its internal paths at a router level [16].
We are considering using this work as a basis to build an
alternative AudIt implementation that computes its statistics
based on traffic samples. We chose to start with a NetFlow-
based implementation instead, only because NetFlow is al-
ready widely deployed, whereas Trajectory Sampling requires
packet-digesting capabilities on the datapath, which are still
unavailable.

In an earlier workshop paper, we describe a preliminary
mechanism that informs traffic sources where their packets
are getting lost or corrupted [9]. In that work, we take a
quite different approach: feedback is sent per packet, not per
flow, and it flows hop by hop through the checkpoints that
generated the corresponding traffic. The reason for taking that
approach was that it allowed every AD on a packet's path
(not just the source AD) to receive feedback on the fate of
that packet. However, this functionality was provided at the
cost of increased bandwidth and memory overhead, processing
complexity and the need for custom hardware. In contrast, this
paper focused on a practically deployable solution.

Finally, we target similar goals (albeit through different
philosophy and mechanisms) with probing tools that seek to
localize loss and delay on end-to-end Internet paths. Recent
developments include the design of flexible probing pro-
cesses [28] and scalable algorithms that compute statistics on
multiple paths by monitoring only a subset [12]; also, Mao
et al. have proposed to complement traditional traceroute by
mapping the discovered router addresses to the corresponding
ASes, thus producing AS-level paths [25]. From the widely
used traceroute program to sophisticated network-tomography
techniques [15], probing tools express the traditional (and,
admittedly, the only currently applicable) approach to Internet
troubleshooting: treat it as a black box and try to guess its
internal structure (and faults) by studying its response to
different signals. Our approach is the opposite: let the Internet
itself (i.e., the ISPs) report on its faults on its own terms,
removing the need for probing from multiple vantage points,
and avoiding the risk of irritating ISPs into making the black
box even more opaque.

X. CONCLUSIONS

We proposed AudIt, an accountability interface that enables
ISPs to report the loss and delay experienced by transient
traffic to the traffic source, while keeping internal ISP structure
and policy private. We showed that the proposed interface

204

is resistant to lies in a business-sensible malicious threat
model: as long as an ISP follows the reporting interface for
some packet aggregate, its peers cannot blame on it their loss
and/or delay for the same aggregate without the ISP detecting
their lie. We also showed that ISPs can implement AudIt to
report on TCP traffic with a modest NetFlow modification and
introducing less than 2% of bandwidth overhead on typical
Internet traffic.
We believe that an accountability interface would have a

positive impact on the Internet. Most importantly, it exposes
ISP performance. Good ISPs may want to employ it, to prove
to their customers that they are not responsible for packet
loss or delay. This may, in turn, drive the remaining ISPs to
improve their (now measurable) service. In this sense, account-
ability could bring better ISP service by increasing competition
on performance (which is now only dimly observable), not just
on price.
The detailed performance information can also help end

systems choose alternate routes to improve their performance.
There are many proposals for letting end systems control
their routes, but far fewer for how those end systems might
gather the information necessary to intelligently choose their
routes. By giving them the knowledge of which ADs are
currently underperforming, they can narrow their search for
better routes. This may even remove the need for Internet QoS
mechanisms, since (ignoring access links) there are usually
uncongested paths between two network points; to get good
quality of service, end systems merely need to find those paths.
Our accountability interface, though not a complete solution
to this problem, does provide useful information.

The use of layering to hide implementation details from
higher layers is a crucial aspect of the Internet architecture;
correspondingly, end systems view the Internet as a black
box, remaining ignorant of any network structure. But equally
crucial is the end-to-end principle of implementing as much
functionality as possible at the edges. In particular, Internet
applications should adapt to Internet conditions rather than
expecting the network to adjust to their requirements. Without
more knowledge of the Internet's behavior, the edge's ability
to adapt is limited to congestion control and related behavior.

Our accountability interface is designed to provide structural
information out of band. It preserves layering and leaves IP
semantics unchanged; it is an external vehicle for informing
the host of network conditions. Many have called for an
Internet knowledge [14] or information plane [29] that would
expose network information to end systems. We view this work
as a first concrete and viable step in this direction.

XI. ACKNOWLEDGMENTS

We would like to thank Steven Dropsho, Aravind Menon,
Simon Schubert, Ming-Yee Iu, Matt Grossglauser, and the
anonymous reviewers for their insightful comments that helped
improve this paper.

REFERENCES

[1] Cisco NetFlow. http://www.cisco.com/go/netflow.
[2] Route views archive project. http://archive.routeviews.org.
[3] The CAIDA Web Site. http://www.caida.org.
[4] USNO GPS Time Transfer. http://tycho.usno.navy.mil/gpstt.

html.

[5] Cisco 12410 and Juniper M160 Comparison Summary Report. http://
newsroom.cisco.com/dlls/Ciscol2400JuniperMl6OPerfVal.
pdf, June 2001.

[6] Packet Reordering in Juniper M160. http: //www. lightreading.
com/document.asp?doc-id=4009&page-number=8, March 2001.

[7] Juniper Goes Terabit with the T640. http://www.lightreading.
com/document.asp?doc_id=14335, April 2002.

[8] BGP Table Data. http://bgp.potaroo.net/as6447, August 2007.
[9] K. Argyraki, P. Maniatis, D. R. Cheriton, and S. Shenker. Providing

Packet Obituaries. In Proceedings of the ACM Workshop on Hot Topics
in Networking (HotNets), November 2004.

[10] D. J. Bernstein. Syn cookies. http://cr.yp.to/syncookies.html.
[11] J. Burbank, W. Kasch, J. Martin, and D. Mills. Network Time Protocol

Version 4 Protocol and Algorithms Specification. http://tools.
ietf .org/html/draft- ietf-ntp-ntpv4-proto-06, May 2007.

[12] Y Chen, D. Bindel, H. Song, and R. H. Katz. An Algebraic Approach
to Practical and Scalable Overlay Network Monitoring. In Proceedings
of the ACM SIGCOMM Conference, September 2004.

[13] D. R. Cheriton and M. Gritter. TRIAD: A Scalable Deployable NAT-
based Internet Architecture. Technical report, Stanford University,
January 2000. Also available at http://www.dsg.stanford.edu/
triad/triad.ps.gz.

[14] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski.
A Knowledge Plane for the Internet. In Proceedings of the ACM
SIGCOMM Conference, August 2003.

[15] M. Coates, A. 0. Hero, R. Nowak, and B. Yu. Internet Tomography.
IEEE Signal Processing Magazine, 19(3):47-65, May 2002.

[16] N. Duffield and M. Grossglauser. Trajectory Sampling for Direct Traffic
Observation. IEEE/ACM Transactions on Networking, 9(3):280-292,
June 2001.

[17] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a Better
NetFlow. In Proceedings of the ACM SIGCOMM Conference, September
2004.

[18] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True. Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience. IEEE/ACM Transactions on Networking,
9(3):265-280, June 2001.

[19] S. Goldberg, D. Xiao, B. Barak, and J. Rexford. A Cryptographic Study
of Secure Internet Measurement. Technical Report TR-783-07, Princeton
University Department of Computer Science, May 2007.

[20] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical
Accountability for Distributed Systems. In Proceedings of the ACM
Symposium on Operating Systems Principles (SoSP), October 2007.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. IEEE/ACM Transactions on Computer Systems,
18(3):263-297, August 2000.

[22] A. Kuzmanovic and E. W. Knightly. Low-Rate TCP-Targeted Denial of
Service Attacks. In Proceedings of the ACM SIGCOMM Conference,
August 2003.

[23] P. Laskowski and J. Chuang. Network Monitors and Contracting
Systems. In Proceedings of the ACM SIGCOMM Conference, September
2006.

[24] D. Magoni and J. J. Pansiot. Analysis of the Autonomous System
Network Topology. ACM SIGCOMM Computer Communication Review,
31(3):26-37, July 2001.

[25] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an Accurate
AS-Level Traceroute Tool. In Proceedings of the ACM SIGCOMM
Conference, August 2003.

[26] B. Raghavan and A. C. Snoeren. A System for Authenticated Policy-
Compliant Routing. In Proceedings of the ACM SIGCOMM Conference,
September 2004.

[27] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer. Hash-based IP Traceback. In Proceedings
of the ACM SIGCOMM Conference, August 2001.

[28] J. Sommers, P. Barford, N. Duffield, and A. Ron. Improving Accuracy
in End-to-end Packet Loss Measurement. In Proceedings of the ACM
SIGCOMM Conference, August 2005.

[29] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An Information
Plane for Networked Systems. In Proceedings of the ACM Workshop
on Hot Topics in Networking (HotNets), November 2003.

[30] X. Yang. NIRA: A New Internet Routing Architecture. In Proceedings
of the ACM SIGCOMM Workshop on Future Directions in Network
Architecture (FDNA), August 2003.

[31] A. R. Yumeferendi and J. S. Chase. The Role of Accountability in
Dependable Distributed Systems. In Proceedings of the IEEE Worshop
on Hot Topics in Dependable Systems (HotDep), June 2005.

[32] A. R. Yumeferendi and J. S. Chase. Strong Accountability for Network
Storage. In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), February 2007.

205

