
On Preserving Privacy in Content-Oriented Networks

Somaya Arianfar, Teemu Koponen, Barath Raghavan, and Scott Shenker
Aalto University, Nicira Networks, ICSI, and UC Berkeley

ABSTRACT
The recent literature has hailed the benefits of content-oriented
network architectures. However, such designs pose a threat to
privacy by revealing a user’s content requests. In this paper, we
study how to ameliorate privacy in such designs. We present
an approach that does not require any special infrastructure or
shared secrets between the publishers and consumers of content.
In lieu of any informational asymmetry, the approach leverages
computational asymmetry by forcing the adversary to perform
sizable computations to reconstruct each request. This approach
does not provide ideal privacy, but makes it hard for an adversary
to effectively monitor the content requests of a large number of
users.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-

tecture and Design

General Terms
Design, Security

Keywords
Content-oriented Networking, Privacy

1. INTRODUCTION
Content-oriented networking improves the availability of data

(by integrating caching and replication into the network) and

simplifies ensuring the integrity and provenance of content (by

moving from securing the communication channel to securing the

content). Indeed, security has been a primary driver in many clean-

slate content-oriented architectural proposals [19, 20, 29].

These benefits come with a cost. Because the basic functions

of content-oriented networks operate at the content level, not the

bit level, nodes in the infrastructure know the names of the content

users request. An adversary that can compromise the security of

this infrastructure (here we have in mind a nation-state or other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICN’11, August 19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0801-4/11/08 ...$10.00.

formidable institution that can exert control over the infrastructure)

can learn the names of the content a user requests. In contrast, in

today’s infrastructure, the exact nature of the data requested is only

visible to the server providing that data, and the adversary would

have to compromise all servers or break end-to-end cryptography,

not just the network infrastructure, to learn the content being

requested by a user. Thus, content-oriented networks may represent

a fundamental shift in the degree of communication privacy.

Many countries already censor Internet usage, and giving them

a network architecture that provides far greater access to user

requests would further tighten their grip on information flow. In

particular, had content-oriented networks been in use, blocking

information during the uprisings in the Middle East would have

been much an easier task for governments.

Our aim in this paper is tip the balance of privacy in content-

oriented networks back toward the network user. We are not

striving for ideal privacy (because we don’t think it possible),

just a significant improvement over what current content-oriented

designs would give.

2. MODEL AND SCENARIO
In this section we define a realistic scenario for preserving

privacy in content-oriented networks, including the capabilities of

adversaries, the rules of the game, and why prior work doesn’t

immediately meet the need.

2.1 Basic Setting
We consider a setting in which a government (or any adversary)

is trying to prevent the dissemination of flagged content; in

particular they want to block downloads of such content and/or

detect which users are asking for this content.1 There are three

parties involved: the government, the publisher of the flagged

content, and the users of the flagged content. We assume that the

set of users is large, and all information flow between publishers

and users is in the open with no detailed coordination between

publishers and individual users.

In addition, we assume that the government is interested in

blocking wide dissemination of content (rather than merely trying

to block its delivery to a few individuals). Moreover, we assume

that the government wants to stop the content delivery in near real-

time; it cannot afford to take days or weeks before detecting that

flagged content has been delivered. Thus, to summarize, this is

a problem of mass dissemination and real-time mass censorship.

1While we mainly concern ourselves with a censoring-government
style of adversary, the adversary may be any party that aims to filter
and monitor content for any reason.

We stress this point because the nature of the problem renders

ineffective many traditional approaches to privacy.

2.2 Attack Model
We assume all parties attach to a public network in which all

content requests (fetches) and content deliveries, can be observed

by the adversary. We focus on two attacks.

In a name-watchlist attack, the adversary has a list T of content

names that it wishes to filter or eliminate. It then interposes on links

in the network performing real-time filtering; if a content fetch

matches against T the adversary may squelch the request and/or

record the user that requested that data. In addition, the adversary

may attempt to delete the data with names in this target list T . The

watchlist attack can be thwarted by query and data anonymity—

if it is difficult for an adversary to determine whether a fetch or a

piece of stored content matches against T , then it is difficult for

the adversary to effectively interfere with the dissemination of this

content.

In a content-analysis attack, the adversary does not use a

precompiled watchlist, but instead inspects the data to see if it

should have been flagged (it contains the wrong keywords, etc.).

This attack can be thwarted by providing plausible deniability for

users (which means that they can plausibly claim that the data they

received is good).

2.3 Scenario
Our goal is to prevent the two attacks above in a scenario that

closely matches what we believe realistic deployments of content-

oriented networks might look like. In particular, we make the

following assumptions:

Neutral, large storage infrastructure. We assume that the

infrastructure used to store data (we do not mean caches in the

network, but the servers where original data is stored) is not

controlled by the users, publishers, or the government. That is, we

expect that a wide range of administrative and political domains

will provide storage infrastructure with no central control. We also

assume that the storage infrastructure is very large. This means that

the government cannot erase content quickly (it may be able to take

action against a small set of objects, but tracking down data on a

disparate set of machines will be slow), and that publishers cannot

enforce certain storage rules (as used in the censorship-resistant

storage systems). Finally, we expect that the servers will allow a

flexible, scheme-agnostic approach to naming at high level. That

is, publishers are basically free to name their content as they see fit.

No secrets. We assume that users and publishers do not share any

secret information that can be used to bootstrap privacy-enhanced

communication. That is, adversaries will know everything users

know. Besides preventing shared key cryptography, this also

prevents the publishers from using secret servers from which users

can download data; the government will know about these servers

and can shut them down.

No key distribution. While public keys for major publishers may

be widely known, we assume that user-related information (their

identity or public keys) will not be widely known at the time of

publication and cannot be easily distributed, thus making it difficult

for content publishers to perform user-targeted content (broadcast)

encryption.

No infrastructure support. We assume that the infrastructure

will perform the basic functions of content-oriented networking

but provides no special privacy-oriented services or mechanisms

as would be needed for host-based anonymity infrastructures such

as Tor.

Willing and able publishers. We assume that every flagged

document has a publisher who is willing to help users preserve

their anonymity. This publisher need not be the originator of

the document, but is someone who is willing to publish material

derived from that document (as described later). Moreover, these

publishers can maintain a reasonably high rate of publication.

Limited adversarial resources. Because these attacks are in near

real-time, we assume that an adversary can only bring a limited

amount of resources to bear on any individual request. That is, the

amount of computation devoted to analyzing the content is limited

(in a content-analysis attack) and the size of the watchlist is limited.

Limited protection for individuals. Our goal is not to protect an

individual from a direct assault by the adversary. If the adversary

devotes a large amount of resources against an individual user, we

assume it will be quite difficult to prevent them from determining

if flagged content was downloaded. So, we choose an easier goal:

protecting users when the resources devoted per user is limited.

This won’t protect a small group of dissidents, but mass movements

would find protection from these measures.

2.4 Known Approaches
While the study of network privacy has a long history, to the best

of our knowledge no existing approach is adequate for our needs.

We’ll delay the detailed analysis of the prior work until Section 5

but now briefly summarize the primary limitations of the existing

systems relative to our scenario.

Systems such as Tor [13] and Freenet [11] provide anonymity

for users. However, they require a sizable infrastructure (which

we assume the users don’t have). In addition, they do not

prevent watchlist attacks: they prevent the adversary from knowing

who asked for a given object, not which object was requested.

Approaches such as broadcast encryption [15] and public-key

steganography [31] effectively preserve the privacy of content.

They do not apply to our situation because they require information

to be shared between publishers and users.

We cannot use approaches such as Infranet [14] or private

information retrieval [10] because they require infrastructure (or a

cooperating storage). Censorship-resistant storage systems such as

Freehaven [12], Tangler [32], and Dagster [28] are perhaps the most

promising for our setting, though they too use specialized storage

infrastructure.

For content-analysis attacks, we can’t use existing approaches to

provide users plausible deniability, such as repudiable information

retrieval [3] or off-the-record messaging [6], since they require

cooperation from particular storage nodes (that could be shut down

if known by the government, and the government knows everything

users know). Approaches such as deniable encryption [8] require

that content publishers share secret keying information with end

users.

3. DESIGN
Since both the user and the adversary share the same information

in our setting, our goal is to create computational asymmetry

that allows users to retrieve content efficiently but that makes it

computationally expensive for the adversary to:

• Identify that the name being requested refers to flagged

content. This makes name-watchlist attacks hard to mount

on a large scale.

• Identify that the content retrieved should have been flagged.

This makes large scale content-analysis attacks difficult.

Different aspects of our mechanism achieve these separate goals,

but they share the same overall approach which is to hide the names

and content the adversary wishes to blacklist or discover by mixing

the content’s constituent data blocks with the blocks of normal

content. A user can then fetch the content by judiciously selecting

mixed data blocks to reconstruct the desired content, while the

adversary is forced to perform significant computation to determine

the true name of and content in those mixed blocks.

We disclaim the novelty of the basic mechanism we use to mix

blocks; it bears a strong resemblance to the storage mechanisms

used in [28] and [32]. The novelty of our approach is in its

application to the domain of content-oriented architectures without

the cooperation of the storage infrastructure. In our setting,

publishers insert mixed blocks and users submit a series of requests

for this mixed data, and rather than intertwine the fate of cover

(normal) and target (flagged) documents (which is the goal of [28]

and [32]) we instead create computational asymmetry between the

user and the adversary as well as the content producer and the

adversary.

3.1 Setup
Consider a “target” file t that the adversary wishes to censor to be

composed of blocks t1, t2, . . . , tn and a “cover” file c with blocks

c1, c2, . . . , cm. The content names for all files, cover or target,

are known to all parties. We assume that although the file names

are not limited by a specific structure, the name of each block is

direct or indirect result of hashing the file/block name/content (see

Section 3.2). We also assume all blocks are of equal length and that

files are padded to a multiple of the block length. These blocks are

mixed together by content producers during the content publishing

step; a chunk is the result of mixing two or more data blocks. That

is, a block is the piece of the original file, and a chunk is a mixture

of two or more blocks.

3.2 Chunk Creation
Before two data blocks can be mixed together we must first

make the data pseudorandom (or else our construction below won’t

sufficiently hide document content). Conventional approaches to

randomizing data involve encryption, but since content publishers

and users don’t share keying information, the randomizing transfor-

mation must be keyless. Fortunately, two approaches can meet our

needs: the all-or-nothing transform [26] and fixed key large-width

block cipher constructions [25]. We simply apply our randomizing

function r(·) to each data block before performing any operations.

These randomizing functions can be reversed by the user (and

adversary) once the data has been received.2

Content publishers select specific “cover” content to mix with

the “target” piece of content being published. The identity of these

“cover files” are known to both users and the adversary. For all k-

tuples composed of cover and target blocks (in any mixture, in any

order), the content publisher computes the exclusive-or of the tuple

and publishes the resulting chunk. For example, for k = 2 and

given the blocks r(t1), r(t2), and r(c1), r(c2), the publisher would

compute and publish r(t1) ⊕ r(t2), r(t1) ⊕ r(c1), r(t1) ⊕ r(c2),
r(t2)⊕r(c1), etc. where ⊕ denotes exclusive-or. By fetching some

purposely chosen set of these blocks (e.g. r(ti)⊕r(c1), and r(c1))
the user can reconstruct the original block ti and therefore the file

t. The question is how to do this without the adversary being able

to do the same easily.

2An all-or-nothing transform can also be applied to the whole file
before being applied to the individual blocks; in this way, only
after decoding all blocks of a file can an adversary perform content
analysis on the data.

The name of the randomized blocks and the composite chunks

are computed in a well-known way; we will assume it is of

the following form (but little in our approach depends on this

assumption). The name n(t, i) for block ti is n(t, i) = H(H(t), i)
where H is a well-known cryptographic hash function. The same

applies to cover blocks ci, taking the name n(c, i) = H(H(c), i).
This naming convention applies to all cover and target files; in the

presentation of our notation we only referred explicitly to a single

cover and target file, but our process applies to the entire set of

target files and cover text cover files.

The names of composite chunks are computed by taking the hash

of the names of the constituent blocks: for example, the name

of the 2-tuple (t2, c7) is H(n(t, 2), n(c, 7)) which is given by

H(H(H(t), 2), H(H(c), 7)).
All chunks that are created and published are known to all

parties. That is, both users and adversaries are aware of the names

of the target files, the names of the cover text cover files, and the

size of the tuples used to create chunks (publishers create tuples up

to a certain size). The user optimistically assumes that the content

for all possible chunks (up to the given size k) is available, and

upon failure to locate a chunk, notes that the chunk is unavailable

and selects other chunks that can be used recreate the same block

data.

This process of chunk creation can be thought of as creating a

directed bipartite graph: nodes which represent chunks have edges

from their constituent data blocks. However, since it is hard to

invert a chunk name or the chunk data itself, it is difficult for the

adversary to determine which blocks were used to compose a given

chunk. We discuss this further in Section 4.

3.3 Content Retrieval
To receive a file a subscriber needs to know the content hash,

its length in blocks, and its cover blocks. Secure back-channels

should exist in the system that allows the user to receive meta

information listing the names and algorithm to generate the names

for each block. The user then starts receiving a file by requesting

blocks and chunks belonging to that file. The user requests chunks

by requesting them explicitly by name. Given a piece of content

t that the user wishes to retrieve and the associated cover blocks

with which the content’s blocks are mixed, the subscriber requests

chunks that will enable reassembly of the content t via belief

propagation [22] or Gaussian elimination.

To provide a degree of plausible deniability, the user can select a

set of chunks that enable re-creation of more than a single piece of

content. In particular, the user can select chunks where the entire

set recreates one or more cover files, while the composition of

a particular subset recreates a target file. While there are many

possible strategies a user might employ in selecting chunks, a

simple approach is as follows: the user initializes a simulated

reassembly session (symbolically—no real data is needed) for the

data of interest, t, and randomly selects chunks that contain each

of the blocks of t and of the cover data c until the simulation is

capable of “decoding” both t and some data c; at this point, the

user requests all the chunks it selected in a random order.

Note that the noninvertability of the names of the chunks makes

it hard to execute a watchlist attack, while the need to explore

all combinations of reconstruction (i.e. all permutations of the

requested chunks) makes it hard to mount a content-analysis attack.

We analyze these properties in greater detail next.

4. ANALYSIS
In this section we analyze two key aspects of our design. First,

how hard is it for the adversary to perform a privacy-threatening

attack at scale? That is, what is the cost to the adversary to decode

chunks observed in the network in an attempt to match the chunks

to its watchlist or do a content-analysis attack? Second, even if

an adversary successfully mounts an online name-watchlist attack

or does post-hoc analysis after a content-analysis attack, can the

adversary non-repudiably link the deciphered content to a user? We

offer preliminary answers to these two questions, and discuss the

implications.

4.1 Computational Asymmetry
Here we examine the computational cost for an adversary to take

an unknown chunk or chunk name and determine its constituent

blocks. For the adversary it is enough to be able to decompose

a chunk name to its constituent block names, we call this process

decoding. As described in the last section, the content publisher

creates chunks by mixing blocks of k tuples of the n target and m
cover blocks. Assuming that 2 ≤ k � n ≤ m, then for each k
there exists O((n + m)k) chunks, and thus the time to enumerate

these chunk names in real time is O((n + m)k). Since neither a

chunk’s name or content can be examined to determine its contents,

to decode a chunk request an adversary must compute all possible

O((n + m)k) chunk names and compare them against the given

chunk name until a match is found.

This decoding process from the adversary’s perspective is akin to

solving the subset-sum problem, in which given a set of numbers

the goal is to determine whether some subset sums to a target value.

Here instead of numbers, the set is composed of block names, some

subset of which must combine to form a chunk name. Since we

limit k, the cost does not grow to be exponential as in the general

case of subset-sum, but the cost does grow rapidly as k increases

or as the set of block names (n + m) grows. While there exists

a pseudo-polynomial dynamic programming solution for subset-

sum, it cannot be directly applied here since it makes assumptions

on the bound of the values themselves.

4.1.1 Subscriber vs. Adversary
First, we assume there exists one flagged file of interest to the

adversary and several users; and all the combinations of flagged

and cover blocks are published. The cost to the user in requesting

and later determining the constituent blocks of a chunk is O(1),
since the user explicitly selects chunks based upon the blocks it

desires. For the adversary, the cost depends on its resources (time

and storage). The adversary can either pre-compute and store all

possible chunk names and their constituent block-names, or, if it

has limited resources, the cost for it to decode each chunk is O((n+
m)k) at best, since for each comparison the adversary needs to

calculate all possible chunk names.

If the adversary is able to pre-compute and store all possible

chunk names beforehand, its cost is reduced to O(log (n+m)k).
However, if the adversary is interested in several flagged files, it

is at a significant disadvantage: it may not even know which set

of target and cover blocks to consider in its decoding attack. That

is, the user knows that it is seeking out a flagged file that is mixed

with one or more specific cover files. While the adversary also

knows this mapping between flagged files and cover files, it does

not know which flagged file the user is currently requesting and

therefore cannot easily limit the space of chunk names it must

generate in the decoding process. Thus to be able to perform mass

censorship and/or content analysis for a stream of i chunks for

unknown flagged files per user that j users request per unit time,

the adversary must perform Ω(i · j · log (n+m)k) work per unit

time, while each chunk request costs a user O(1) work.

4.1.2 Publisher vs. Adversary
In the scenario above, while the work required of the user

is constant, content publishers must produce all the chunks in

advance, and thus must perform O((n + m)k) work to generate,

name, and publish the chunks for a given file. While this is more

work than users must perform, especially in the general case in

which the adversary does not pre-compute names, the amount of

work the publisher must do is likely less than the adversary since

the content publisher knows exactly which flagged and cover files

to consider during chunk generation. More importantly, there is no

time constraint for the content publisher, since chunk generation

does not need to be done in real time. However, this approach is

inefficient in its use of storage.

As mentioned earlier, the cost for the adversary is reduced if it

has the capability of pre-computing possible chunk names based

on their constituent blocks. To give a sense for the computation re-

sources required on the part of the adversary and content publisher,

we calculate a few examples of the cost in computation. Suppose

a file is composed of 500 blocks, each 1 Kb, and a publisher wants

to publish these blocks in combination with 500 blocks of cover

data. With k = 3 this results in 109 chunks of data in total to

publish whereas the user needs to retrieve only enough chunks to

reassemble the 500 blocks it wants, likely not much more than 103

chunks. Assuming a fast hash function implementation on a single

CPU pre-computing all the possible chunk names is likely to take

the adversary less than 10 seconds.3 10 seconds of pre-computation

time is not a limiting factor even if the cover blocks are set to

change periodically. Increasing (n + m) by decreasing the size

of the data blocks or increasing the number of cover files as well as

increasing k results in a likely decrease in how fast the adversary

can pre-compute a table of chunk names. In this case, although the

costs per user remain the same, the publisher’s cost increases as

rapidly as the adversary’s cost.

A more sophisticated way of preserving-privacy is when pub-

lisher is not forced to publish all possible combinations of flagged

and cover blocks and instead publishes only a proportion of

possible chunks it announces. This approach is much less resource-

intensive for the publisher as it can announce a huge set of cover

blocks to keep the adversary busy but not publish/match all the

combinations itself.

Suppose in previous example the number of cover blocks that

publisher announces were equal to 9500 blocks. For just this one

flagged file adversary’s cost increases to generating 1012 possible

chunk names. Generating 1012 chunk names takes more than 2.5

hours for a single CPU, enough time to change the cover set by the

publisher(see Section 4.2). More importantly—since the adversary

can exploit parallelism—the adversary, given 512-bit hash values,

would have to perform real-time matching against a 64TB table to

match the blocks for just this one file. It is important to note that the

cost for the publisher has not changed as it still needs to generate

109 chunks of data. The user will still need to receive about 103

chunks and thus the actual chunk reception cost remains the same

but user has to ask for more chunks at a time because one chunk

request does not necessarily result in a chunk response. Figure 1

depicts the relationship between computation time of chunk names,

the number of data blocks, and k.

4.2 Timing and Scalability
To thwart an attack in which the adversary pre-computes a table

of all possible chunks, content servers and users can consider

3Suppose 108 hash operations can be performed per second.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 3 3.5 4 4.5 5

N
am

e
Ta

bl
e

C
om

pu
ta

tio
n

Ti
m

e[
s]

K

1000 blocks
10000 blocks

100000 blocks

Figure 1: Having more blocks or increasing k makes the

adversary’s cost grow exponentially (linear in log scale) while the

user’s costs increase linearly.

adding a timing dimension to the generated chunks and requests

to create scalability issues for the adversary.

Content publishers can rotate and republish the mapping be-

tween target and cover files regularly, thereby invalidating the pre-

computed tables. The watchlist attack could be mounted in either a

passive or an active mode. In passive mode, the adversary is unable

to access the user’s traffic in real time, and instead can only analyze

archived traffic to find a match. In active attacks, the adversary has

timely access to the users traffic and can monitor it in real time.

Under a passive attack, content servers can benefit from their

stateless operation vs. the adversary and the storage cost of its

attack. In a name-watchlist attack, the adversary aims to prove the

user has asked for the flagged file. This means that the adversary

needs to keep and check each generated request against all possible

chunk combinations across time. Given rotational republication,

the computational and storage cost for the adversary increases to

O(t · (n + m)k) where t is the number of times the set of cover

and target files have been rotated and changed in the system. This

value does not increase costs for the content server as it only needs

to index the most recent chunk combinations and update the “meta-

information” for current users.

Active attacks are harder to prevent, as t does not increase

the real-time matching cost for the adversary. Another aspect of

the adversary’s operation can be used to increase its operational

complexity. To prove a watchlisted file has been retrieved by

the user, the adversary needs to decode many chunks belonging

to that file that been retrieved by the user. Thus, the adversary

must keep a chunk retrieval log. Assuming there is only a single

suspicious user at the time, the user can aim to produce extra,

spurious requests. The user should be able to rotate its request

pattern and even add noise to the sequence of requests that result

in retrieving a file. That is, instead of requesting all the necessary

chunks for an specific file in a sequence of t1, t2, . . . , ti periods,

the user should be free to distribute and rotate its requests over a

much larger time span such as t1, t2, . . . , ti, . . . , ti+p. In this case,

in addition to all matching operations, the adversary would require

at least O((i + p) · (n +m)k) storage space to be able to prove a

single chunk of a watchlisted file has been retrieved by the user.

4.3 Plausible Deniability
Despite the costs borne as described above, adversaries may still

decide that it’s worth it to prosecute a single user or single piece of

content. End-to-end protocols securing the communication channel

typically perform authenticated key exchange and use random

symmetric keys to encrypt and authenticate data. The encrypting

party generates the key, and then it is explicitly delivered to any

party that needs to decrypt the content. Since the key is exchanged

before any data is transmitted, a content-analysis attack is difficult

for an adversary to mount against secure communication in today’s

networks.

However, in a content-oriented network, an adversary may

decide to perform an offline attack in which it spends the time to

decode a chunk or set of chunks, or perform an online watchlist

attack that targets a specific piece of content. To protect the user in

that case, we aim for plausible deniability. To this end, the user can

select chunks in order to enable the reassembly of many different

files, including normal files.

The two goals of our design—computational asymmetry for

chunk decoding and plausibly deniable requests—provide defense

in depth. Since it is possible that a determined adversary will

prosecute a single user or target a piece of content, it is important

that even if the adversary puts the computational effort in, it isn’t

possible to prove a user got “target” content.

5. RELATED WORK
User, storage, and query privacy research each has a long history,

encompassing numerous distinct strands. There are many possible

axes along which to categorize prior work but here we consider

only prior work with a primary goal of a) privacy, b) censorship

resistance, or c) plausible deniability for users. However, we note

it is typical for these systems to have more than a single goal; many

of them protect users against a broad set of threats with a panoply of

mechanisms. We note the literature is replete with approaches for

steganographic communication, though steganographic encodings

are generally domain-specific, and none to our knowledge directly

apply to content-oriented networks.

Privacy. Chaum’s mix-nets [9] forms the foundation for several

systems providing user anonymity in public networks. Tor [13, 17]

is a widely used instantiation of the technique, though many

similar approaches provide specific benefits over it, including e.g.,
Tarzan [16] (peer-to-peer overlay nodes), Freedom [33] (cover

traffic), Anonymizer [2] (centralized performance). While all these

approaches provide privacy of the end user’s identity, they are not

designed for an environment in which content itself is central to the

architecture and is the target of censors.

Private Information Retrieval (PIR) and Oblivious Transfer (OT)

ensure privacy of the queries themselves. In OT schemes [5,23,24]

a client can request a piece of data from a server while ensuring that

neither the server learns what was requested nor the client learns

anything about data that wasn’t requested. PIR schemes [7, 10, 21,

27] relax this requirement by only requiring that the server not learn

what the client requested. These mechanisms require specialized

server-side support and do not fit with our scenario.

Censorship Resistance. Eternity service [1], Freehaven [12], and

Freenet [11] have sought to enable the persistent and anonymous

publication of content via a global storage service that, through

replication and oblivious storage mechanisms, make it difficult to

censor. Tangler [32] and Dagster [28] take a complementary ap-

proach, aiming to “entangle” the on-disk representation of benign

content with that of potentially-objectionable content, making it

harder to selectively censor content [4]. Mnemosyne [18] aimed

to provide an oblivious storage service via which users could store

their content without revealing the content or even its presence.

Plausible Deniability. To provide deniability in storage there are

popular systems (e.g., TrueCrypt [30]) using an approach known as

deniable encryption [8], which allows a single, opaque ciphertext to

decrypt to multiple plaintexts (presumably one of which is benign).

To provide lower-cost query anonymity, researchers developed a

variant of PIR called Repudiable Information Retrieval, in which a

server cannot learn definitively the content requested [3]. Off-the-

record messaging provides deniability for instant messaging: users

can communicate securely and authentically, but their communica-

tion is repudiable after the fact [6].

6. CONCLUSION
Compared to traditional networks, content-oriented networks

have the potential to expose users to a range of new privacy

vulnerabilities without an obvious recourse. In this paper we

introduced a technique by which users can protect their privacy

despite a lack of specialized network mechanisms or shared secrets

by leveraging computational asymmetry. Our analysis suggests this

approach may have promise in an environment where substantial

storage infrastructure is available, as we expect will be the case.

We only scratched the surface of the privacy implications of

content-oriented networking, and we expect the area to require

more efforts to raise the privacy bar to the level of today’s Internet.

Specifically, further study is needed in reader anonymity—the sort

of privacy that systems like Tor provide. While there are clumsy

ways of achieving such functionality in content-oriented networks

even today, there is an urgent need for approaches that achieve

the same degree of reader anonymity, and crucially, pseudonymity,

without resorting to a host-oriented overlays.

7. REFERENCES
[1] R. Anderson. The Eternity Service. In Proc. of Pragocrypt,

1996.

[2] Anonymizer. http://www.anonymizer.com/.

[3] D. Asonov and J.-C. Freytag. Repudiative Information

Retrieval. In Proc. of Workshop on Privacy in the Electronic
Society, 2002.

[4] J. Aspnes, J. Feigenbaum, A. Yampolskiy, and S. Zhong.

Towards a Theory of Data Entanglement. Theoretical
Computer Science, 389(1-2):26–43, 2007.

[5] M. Bellare and S. Micali. Non-interactive Oblivious Transfer

and Applications. In Proc. of CRYPTO, 1989.

[6] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record

communication, or, why not to use PGP. In Proc. of
Workshop on Privacy in the Electronic Society, pages 77–84,

2004.

[7] C. Cachin, S. Micali, and M. Stadler. Computationally

Private Information Retrieval with Polylogarithmic

Communication. Lecture Notes in Computer Science, 1592,

1999.

[8] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable

Encryption. In Proc. of CRYPTO, 1997.

[9] D. L. Chaum. Untraceable Electronic Mail, Return

Addresses, and Digital Pseudonyms. Communications of the
ACM, 24(2):84–90, 1981.

[10] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private

Information Retrieval. In IEEE Symposium on FOCS, 1995.

[11] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and

B. Wiley. Protecting Free Expression Online with Freenet.

IEEE Internet Computing, 6(1):40–49, 2002.

[12] R. Dingledine, M. J. Freedman, and D. Molnar. The Free

Haven Project: Distributed Anonymous Storage Service.

LNCS, 2009, 2001.

[13] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The

Second-Generation Onion Router. In Proc. of USENIX
Security Symposium, 2004.

[14] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and

D. Karger. Infranet: Circumventing Web Censorship and

Surveillance. In Proc. of USENIX Security Symposium, 2002.

[15] A. Fiat and M. Naor. Broadcast Encryption. In Proc.
CRYPTO, 1993.

[16] M. J. Freedman and R. Morris. Tarzan: a Peer-to-Peer

Anonymizing Network Layer. In Proc. of ACM CCS, 2002.

[17] D. Goldschlag, M. Reed, and P. Syverson. Onion Routing.

Commun. ACM, 42(2):39–41, 1999.

[18] S. Hand and T. Roscoe. Mnemosyne: Peer-to-Peer

Steganographic Storage. In Proc. of IPTPS, 2002.

[19] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,

N. H. Briggs, and R. L. Braynard. Networking Named

Content. In Proc. CoNEXT, Dec. 2009.

[20] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.

Kim, S. Shenker, and I. Stoica. A Data-Oriented (and

beyond) Network Architecture. In Proc. of SIGCOMM, 2007.

[21] E. Kushilevitz and R. Ostrovsky. Replication Is Not Needed:

Single Database, Computationally-private Information

Retrieval. In Proc. 38th IEEE FOCS, 1997.

[22] M. Luby. LT codes. In Proceedings of IEEE FOCS, 2002.

[23] M. Naor and B. Pinkas. Oblivious Transfer with Adaptive

Queries. In Proc. of CRYPTO, 1999.

[24] M. Naor and B. Pinkas. Efficient Oblivious Transfer

Protocols. In Proc. of SODA, 2001.

[25] M. Naor and O. Reingold. On the Construction of

Pseudorandom Permutations: Luby-Rackoff Revisited.

Journal of Cryptology, 12(1):29–66, 1999.

[26] R. Rivest. All-or-nothing Encryption and the Package

Transform. In Proceedings of Fast Software Encryption,

1997.

[27] S. W. Smith and D. Safford. Practical Private Information

Retrieval with Secure Coprocessors. In Technical report,
IBM T.J. Watson Research Center, 2000.

[28] A. Stubblefield and D. Wallach. Dagster:

Censorship-Resistant Publishing Without Replication. Rice
University, Dept. of Computer Science, Tech. Rep. TR01-380,

2001.

[29] D. Trossen, M. Särelä, and K. Sollins. Arguments for an

Information-centric Internetworking Architecture.

SIGCOMM CCR, 40, Apr. 2010.

[30] TrueCrypt. http://www.truecrypt.org/.

[31] L. Von Ahn and N. Hopper. Public-key Steganography. In

Proc. of EUROCRYPT, 2004.

[32] M. Waldman and D. Mazieres. Tangler: a

censorship-resistant publishing system based on document

entanglements. In Proc. of ACM CCS, pages 126–135, 2001.

[33] Zero Knowledge Systems Freedom Network.

http://www.zks.net/.

