
Optimization Problems in Congestion Control 

Richard Karp Elias Koutsoupias 
International Computer Science Institute and University of California, Los Angeles 

University of California at Berkeley 
1947 Center St., Suite 600 

Berkeley, CA 94704 
karp @ icsi.berkeley.edu 

Christos Papadimitriou 
University of California at Berkeley 

Computer Science Division 
Berkeley, CA 94720 

Chris tos @ cs. berkeley.edu 

Abstract 

One of the crucial elements in the Intemet’s success is its 
ability to adequately control congestion. This paper defines 
and solves several optimization problems related to Inter- 
net congestion control, as a step toward understanding the 
virtues of the TCP congestion control algorithm currently 
used and comparing it with altemative algorithms. We fo- 
cus on regulating the rate of a single unicast $ow when the 
bandwidth available to it is unknown and may change over 
time. We determine near-optimal policies when the avail- 
able bandwidth is unchanging, and near-optimal competi- 
tive policies when the available bandwidth is changing in a 
restricted manner under the control of an adversary. 

1. Introduction 

The Internet carries packets on a best-effort basis with 
no guarantees as to when, or even if, packets will be de- 
livered. When the Internet is congested, the resulting large 
packet delays and high packet drop rates seriously degrade 
the performance of most Internet applications. One of the 
crucial elements in the Internet’s success has been its abil- 
ity to adequately control congestion. The predominant form 
of congestion control is embodied in the TCP protocol. In 
oversimplified terms, when TCP suffers a packet loss, it de- 
creases its sending rate (by decreasing its window size by 
a factor of two); when a packet is successfully delivered, 
it increases its sending rate (by increasing its window size 
by one) [2]. This process of additively increasing and mul- 
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tiplicatively decreasing (AIMD) the transmission rate can 
be thought of as a probing algorithm designed to find the 
maximal rate at which TCP can send packets under cur- 
rent conditions without incurring packet drops. While the 
AIMD approach is widely considered the most appropriate 
one -largely based on its empirical success and on certain 
control-theoretic arguments of Chiu and Jain [ 11-- here we 
seek to broaden our understanding of congestion probing 
algorithms in a more algorithmic direction. We formulate 
congestion probing as an optimization problem described 
in Section 2. We first introduce, in Section 2.1, the case 
when the other traffic remains constant, which turns out to 
be a novel and intriguing variant of binary search. But of 
course, the other traffic is not constant; in Section 2.2 we 
introduce the on-line algorithm problem of determining the 
worst-case behavior of probing strategies in the presence of 
changing available bandwidth. We present our technical re- 
sults for the static and dynamic cases in Sections 3 and 4 
respectively. We conclude in Section 5 with a brief discus- 
sion of open problems. 

Before turning to our technical results, we want to em- 
phasize that we are not attempting to accurately model what 
happens in the Internet and are not suggesting that TCP 
should be redesigned along the lines suggested by our re- 
sults. Quite the contrary, we acknowledge that practical ex- 
perience suggests that TCP’s congestion control algorithm 
is better than many of the proposed alternatives. The prob- 
lem is that we have as yet no formalism with which to ex- 
press this superiority. In short, while TCP may be the an- 
swel; we have yet to define the question. We view this paper, 
in which we define, and solve, some simple optimization 
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problems arising from congestion control, as an initial step 
in a research program that progressively adds additional re- 
ality to our models in an attempt to identify the question to 
which TCP is the answer. 

2. Model 

As discussed in the Introduction, one can view conges- 
tion control algorithms as a form of probing; the goal is 
to determine the maximal bandwidth currently available, 
and the result of the probe is either a successful transmis- 
sion of all packets, or the dropping of one or more. TCP’s 
congestion control algorithm increases the rate additively 
upon success, and decreases the rate multiplicatively upon 
failure. We attempt to deepen our understanding of such 
dynamic probing algorithms through a series of simplified 
models. 

We consider the problem of regulating the rate of a uni- 
cast flow from host A to host B. The bandwidth available to 
the flow fluctuates according to the varying requirements for 
bandwidth of other competing flows. Host A is provided no 
direct information about the competing demands for band- 
width or the topology of the Internet, but does receive some 
limited information as to whether the flow is experiencing 
packet drops, and must determine its transmission rate on 
the basis of this information. 

We assume that time is divided into successive periods, 
and in each period t there is a threshold ut, representing the 
maximum number of packets that A can transmit to B with- 
out experiencing packet drops. In each period t A transmits 
some number of packets xt and receives immediate feed- 
back as to whether packet drops have occurred; i.e., whether 
xt > ut. A cost function c(x, U) is given, which represents 
the cost of transmitting x packets in a period with thresh- 
old U. In our models, the cost reflects two major compo- 
nents: opportunity cost due to sending less than the avail- 
able bandwidth when ut > xt, and retransmission delay 
and overhead due to dropped packets when xt > ut. The 
goal of host A is to minimize the total cost incurred over 
all periods or, in the case of an infinite sequence of periods, 
the average cost per period. Since A’s only feedback from 
period t is whether xt > ut, A does not precisely know ut, 
or 4% ut). 

2.1. The Static Case 

We assume that the fixed threshold U is a positive integer 
less than or equal to a known upper bound n. The problem 
can be viewed as a Twenty Questions game in which the 
goal is to determine U at minimum cost by queries of the 
form “Is x > U?’. The cost of such a query is c(z, U). At 
any step the initial data plus the results of previous queries 
determine an interval ofpinning in which the threshold must 

lie. A probing algorithm is a rule specifying the next query 
as a function of the interval of pinning. Given an upper 
bound n on the threshold, We wish to characterize those al- 
gorithms that minimize either the worst-case cost or the ex- 
pected cost under the assumption that the threshold is drawn 
from the uniform distribution over { 1,2 ,  . . . , n}. 

Notice that, for an arbitrary cost function c(x, U) there 
is a straightforward dynamic programming algorithm with 
running time O(n3) to minimize expected cost. This algo- 
rithm can also accommodate a discount factor, correspond- 
ing to a geometric distribution of the number of periods for 
which the fixed threshold is in effect. However, in this paper 
we focus on the asymptotic behavior of actual “uniform” al- 
gorithms, and on lower bounds, for the following two spe- 
cific cost functions: 

1. The gentle costfunction, Ga(x, U), which is equal to 
U - x when x 5 U and to a(x - U) when x > U, where 
(Y is a constant; 

2. The severe costfunction, S(x,u), which is equal to 
U - x when x 5 U and to U when x > U. 

When x < U each cost function is equal to the oppor- 
tunity cost of sending only x packets when U could have 
been sent. When x > U the two cost functions take into 
account the cost of compensating for packet loss, under dif- 
ferent assumptions about the protocol’s behavior in the face 
of packet drops. The severe cost function models the case 
where the protocol must wait for the first dropped packet to 
time out before resuming transmission. If we take the pe- 
riods to be the length of this time-out, and assume that the 
first loss occurs close to the beginning of the interval, then 
when xt > U essentially no packets are transmitted during 
that period and the resulting lost bandwidth can be reason- 
ably approximated as U. The family of gentle cost func- 
tions models the case where the protocol need not wait for 
lost packets to time-out (e.g., the so-called fast-retransmit 
in TCP) so U packets get through to the receiver, but there is 
an overhead for detecting and retransmitting the x - U extra 
packets that are dropped. 

We show that for the gentle cost function there is a sim- 
ple algorithm that is essentially optimal with respect to both 
worst-case and expected total cost. At each step the algo- 
rithm chooses a query that divides the interval of pinning 
into two parts whose sizes are approximately in the ratio 
f i  to 1. The expected cost is 9 + O(1ogn) and the 
worst-case cost is f i n  + O(1ogn). 

For the severe cost function we have an interesting al- 
gorithm whose worst-case cost is O(n  log log n). We prove 
that the algorithm is optimal (up to a constant factor) by 
showing a matching lower bound O(n  log log n). These re- 
sults are also extended to the case where no upper bound is 
given on the threshold U. 
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2.2. The Dynamic Case 

Here the threshold may vary from step to step. We as- 
sume that the sequence {ut} is specified by an adversary 
who knows our algorithm for choosing the sequence {xt} of 
probes. Obviously, we are in the realm of competitive anal- 
ysis [4], in which the performance of an on-line algorithm 
for choosing { z t }  is compared with the best among some 
family of off-line algorithms for choosing {xt}. An on- 
line algorithm must choose xt knowing only its sequence 
z1,22, . , q - 1  of previous choices and the result of com- 
paring each of these previous choices 2, to the correspond- 
ing threshold U,. In contrast, an off-line algorithm has the 
benefit of hindsight; it knows the entire sequence {ut} be- 
forehand. An unrestricted off-line algorithm could simply 
choose xt equal to ut for all t ,  incurring a total cost of zero. 
For this reason it seems more fruitful to study the gain rather 
than the loss. The gain function g ( x ,  U )  counts the number 
of transmitted packets and it is g(z, U )  = U - c ( z ,  U ) ,  tum- 
ing the problem into a maximization problem. 

Still the adversary is so powerful that it frustrates all on- 
line algorithms. To be able to discriminate between online 
algorithms we level the playing field by curtailing the power 
of the adversary to select the threshold sequence {ut}. The 
question thus arises: What are meaningful ways to do so? 
This is a complicated problem and an interesting one in 
its own right; the threshold sequences depend both on the 
network topology and the interaction among all hosts that 
inject traffic into the network. The interaction among the 
hosts is of a game-theoretic nature (see Section 5) .  

A natural (and reasonably realistic) approach is to as- 
sume that the threshold does not change too drastically in 
a time step. We consider the case where ut+1 is restricted 
to be in an interval I (u t )  that includes ut. The adversary is 
allowed to choose any value ut+l in the interval. Again, the 
on-line algorithm finds out only whether zt 5 ut, but not 
ut; therefore it may not know I (u t )  but a larger interval I' 
that contains I(ut) .  

We study the severe gain function for three natural prob- 
lems of this kind: 

The interval I(ut)  is independent of ut, i.e., I (u t )  = 
[a, b], for a, b > 0. We show (subsection 4.1) that the 
optimal deterministic competitive ratio is a/b and the 
optimal randomized competitive ratio against an obliv- 
ious adversary is 1 + ln(a/b). 

The rate of the change is bounded, i.e., I (u t )  = 
[ut/p, put], for some constant p. In subsection 4.2 we 
analyze a variant of TCP and show that its competitive 
ratio is at most 4p - 2. We also indicate that no de- 
terministic algorithm can have a competitive ratio less 
than p. 

0 The change of the threshold is bounded, i.e., I(ut)  = 
[ut - a, ut + a] for some constant a. We show (sub- 
section 4.3) that the optimal deterministic competitive 
ratio is between 1 + a /p  and 4 + a/& where p is the 
absolute lower bound of the threshold (usually ,L? = 1). 

We conjecture that the latter two bounds can also be im- 
proved by randomization. 

3. The Static Case 

Let u denote the fixed but unknown threshold. At any 
step t an algorithm sends a number of packets xt, learns 
whether xt 5 U and incurs a cost ~(xt,~). Eventually 
the algorithm determines the integer U and incurs no further 
cost. 

At a general step in executing an algorithm A, the out- 
comes of previous steps have restricted u to some interval of 
integers [i..j], which we call the interval ofpinning. For the 
cost measures we consider, it is clear that the further course 
of the algorithm should depend only on the interval [i..j] 
and the outcomes of subsequent steps; it should not depend 
on how the interval of pinning Ii..j] was reached. This mo- 
tivates us to define an algorithm A as a function from the 
set of all intervals [i..j] into the positive integers, subject to 
the restriction that i 5 A ( i , j )  5 j .  We shall usually as- 
sume that there is an a priori upper bound n on U, which is 
also the parameter of our asymptotic analysis; however, we 
occasionally discuss how our algorithms can be extended 
to the unbounded case, which involves intervals of pinning 
of the form [ i . . ~ ]  (and in which the performance of algo- 
rithms is expressed as a function of U). 

Let c be a cost function q d  A an algorithm. Then 
C c , ~ ( i , u , j )  denotes the cost of executing algorithm A 
when the initial interval of pinning is [i..j] and the thresh- 
old is U ;  here i 5 U 5 j .  The function C c , ~  is defined 
recursively as follows: 
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Thus MAXCOST,,A(~, j )  is the worst-case cost of executing 
Algorithm A from the initial interval of pinning [i..j], and 

j- i+;.A *J) is the expected cost of Algorithm A when 
U is drawn from the uniform distribution over [i..j]. 

SUMCOST ( '  ' 

3.1. Algorithms and Upper Bounds 

We consider five algorithms. The first two, BIN and TCP, 
are far from optimal under our cost measures. The next 
three, SHRINK, UNSHRINK and GOOD, are near-optimal un- 
der different measures. 

The Algorithm BIN. This is the familiar binary search: 
 BIN(^, j )  = [-I. It is easy to see that, in the severe cost 
model, it has MAXCOSTS,BIN(~, n) = n'07(nJ +O(n) and 

n210g  (n)  SUMCOSTS,BIN(~,~) = 4 2  + O(n2),  while in the 
gentle cost model MAXCOSTG,,BIN(~, n) = max(1, cr)n+ 
o(n) and SUMCOSTG, ,BIN(~ ,~ )  = y n  + o(n). 

The Algorithm TCP. Starting from n, it halves the probe 
until it becomes less than or equal to U and it then keeps 
increasing the lower bound on U by 1 until U is determined. 
It is defined by: TCP(1,j) = [j/21, and, for i > 1, 
TCP(i,j) = i + 1. Under the severe cost function its 
MAXCOST is $ + o(n) and its SUMCOST is & + o(n2). 

The Algorithm SHRINK. The algorithm has two major 
phases. In the first phase we reduce the interval of pinning 
from [l, n] to one of the form [2t-1 + l,j] where j 5 2t. 
Having achieved this goal, the algorithm then proceeds to 
shrink the size of the interval of pinning successively down 

which guarantees that each of the O(1og log t) shrinkages 
incurs cost 0 ( 2 t ) .  It follows that the worst-case cost of the 
algorithm is O(n log log n). 

Specifically, the first phase is defined by the following 
rule: if J' > 2k then SHRINK(Bk-' + 1,j) = 2k + 1. 
The second phase is as follows: if there exists a t such that 
2t-1 + 1 5 i < j 5 2t and m is the largest integer such 
that j - i < $& then  SHRINK(^,^) = i + "(1, *). 

In terms of cost, this algorithm has the property that 
MAXCOSTS,SHRINK(~, n) = O(nlog1ogn). Thus this al- 
gorithm has significantly better worst-case cost than TCP 
and BIN under the severe cost model. We shall prove later 
that this algorithm is near-optimal with respect to worst- 
case severe cost. 

It is interesting to note that, for large n, the vast majority 
of the increasing steps in SHRINK are increments by one, 
while almost all decreasing steps are substantial -just like 
with the TCP protocol. 

to 2 t - 2  , 2t -4  , 2t-8 , .... This is done in a particular way 

The Algorithm UNSHRINK (Unbounded SHRINK). 
SHRINK can be extended to an unbounded version which 
we call UNSHRINK, with initial interval of pinning [l..oo]. It 
proceeds by determining an upper bound for U by repeated 
squaring, then performing a binary search to determine the 
logarithm of U, and finally emulating SHRINK. Its worst- 
case cost under the severe cost model is O(uloglogu), 
which is near-optimal. 

The Family of Algorithms GOOD,. At each step, this 
algorithm splits the interval of pinning into two parts whose 
sizes are in the ratio 1: ,/Z. 

 GOOD,(^,^) = i + m a x ( l , L s J ) .  It can be shown 
that MAXCOSTG, ,GOOD,(~ ,~)  = f i n  + O(1ogn) and 
SUMCOSTG,,GOOD,(~,~) = $n2 + O(n1ogn). We 
shall prove later that this family of algorithms achieves 
near-optimal performance for the family of cost functions 
G,, under both the MAXCOST and SUMCOST criteria. 

3.2. Optimality 

We now define the actual complexity of the prob- 
ing problems in our model. Let MAX COST^(^,^) = 
minA MAX COST,,^(^,^) and SUM COST^(^,^) = 
minA S U M C O S T , , A ( ~ , ~ ) .  Here c is a cost function 
and A ranges over all probing algorithms. MAX COST,(^,^) 
is the intrinsic worst-case complexity of the probing 
problem with cost function c and initial interval of pinning 
[i..j]. j++l ( is the intrinsic expected complexity 
(under the uniform distribution) of the same problem. In 
this subsection we give efficient dynamic programming 
algorithms for computing these quantities: We show that 
SUM COST,(^,^) can be computed efficiently for any cost 
function, and MAX COST^(^, j )  can be computed efficiently 
for the cost functions S and G,. 

For brevity let F ( i , j )  denote SUM COST,(^,^), where c 
is a given cost function. We obtain the following recurrence, 
which allows F ( i , j )  to be computed in O(( j  - i + 1)3) 
steps, where a step is an addition, subtraction, comparison 
or evaluation of the cost function.) 

SUMCOST, i j  

F ( i , i )  = 0 

In particular F ( i ,  n) can be calculated in O(n3) steps. 
Using simple modifications of the algorithm, it is possible 
to incorporate a finite time horizon or a discount factor, to 
model the possibility that the threshold will remain constant 
for only a limited time. 

In the case of the severe cost function S this recurrence 
simplifies as follows: 
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3.3. Lower Bounds 

F ( i , i )  = 0 

In the case of the gentle cost functions one obtains a sim- 
plification by noting that F ( i ,  j )  is a function of j -i. Intro- 
ducing the function T such that T(k)  is the common value 
of F ( i ,  j )  for all intervals such that j - i + 1 = k, we obtain 
the recurrence 

n - k + l  
T(n)  = k = l  (a( ; )  + ( ) + T(k)  + T(n  - k) 

with the boundary condition T(1) = 0. This recurrence can 
be solved in time O(n2).  

For each of the severe and gentle cost functions we 
conjecture that there is an algorithm A which minimizes 
SUMCOST for every initial interval of pinning and has the 
following monotonicity property: A ( i , j )  5 A ( i , j  + 1). If 
this is true we can reduce the time bounds for the algorithms 
to compute SUMCOSTS(~,  n) and S U M C O S T G ~ ( ~ ,  n) to 
O(n2) and O(n),  respectively. 

The dynamic programming algorithms to compute 
MAXCOSTs(2 , j )  and M A X C O S T G ~  (i, j )  require a further 
trick involving an extension of the function F. For any real 
number T and any severe or gentle cost function c define 
F(r,  i, j )  = minA mazI=i[ru + cosTc,A(i ,  U ,  $1, where 
A ranges over all algorithms. Note that F(i ,  j )  = F(0,  i, j ) .  

For the severe cost function S we obtain: F ( r , i , j )  = 
minj k=i - 1 ( m a x ( F ( r + l ,  ik), F(r+l, k + l ,  j)-k)), with the 
boundary condition F(r,  i, i) = 0 for all r and F(n,  i, j )  = 
00. Here T ranges over integers between 1 and n. This 
yields an algorithm to compute MAXCOSTS(~,  n) in time 
O(n4). If we can obtain an upper bound h on the number of 
steps in an optimal probing algorithm with initial interval 
of pinning [l..n] then we only need consider integers r in 
the range from 1 to h + 1 and we obtain the time bound 
O ( n 3 h ) .  It should be possible to obtain a bound on h of 
order polylog(n), but we have not done so. 

For the gentle cost functions G, we obtain: F(r,  i, j )  = 
mink(max(ak+F(r-cw,i, k ) , F ( r + l , k + l , k ) - k ) )  with 
the boundary conditions F(r,  i, i) = ri and F(r,  i, j )  = 00 

unless r is of the form a - a b  where a and b are nonnegative 
integers summing to at most n. Thus, if a is the ratio of 
integers A and B, then only n(A + B) different values of r 
need be considered, and the running time of the algorithm 
to compute MAXCOSTG~ (1, n) runs in time O(n4(A+B)). 

We now turn our attention to lower bounds. We bound 
the quantities SUM COST,(^, n) and MAX COST,(^, n) from 
below in terms of functions of n. 

Theorem 1 SUMCOSTG- (1, n) = Gn2 + ~ ( n  log n). 

Proof. (Sketch) For the gentle cost function we observe 
that SUM COST^(^,^) is a function of j - i. If we define 
T ( j  - i + 1) = S U M C O S T J ~ , ~ )  we see that the function T 
satisfies the following recurrence: T(n) = mini,=,(a(;) + 
(n-i+l) + T(k) + T(n  - k)) with the boundary condition 
T(  1) = 0. In a series of stages we modify this recurrence. 

Conversion to continuous variables: 7'1 (n) = 

TI (( 1 - p ) n ) )  with the boundary condition TI (5) = z, z E 

Removal of linear terms: T2(n) = m i n p E ( o , l ) ( a y  + 

minp,(o,l) (0- + (('-p)n+')('-p)n 2 + T1(pn) + 

2 2  
(0711. 

&& I-p *n2 + T2 (pn) + T2( ( 1  - p ) n ) )  with the boundary con- 

dition T2(z) = z, z E (0 ,1] .  
Change in boundary conditions: T3(n) = 

m i n p E ( o , l ) ( a q  + + + ~ 3 ( p n )  + ~ 3 ( ( 1  - p ) n ) )  
with the boundary condition T3(z) = $z2, z E (0,1] 

The unique solution of the recurrence for T3 is: T3(n) = 

$n2, obtained by setting p to &. The proof is com- 
pleted by proving the following inequalities: I T2(n) - 
T 3 ( n )  I =  O(n);  I T1(n) - T2(n) I =  O(n1ogn); I T(n)  - 
T1(n) I =  a n ) .  I 

Theorem 2 MAXCOSTG- (1, n) = n& + O(log n). 

Proof. (Sketch) We first relax the definition of 'algorithm' 
by allowing probes with fractional values. With this gen- 
eralization an interval of pinning is a half-open set (z, y] 
where neither z nor y need be an integer. The initial inter- 
val of pinning is (0, n], and the algorithm terminates when 
the length of the interval of pinning is less than or equal 
to 1. It can be shown that the amount by which this relax- 
ation reduces the optimal worst-case cost is O(1ogn). The 
worst-case cost of such an algorithm, given an initial in- 
terval of pinning (z, y], depends only on the length of the 
interval. Let T ( z )  be the worst-case cost starting from an 
interval of length z.  Then T ( z )  = 0 when z 2; 1. Re- 
placing this boundary condition by the artificial boundary 
condition T(z )  = 6 2 ,  z 5 1, increases the worst-case 
cost by at most fi. We then show that, using the mod- 
ified boundary condition, T ( z )  is a nondecreasing contin- 
uous function. It then follows that, when the interval of 
pinning is of length z ,  an optimal step is to select a probe 
that partitions the interval into parts of size p z  and (1 - p ) z ,  
such that apz+T(pz)  = (1 -p)z+T((l - p ) z ) .  It follows 
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that T ( z )  = apz + T ( p z )  = ((1 - p ) z  + T((l - p)z ) .  
We can then show that an optimal choice of p to minimize 
T(z )  is, for all z, m, y ielding T ( z )  = &z for all z. It 
follows that MAXCOSTG,(~, n) = n f i  + O(1ogn). I 

The above proof shows that, for a continuous approx- 
imation to the problem of minimizing worst-case cost for 
the interval of pinning [l..n] under the gentle cost function 
G,, each interval of pinning should be divided into two 
parts in the ratio 1: fi. The algorithm GOOD that was 
described earlier is a discrete approximation to this policy, 
but improves upon it by exploiting the restriction to integer 
values of U. It follows that MAXCOSTG, ,GOOD(~,~)  = 
n f i  + O(1og n), and is thus worst-case optimal to within 
an additive term O( log n) . 

We next turn to the severe cost model: 

Theorem 3 MAX COST^(^, n) = O(n log log n). 

In preparation for the proof we require a lemma about 
n-leaf rooted oriented binary we&. Every non-leaf node 
of such a tree T has a left child and a right child. Every 
edge is directed from a parent to one of its children. Define 
the weight W(v) of node v as the number of leaves in the 
subtree rooted at v. Define the right cost of T as the sum, 
over all right children v in T, of (wi")). Define the lefr 
height of node v as the maximum, over all paths from v to a 
leaf, of the number of left children in the path, excluding v 
itself. Define the left height of T as the left height of its root. 
At the heart of the proof of Theorem 3 is the observation that 
a tree with small right cost must have large left height. 

Lemma 4 Let g(n) be afunctionfrom positive integers to 
positive integers. Every n-leaf binary tree with right cost 
less than or equal to n2g(n) has lefr height greater than or 

equal to l o g 3 C ~ ) .  

Proof. Let T be a n-leaf binary tree with right cost less 
than or equal to n2g(n). For each k, let nk be the max- 
imum weight of a right node in T of left height less than 
or equal to k. Let v be a node of left height less than or 
equal to k and weight n k .  Consider the chain of right chil- 
dren descending from v. The left child of each node in this 
chain is of left height less than or equal to k - 1, and hence 
of weight less than or equal to nk-1. It follows that, for 
each i, the ith node in the chain of right children has weight 
greater than or equal to Iz!, - ink- 1 , and hence contributes 
at least ("":"-') to the right cost of T. Hence the to- 
tal contribution of the nodes in this chain to the right cost 

r k - F k - I ) .  This sum is required of T is at least xi::--' 
to be less than or equal to n g(n), but it is greater than 

or equal to m, which in turn is greater than or 

LLJ 

. Thus we arrive at the inequality equal to (nk--nk-1--1)3 
. 6nk-1 

(nk - nk-1 - 1)3 5 6nk-1n2g(n), which implies that 

nk 5 nk-1-k 1 + (671k_ln~g(n))'/~. 
Since nk-1 5 n it follows that n k - 1  + 1 5 

2 ( 8 n k _ 1 n ~ g ( n ) ) ~ / ~ .  Using the fact that no = 1, it follows 

by induction that, for all k, n k  5 8(n2g(n))5 - W .  
If t denotes the left height of the tree T, then nt = n. 

Hence n 5 8(n2g(n))5 - m, from which it follows that 

(8nk-1n2)1/3 5 (8~~k- ln~g(n) )"~ .  Hence n k  5 

1 1  

1 1  

t 1 l o g , ( ~ ) .  I 

For 1 5 g(n) 5 i lnlnn,  it is easy to verify that the 

expression of the lemma is bounded by log 

log, (+) ln(32 In I n n  2 i l n l n n .  

Corollary5 For all n, and for every n-leaf binary tree 
T,  either Zeftheight(T) 2 4 l n l n n  or rightcost(T) 
i n 2  In In n. 

For the proof of Theorem 3, note that, for any given ini- 
tial interval of pinning, a probing algorithm A can be rep- 
resented as a rooted binary tree. The nodes of the tree are 
the intervals of pinning that can occur in the course of the 
algorithm. The root is the initial interval of pinning and the 
leaves are intervals of the form [i..i]. Node [i . . j] ,  where 
j # i, has the left child [ i . . A ( i , j ) ]  and the right child 
[ A ( i , j )  + l..j]. 
Proof. (Of the Theorem.) Clearly M A X C O S T S ( ~ , ~ ~ )  2 
M A X C O S T S ( ~  + 1,2n). Consider any probing algorithm 
A. The execution of A with initial interval of pinning 
[n+l, 2n] can be represented by a n-leaf rooted, oriented 
binary tree T. It is easily verified from the definition of 
the severe loss function S that MAXCOSTS,A(~  + 1,271) 2 
(n + l)leftheight(T) and S U M C O S T S , A ( ~  + 1,2n) L 
rightcost(2'). It follows that M A X C O S T S , A ( ~  + 1,2n) 2 

Applying the above corollary we obtain 
M A X ; O S T ~ , ~ ( ~  + 1,2n) 2 !j In Inn. Since A was an arbi- 
trary probing algorithm it follows that MAXCOSTS(~,  n) = 

. rightcost(T1 

O(n In In n). I 

4. The Dynamic Case 

Consider an online probing algorithm with probe se- 
quence {zt} .  Its gain at time t is g(zt,ut) = zt when 
zt 5 ut and g(q ,u t )  = 0 when zt > ut. This defini- 
tion of gain corresponds to the severe cost function. The 
total online gain is therefore gain, = g(zt, ut) while 
the optimal (offline) gain is opt, = ut. The online 
algorithm has competitive ratio T if 

 gain, 2 opt, + const, 
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where const depends only on the initial conditions. 
From the competitive analysis point of view the study of 

gain is much more meaningful than the study of loss (cost). 
It is definitely more informative-in all cases studied here 
the competitive ratio with respect to loss turns out to be triv- 
ial, either 1 or 00. 

It is easy to see that if the adversary is allowed to select 
any sequence of thresholds {ut} ,  then there exists no com- 
petitive online algorithm. In this section we consider three 
natural ways to restrict the power of the adversary. 

4.1. Adversary restricted to a fixed interval 

We first consider the simple case when the adversary can 
choose any threshold from a fixed interval, i.e., ut E [a, b] .  
The deterministic case is completely trivial: An optimal on- 
line algorithm would never select a rate zt > a because of 
adversary’s threat to select ut = a. Thus the optimal on- 
line algorithm transmits at the minimum rate zt = a. But 
in that case the adversary will select the maximum possible 
bandwidth ut = b yielding a competitive ratio of b/a. 

For the randomized case, the situation is more interest- 
ing, as randomization improves the competitive ratio expo- 
nentially. We consider oblivious adversaries [3], that is, ad- 
versaries that have to select the whole sequence {ut} in ad- 
vance (unrelated to the random choices of the online algo- 
rithm). 

Theorem 6 The optimal randomized competitive ratio 
against an adversary that is constrained to select ut E [a, b] 
is 1 + In(b/a). 

Proof. We consider a memoryless randomized algorithm. 
At every step the algorithm selects zt according to the fol- 
lowing probability density function: f(z) = & where is 
T = 1 + ln(b/a) for all z > a. The case zt = a is 
treated in a special way: a is selected with probability 5 
(it is easy to check that the probabilities sum to 1). When 
the adversary selects ut = y, the online gain is equal to 
a: + J,” f(z)z dz = y/r. The optimal gain is y and the 
competitive ratio is T ,  independently of the choice of y. 

To show that this is optimal we employ Yao’s Lemma [5]  
(the classical minimax theorem of Game Theory adapted 
to on-line algorithms): It suffices to consider a random- 
ized adversary against deterministic on-line algorithms. In 
particular, let the adversary select y with probability den- 
sity function g(y) = a/y2; in a similar manner with 
the upper bound, the remaining probability & is assigned 
to b. If the online algorithm selects zt = z, its gain 
is J, g(y) dy + z& = a. The expected optimal cost 
is S,bg(y)ydy + b% = a(1 + In(b/a)) and the ratio is 

I 
In reality both the thresholds {ut} and the online rates 

{ z t }  take integer values, while the results of this section 

b 

1 + In(b/a), independently of the online choice z. 

hold for real values; this does not affect the analysis in any 
significant way (for example, for integer values the ratio is 
not 1 +h(b/a) but 1 +Hb-Ha where H, = 1 + !j +. .+ t M Inn). 

4.2. Adversary restricted by a multiplicative factor 

We now consider the case when the adversary can 
change the threshold by a multiplicative factor. In partic- 
ular, we assume that the adversary can select any threshold 
ut+l in the interval [ut/p, put] for some constant p 2 1. 
We show that a variant of TCP achieves competitive ratio at 
most 4p - 2; this is optimal within a factor of 4 since no 
deterministic online algorithm can have a competitive ratio 
less than p. 

An interesting observation is that the the restriction 
ut /p  5 ut+l is useless to our online algorithm. We show 
a stronger result by allowing the adversary to decrease the 
threshold ut+l arbitrarily. This doesn’t affect the compet- 
itive ratio. The underlying reason is that the extra power 
of the adversary buys it nothing in the face of a controlled 
(i.e., multiplicative) online decrease-the optimal adversar- 
ial policy is to choose a threshold either slightly less than 
the online rate or much greater than it. 

Theorem 7 There is a deterministic online algorithm with 
competitive ratio (& + m)2 against an adversary 
who is constrained to select any threshold ut+l in the range 
[0, put], for some constantp 2 1. On the other hind, no de- 
terministic online algorithm can achieve a competitive ratio 
better than p. 

Proof. We will analyze the following algorithm: 

After a successful transmission the online algo- 
rithm raises its rate to zt+l = pzt. After a failed 
transmission it lowers its rate (also by a fixed fac- 
tor) to zt+l = Axt. 

In our analysis we will use the (optimal) decreasing fac- 
tor X = which results in competitive ratio T = 

(& + m)2. Interestingly this value of X is approx- 
imately 1/2 (for large p). Indeed, the algorithm that uses 
X = 1/2 (a value independent of p)  has Competitive ratio 
4p - 2, not much worse than the optimized ratio. 

We will argue that the following two invariants are main- 
tained: 

0 ut I fxt ,and 

0 rgaint 2 optt + @(zt+l) - c P ( q ) ,  where @(x) = 

The theorem follows from the second invariant. We show 
the two invariants by induction. The proof is straightfor- 
ward (the “hard” part was to come up with the right poten- 
tial function a). The base case is trivial (without loss of 

&+a 

- l‘xz is an appropriate potential function. 
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generality we assume that the online algorithm knows the 
initial threshold). 

We consider first the case when the online algorithm suc- 
ceeds at time t. The online gain is Again = zt; also the next 
online rate is raised to zt+l = pat. It is obvious that the 
first invariant is maintained because ut+l < put. To check 
the second invariant we observe that the optimal gain in- 
creases by Aopt = ut < $xt. The second invariant follows 
from the inequality T Again 2 Aopt + @(zt+l) - @(zt),  
which can be verified straightforwardly. 

The case of failure is similar. We first observe that we 
must have ut < zt. The online gain now is 0 and the next 
rate decreases to zt+l = Axt. The next threshold ut+1 is at 
most put < pzt. It is again straightforward to check that 
both invariants are maintained. 

The lower bound is simple: the adversary can select as 
ut, for all t 2 1, any value in the interval [u1,pu1]. This 
is consistent with the constraint ut+l I put. The lower 
bound follows (this is the case of subsection 4.1). I 

The upper bound (Jiz + m)2 < 4p - 2 is within 
a factor of 4 of the lower bound. It remains an open prob- 
lem to close the gap. Notice also that both upper and lower 
bounds hold even with the restriction ut+1 2 ut/p. 

4.3. Adversary restricted by an additive term 

We now turn our attention to adversaries that can change 
the bandwidth by a fixed integer amount a. More precisely, 
we assume that the adversary is constrained not to change 
the threshold by a constant a, i.e., ut+1 E [ut - a, ut + a] .  
As in the case of multiplicative increase, the restriction 
ut+l 2 ut - a doesn’t seem to help the online algorithm. 
In contrast, if we allow the threshold to be arbitrarily small, 
there is no algorithm with bounded competitive ratio. For 
example, in that case the adversary can select any ut in the 
interval [0, CY]  and it follows from the results of subsection 
4.1 that the competitive ratio (deterministic and random- 
ized) is infinite. Fortunately, in real life the threshold has 
the natural lower bound of 1 bit or packet (we can ignore 
the time steps when the bandwidth is 0 since neither the on- 
line nor the offline algorithm transmit anything). Therefore 
we shall further assume that the threshold ut has a constant 
lower bound p. 

Theorem 8 The optimal deterministic competitive ratio 
against an adversary constrained to select threshold ut+l 
in the interval [p, ut + CY]  is at most 4 + a/p. On the other 
hand, no deterministic online algorithm has competitive ra- 
tio better than 1 + a/p. 

Proof. We consider the following class of natural on-line 
algorithms. 

After a successful transmission the online algo- 
rithm raises its rate to zt+l = zt + yl.  After 
a failed transmission it lowers its rate to zt+l = 
zt - 72 (or to p, if zt - 7 2  < P). 

One can compute the parameters yl and 7 2  that minimize 
the competitive ratio but the analysis is complicated. To 
avoid this complication in this abstract, we restrict our at- 
tention to online algorithms that have 7 1  = 72 = y; it turns 
out that the competitive ratio does not deteriorate much. We 
use an appropriate value y = a/(r  - 1) where T is the com- 
petitive ratio (approximately 4 + a/P).  

The proof has the same flavor as the proof of Theorem 7. 
It is not hard to show that the following two invariants are 
maintained. 

0 ut 5 (T - l)zt + y and 

rgaint < op t  + @(zt+l) - @(zl),  

where @(z) = 6 + 4 is a potential function. However, the 
following technical (but inessential) assumption is needed 
here: The initial rate 21 (and consequently every subse- 
quent online rate) is of the form p + my for some inte- 
ger m. In fact, a more careful accounting shows that the 
above invariants yield a slightly better competitive ratio: 
T = z+3+Jz2+10z+1, 2 where z = a /P .  

The lower bound follows from the observation that the 
adversary can always select any threshold ut in the range 
[P, P + al. I 

5. Open Problems 

We mention a few open problems suggested by our re- 
sults. The obvious one is to prove a good lower bound for 
the average cost of the severe cost function. Also, most up- 
per and lower bounds for the deterministic dynamic case do 
not match. The study of randomized algorithms for the dy- 
namic case seems promising. We believe that substantially 
better competitive ratios are possible using randomization. 

An important future research direction is to enrich our 
model with game-theoretic features. The available band- 
width, which in our current treatment is either constant (in 
Section 3) or chosen by an adversary (in Section 4), is in 
fact the result of other flows probing for their own avail- 
able bandwidth. One can view this set of probing flows 
as playing a game against each other where each player 
only receives limited feedback from their choice of strat- 
egy; the natural question is, what are the Nash equilibria of 
this game? 
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