
Providing Packet Obituaries

Katerina Argyraki‡∗, Petros Maniatis†, David Cheriton‡, Scott Shenker∗§
∗ICSI, †Intel Research Berkeley, ‡Stanford University, §UC Berkeley

ABSTRACT
The Internet is transparent to success but opaque to failure.
This veil of ignorance prevents ISPs from detecting failures
by peering partners, and hosts from intelligently adapting
their routes to adverse network conditions. To rectify this, we
propose an accountability framework that would tell hosts
where their packets have died. We describe a preliminary
version of this framework and discuss its viability.

1. INTRODUCTION
The Internet is built around a best-effort service model that

provides no a priori guarantees about when, or even if, pack-
ets will be delivered. Many have argued that this lack of
guarantee played a key role in the Internet’s success, as it
enabled IP to run over a very wide range of network tech-
nologies using simple and scalable algorithms. While some
clamor for adding quality-of-service assurances to the Inter-
net, few if any believe that the best-effort model should be
abandoned.

The Internet has also adopted the philosophy of not pro-
viding any post hoc information about the fate of packets.
That is, the Internet provides neither assurances about what
will happen to a packet nor information about what did hap-
pen to that packet. The rationale for not providing assur-
ances – enabling flexibility of network technologies and sim-
plicity of the forwarding path – does not apply to the lack of
after-the-fact audits. The lack of accountability1 more likely
arises from strict adherence to layering and transparency ac-
cording to which, from a host’s perspective, all that matters
is whether or not a packet was dropped, which can be de-
termined by the endpoints themselves without help from the
network.2

It has long been a central Internet tenet that applications
should adapt to current network conditions, but often the
notion of adaptation was limited to congestion control and
application-level decisions (such as the coding scheme ap-
propriate for the current bandwidth and loss conditions). How-

1Accountability is different from accounting. It is the property that
enables activities on a system to be traced to specific entities, which
may then be held responsible for their actions.
2For TCP congestion control and other purposes, the RTT of pack-
ets is also of interest, but this too can be determined by the end-
points.

ever, a recent trend seeks to extend this to edge-controlled
routing.3 Proposals such as Platypus [8], NIRA [10], and
WRAP [1] allow edge-systems to control the Autonomous
System (AS) path of their packets. To make an informed
decision about such paths when current service is poor, an
edge-system needs to know at which AS(es) its packets are
currently being dropped. Thus, providing some form of ac-
countability should not be seen as putting the network in a
more central role, but as helping return more control to the
edges.

There is also a simpler and more venal rationale for pro-
viding accountability. Internet service is now a contractual
business; end users pay their ISP, and ISPs have either cus-
tomer/provider or peering arrangements with each other. Pro-
viding some form of accountability, in terms of which ASes
are dropping packets, would help establish whether providers
(and peers) are adequately performing their duty. Note that,
while the previous rationale only requires feedback to the
source, contractual issues suggest that ASes also would like
to know the fate of the packets they forward.

The current Internet offers probing tools such as ping and
traceroute that can help debug network problems. These
tools are very effective in pinpointing long-lasting outages
or persistent high-drop rates. However, because they reveal
only whether probe packets are echoed, not what happened
to previously sent packets, they fail in the face of interesting
low-rate traffic patterns, e.g., malicious low-rate drop pat-
terns, which exploit TCP’s retransmission timeout to slow
down flows well below their ideal rate [5]. As such, they
have limited value when trying to make finely-tuned deci-
sions about the reliability of a provider’s service. In addi-
tion, one cannot expect that ISPs will remain so transparent
to probing tools: what other industry allows free inspection
of internal corporate infrastructure? We think that eventually
edge-systems will not be given free probing access inside
ISP networks.4

3Edge-controlled routing dates back to the earliest source routing
proposals but, after a lengthy quiescent period, there has been a
recent upsurge of interest in this regard.
4Note that just leaving ICMP echo functionality available at border
routers, though it retains traceroute and ping functionality at the AS
granularity, still only provides information on the fate of the probe
packets themselves, and thus is only useful to diagnose persistent
failures.



Based on these considerations, we claim that the Internet
would be well-served by an accountability framework that
systematically provides information about the fate of pack-
ets. The purpose of this paper is to assess the feasibility of
such a framework. We present an initial proof-of-concept
design, guided by the following questions:
What information should be provided? While more infor-
mation is always useful, the key information such a system
should provide is where packets have been dropped, that is,
packet obituaries.
To whom should this information be provided? Since
both end-hosts and ASes (ISPs) have contractual expecta-
tions about the service given to their packets, a packet’s obit-
uary should be returned to every AS along the path of a
packet as well as the source.
At what granularity should this information be provided?
Ping and traceroute operate on a per-router granularity. But
in terms of route choices and contractual obligations, the
granularity in question is typically that of an AS. Moreover,
providers may object to revealing more detailed information.
Thus, we think that providing obituaries at the AS-level is
sufficient.
Who will deploy the required infrastructure? We assume
that ISPs will make accountability part of their commercial
agreements with each other, and that soon thereafter cus-
tomers will demand it of their ISPs. Thus, we expect that
each ISP will deploy some accountability infrastructure that
will communicate with its counterparts in the neighboring
ISPs.
Should the mechanism be proactive or reactive? At first
glance it might appear best to only provide obituaries upon
request (reactive), since most hosts will not make decisions
based on the received information. However, we think a
proactive approach, in which packet audits are always sent
at periodic intervals, is preferable for two reasons. First,
ASes will need ongoing auditing of their peers, which re-
quires proactive audits. Second, the accountability mecha-
nisms should not make a bad situation worse when network
conditions deteriorate. In the reactive model, many hosts
will send requests only when the network is failing, thereby
throwing gasoline on the networking fire.

Based on these five guidelines, we first develop a basic
accountability framework (Section 2); inasmuch as this is
a packet audit-trail design, it is loosely inspired from hash-
based traceback [7] enhanced with proactive reporting. We
discuss the technical challenges facing our design – viabil-
ity, security and incremental deployment – in Section 3. We
touch upon potential alternative designs in Section 4 and
conclude in Section 5.

2. BASIC ACCOUNTABILITY FRAMEWORK
Infrastructure: We use accountability boxes (A-boxes) to
implement the accountability framework. These A-boxes are
deployed on the external links of each border router, either

�
��������

	�
�� 	�
�

�
��������

� �
� ��

�

�

��

��������

�����

�

�

����

����

��

�

�

�

� �

�

�

�����

��

�
�

Figure 1: A-box 3 forwards packet Pi and opens entry
{Di,X, IP2, ∅, e +A}. Later, it receives a feedback report with entry
{Di, B}, locates the entry with digest Di and updates it.

interposed between the router and the link, or positioned to
passively tap the link. A-boxes are logically separate from
routers, but the A-box functionality could eventually be in-
tegrated into routers.

Each AS operates its own A-boxes. These serve as its
external accountability interface. AS internals are otherwise
opaque to other ASes.

A-boxes produce, among other things, packet digests that
uniquely identify packets. These digests need to have suf-
ficient diversity to be unique among all packets traversing a
high-speed link (e.g., OC-192) for an hour or so, and must
be computable at wire speed. Sanchez et al. [6] have demon-
strated hardware designs that justify this assumption.
Output of Framework: The accountability framework gives
each AS feedback on every packet it originates or forwards.
This feedback consists of the identity of the last AS that re-
ceived the packet along its way to the destination. In Fig-
ure 1, Stanford sends packet Pi with digest Di to Berke-
ley via ISPs X and Y . Stanford receives from X periodic
reports whose entries have the form {digest ,ASNum}. If
packet Pi makes it through, the associated report entry is
{Di, B}, indicating that B received the packet. If, however,
the packet is dropped within Y , then Stanford receives the
report entry {Di, Y }, indicating Y as the last AS to receive
the packet. Hosts within an AS can access feedback reports
for their packets via AS-specific mechanisms. For example,
an AS can publish all received feedback reports in a cen-
tral website, accessible by all of its hosts, or can implement
the A-box functionality itself for incoming and/or outgoing
traffic.

To provide this functionality, A-boxes remember the di-
gests of packets they observe and periodically exchange feed-
back reports with other A-boxes. We now describe the re-
sources and algorithms they use to do so.
Short-term State: For every observed packet, an A-box
“opens” a new accountability entry in its state; each such
entry has the following form:
{digest , lastASNum, prevABox ,nextABox , expEpoch}
The value of the digest field is computed over the packet’s
forwarding-invariant header fields and content; lastASNum

is initialized to the local AS number; nextABox is initial-
ized to ∅, the “uninitialized” value; prevABox is set to the



IP address of the previous A-box traversed by the packet;
and expEpoch is set to the expiration time for this entry,
where time is measured in epochs. We explain the duration
of an epoch and describe how the values for prevABox and
expEpoch are determined later in this section. For exam-
ple, in Figure 1, when A-box 3 sees packet Pi during epoch
e, it opens a new entry of the form {Di, X, IP2, ∅, e + A},
where IP j denotes the IP address of A-box j, and A is the
maximum age of this entry measured in epochs.
Feedback Reports: Each A-box keeps an epoch counter,
which it advances every Tr milliseconds, where Tr is the
epoch duration. When the epoch changes, an A-box con-
structs a set of feedback reports: It removes some entries
from its short-term state, groups them by their prevABox

values, chops off their last three fields, and sends each group
to their prevABox . Removed entries are moved to the long-
term state (see below).

Upon receipt of a feedback report, an A-box “merges”
the contents of each reported entry with its local short-term
state: For every reported entry, the A-box looks for a local
entry with the same digest; if such an entry exists, the A-box
replaces its lastASNum with that included in the reported
entry and updates its nextABox with the IP address of the
A-box that sent the feedback; if no such entry exists in the
local state, the A-box ignores the reported entry. In Figure 1,
when A-box 3 receives a report from A-box 4, it looks up a
local entry with digest Di, changes its lastASNum from X
to B, and sets its nextABox to IP4.

When a local entry is thus updated, we say it is “closed.”
During report construction for epoch e, an A-box only in-
cludes entries that are either closed, or have an expEpoch

field whose value is e.
Long-term State: This is a repository of feedback entries
that the A-box has already reported. Such entries are re-
tained for Tl hours, where Tl is a tunable parameter. The
purpose of the long-term state is to allow an AS to answer
follow-up questions on previous feedback reports. This is
necessary when fraud is investigated, e.g., an AS misrepre-
sents a report it received from a peer AS – more on this in
Section 3.2.
Feedback Report Routing: Feedback on a particular packet
must always flow backwards along the path traversed by that
packet, A-box to A-box. In the current Internet, because
of asymmetric routing, this “reverse A-box path” must be
tracked and enforced by the A-boxes themselves. Therefore,
each A-box remembers the last A-box traversed by a packet
(in the prevABox field) and forces the corresponding feed-
back through that A-box.

There are two types of edges in the reverse A-box path:
link edges traverse a physical AS-to-AS link (e.g., from A-
box 4 to 3 in Figure 1), and intra-AS edges traverse a single
AS (e.g., from A-box 3 to 2). Link edges are simple to track:
at link configuration time, the two A-boxes located at the
edges of the link are given each other’s address; as a packet
exits the link, the second A-box records the address of the
first A-box on the prevABox field of the short-term entry

for that packet. Intra-AS edges are more involved to track
because the last A-box traversed by a packet within an AS
has no way of knowing which was the first A-box in the same
AS seen by that packet. This is akin to the problem of ingress
point disambiguation tackled by Feldman et al. [4], albeit at
the granularity (and speed) of packets instead of flows.

In our strawman design, we tackle this problem using packet
encapsulation: The first A-box to see a packet coming into
an AS creates a new IP packet with the same IP source and
destination addresses as the original packet, and with its own
IP address and the original packet as the payload. An A-
box that sees a packet about to exit the AS decapsulates it
and uses the A-box address in the payload to initialize its
prevABox field for the packet. An A-box does not encap-
sulate packets whose encapsulated length would surpass the
intra-AS MTU; instead, the box sends within a companion
packet – with the same source and destination as the origi-
nal – the digest of the original packet and the address of the
sending A-box. This companion packet is suppressed by the
receiving A-box once its contents have been used to fill the
appropriate packet entry.

This approach places A-boxes into the critical path, by re-
quiring them to modify packets in flight. Although other,
less invasive approaches exist, similar in philosophy to the
companion packet approach above, they are far more com-
plex and wasteful in processing and bandwidth. Fortunately,
packet encapsulation is a popular technique, already present
in the critical path of hardware routers. As such, it is a plau-
sible design choice for A-boxes as well.
Short-term Entry Expiration: The maximum age A of a
short-term entry depends on the AS distance of the A-box
to the packet’s destination. Consider packet Pi in Figure 1.
If Pi is dropped in AS Y , A-box 3 receives feedback from
A-box 4 on Pi in time A4Tr + RTT 3−4, where Aj is the
maximum age for Pi’s entry in A-box j, RTT j−k is the
round-trip time between A-boxes j and k and Tr is the epoch
duration. Unless A4 < A3, A-box 3’s entry for Pi expires
prematurely, and A-box 3 falsely reports that it was the last
AS to receive Pi.

To compute the right A value per short-term entry, each A-
box keeps a map of destination prefixes to AS-path lengths
(which it can compute by periodically loading the BGP table
from the closest border router). When a new entry is opened,
the A-box looks up the AS-path length to the packet’s des-
tination, and sets A to the number of remaining A-boxes on
the packet’s path.

Our design is very sensitive to miscalculations of the short-
term entry age. Unfortunately, the value computed from
BGP tables may be inaccurate. Things become simpler if
each AS has a “loss oracle” that tracks intra-AS packet losses;
a loss oracle can be as simple as a per-packet ACK mecha-
nism between two consecutive A-boxes. For example, if A-
box 4 knows quickly that packet Pi has been lost in AS Y ,
it can close and report on Pi’s entry immediately, without
waiting for A4Tr.



3. CHALLENGES

3.1 Viability
We first investigate whether this design imposes unreason-

able burdens on the infrastructure. We consider a plausible
hardware design, and outline its costs in terms of memory,
bandwidth, and processing.
Memory: An A-box uses the following memory compo-
nents: a Content Addressable Memory (CAM) module for
the indexable fields of the short-term state; Static RAM (SRAM)
for the remaining short-term state fields; an SRAM buffer
for the feedback reports; a Ternary CAM (TCAM) module
for the database that maps destination prefixes to AS-path
lengths; and dynamic RAM (DRAM) for the long-term state.

Each short-term entry, in addition to the fields described
in the previous section, contains a closed bit, and a clean

bit. To give a rough estimate of the required memory, we as-
sume the following field sizes: 80 bits for digest , 16 bits for
lastASNum, 32 bits for each of prevABox and nextABox ,
and 4 bits for expEpoch . The digest , prevABox , expEpoch ,
closed , and clean fields are stored in the CAM, while the
rest are stored in SRAM. Thus, each short-term entry occu-
pies 118 CAM bits and 48 SRAM bits, for a total of 166 bits.
A long-term entry is 2 bits shorter – no closed nor clean bits
required.

The total amount of short-term memory Mshort per A-box
depends on the maximum packet rate C allowed on the link,
the “batching period”AmaxTr, and the short-term entry size
Eshort : Mshort = C ·AmaxTr ·Eshort . The amount of long-
term memory is similar, but depends on the long-term time-
out and the long-term entry size: Mlong = C ·Tl ·Elong . The
buffer for the feedback reports is as large as the short-term
memory – because the feedback reports built at the end of
the same epoch take up at worst as much space as the entire
short-term state. Finally, the prefix-to-length map depends
on the number of Internet prefixes and the Internet diameter;
currently, 1 MB is sufficient.

We consider an A-box located in an edge-network, for
which Amax = 10. We assume an average packet size of
400 bytes. For an epoch duration of Tr = 100 msec and
long-term state period of Tl = 1 hour, an A-box on an OC-
3 link (48.6 Kpps) requires 0.7 MB of CAM, 1.3 MB of
SRAM, and 3.6 GB of long-term memory; an A-box on an
OC-192 link (3 Mpps) requires 44.2 MB of CAM, 80.2 MB
of SRAM, and 220 GB of long-term memory. Of course,
with larger amounts of memory, we can support even higher
packet rates; choosing what rate to support involves a trade-
off between memory size and accuracy of our framework.
Bandwidth Overhead: For each observed packet, an A-box
transmits one feedback entry to the previous A-box that for-
warded the packet; each feedback entry is 96 bits wide (16
bits for lastASNum and 80 bits for digest ); assuming an
average packet size of 400 bytes and excluding report head-
ers, feedback reports introduce in each link bandwidth over-
head equal to 3% of the link’s throughput. Moreover, the
first A-box of an AS that observes a packet encapsulates the

packet adding its own IP address to the payload; this further
increases bandwidth overhead on intra-AS links to 4.6% of
the link’s throughput.

Note that the exact bandwidth overhead is also depen-
dent on the value of the maximum batching period AmaxTr,
which we have set to 1 sec above. For smaller batching peri-
ods, we may be able to represent reported packet digests with
fewer bits than necessary for longer batching periods. In the
hypothetical extreme of single-bit digests, the overhead is no
less than 0.5%. Assuming that efficient compression meth-
ods for packet digests can be implemented for the batching
design points in between, the bandwidth overhead will range
from 0.5% to 4.6%.
Processing: An A-box performs three types of operations.
First, it records a newly observed packet in short-term mem-
ory: it looks up a CAM entry with the clean bit set and
initializes it appropriately; to compute the maximum age, it
looks up the AS-path length to the packet’s destination in its
TCAM map. Second, it handles a received feedback report:
for every report entry, it looks up a CAM entry with the same
digest and, if there, updates the entry. Third, it constructs
a new report: it increments its epoch counter, looks up all
CAM entries with set closed bits or expired expEpoch val-
ues, places them in a separate SRAM buffer and transmits
them as feedback reports; then it stores the entire buffer into
long-term RAM organized as a circular buffer. Long-term
state can be handled similarly to how Snoeren et al. manage
their historic memory [7] – responding to follow-up ques-
tions is not in the critical path, and can be handled by soft-
ware on a best-effort basis.

Each A-box receives at most one feedback report entry for
each packet it forwards. This means that, on average, the
rate at which an A-box receives report entries equals the rate
at which it records packets. Similarly, each A-box creates a
report entry for each packet it forwards. Consequently, each
A-box performs a total of two CAM lookups and updates
plus a TCAM lookup for each packet it forwards. This is
well within the capabilities of today’s hardware.

3.2 Security Considerations
We have described our preliminary design for the case

where ASes honestly report their feedback. Here we explore
how our mechanism deals with malicious ASes. Given the
criticality of carrier functionality, we assume that ASes have
full control of their A-boxes, i.e., an honest AS always has
honest A-boxes.

A malicious AS may exhibit at least two classes of behav-
ior: First, it may claim that it missed a packet that it actually
received. For example, in Figure 1, AS X receives packet
Pi and drops it; then it claims that it never received Pi (by
suppressing Pi from its feedback). Second, a malicious AS
may misrepresent the feedback sent by downstream ASes.
For example, in Figure 1, although AS X drops packet Pi, it
blames the loss on Y (by forging a feedback entry that states
Y as the last AS that received Pi).

We argue that an end-system can track the origin of a sin-



gle feedback lie down to a pair of adjacent ASes. One way
to do this is to allow an end-system to further investigate
feedback on a certain packet by sending a post facto query,
which is answered by all A-boxes on the path of the packet in
question. Although feedback reports themselves are unpro-
tected, post facto queries and their responses can be signed
– most ASes already have SSL-protected web sites for cus-
tomer service and incident tracking, so assuming they have
a public signing key for this slow interaction path is not a
stretch.

An end-system may wish to investigate either a suspect re-
port or a random one (for spot-checking purposes). It routes
a signed request for the packet’s obituary to the original des-
tination of the packet; each A-box that sees the request, re-
sponds with its signed long-term state entry for the packet
or a signed statement that it never saw the packet. A single
feedback lie will result in a single pair of A-boxes with con-
flicting responses; e.g, in Figure 1, AS X may respond “Y
dropped the packet,” while Y may respond “I never saw the
packet.”

If the end-system detects such a discrepancy, it sends the
signed conflicting responses to each of the two involved A-
boxes. This notifies them that either a communication fail-
ure occurred between them, or one of them lied. Although
insufficient to convince a third party, this evidence at least
convinces the neighbor of a misbehaving AS that its peer
is faulty. This knowledge can inform further business de-
cisions made by honest ASes with regards to evidently dis-
honest ones, both concerning end-system claims on individ-
ual reporting misbehaviors and for the future. We will prove
that a single lie can be tracked back to a pair of adjacent
ASes in a longer version of this paper.

3.3 Incremental Deployment
When not all ASes implement our scheme, feedback-enabled

ASes must discover each other, so that their A-boxes can
(logically) interconnect to exchange feedback reports. This
discovery process is the subject of this section.

During discovery, each A-box on a link to an AS that
does not support our scheme periodically sends announce-
ment messages so that downstream A-boxes can discover it.
A straightforward approach is to find one address prefix ad-
vertised by each potential destination AS, pick a random IP
address within that prefix, and send to that address a “dis-
covery request.” The first A-box that observes this request
absorbs it and sends back a “discovery response” with its
AS number and IP address.

When adjacent A-boxes in a packet’s path do not belong
to the same or adjacent ASes, exposing a lying AS to its
“neighbors” is less compelling; the “neighbor” of the liar
may be many physical ASes away from the liar, which makes
it difficult to take immediate action (e.g., interrupt business
relationship). Our strawman design deals with feedback lies
as described in Section 3.2, as long as the liar is one of a
sequence of adjacent feedback-enabled ASes starting at the
source AS.

3.4 Refinements
Here we tackle issues that our current strawman design

leaves unresolved. For each issue, we either present how we
propose to resolve it in subsequent designs, or why we find
it inconsequential.
Packet Transformations: Our current design does not an-
ticipate packet transformations such as fragmentation. We
do not consider fragmentation an important issue; any packet
source wishing to benefit from our framework can set the
DontFragment flag – which is set in the majority of IP traf-
fic already. Snoeren et al.’s design for packet transforma-
tions [7] may prove applicable to our mechanism as well.
Report Cascades: Long forwarding delays or errors in AS-
distance estimation may cause a feedback report to reach an
A-box after the related entry there has expired. In our current
design, we drop such delayed reports; otherwise, pathologi-
cally timed delayed reports from downstream A-boxes could
result in an A-box issuing up to 2d reports for the same en-
try (where d is the Internet diameter measured in number
of ASes). An alternative would be to favor accuracy at the
cost of occasional duplication of reports. In this approach,
A-boxes can keep closed entries in short-term memory up to
an additional age B, as a second-chance cache. Updates to
such closed entries cause the issuance of a report at the next
reporting interval, until they expire at total age (A + B)Tr.
This increases our earlier short-term memory estimates by
(A + B)/A, and our processing estimates by up to a factor
of 2d at times of high delay.
Multicast: Extending this mechanism to multicast poses both
mechanistic and conceptual challenges. The semantics of
Internet multicast may require that the obituaries be sent to
the receiver, not the source; the join message expresses the
desire of the receiver, while the source has no knowledge
of who should receive the packet. However, if there is a
catastrophic failure that prevents any reports from getting
through, then there is little utility in sending the reports back
to the receiver. If instead reports are sent back to the source,
they would have to be aggregated in some form to avoid im-
plosion, and it is not clear what use the source could make
of such reports. Thus, we are very unclear about how to treat
multicast in this framework.

4. ALTERNATIVE DESIGNS
We developed our strawman design based on the five gen-

eral guidelines presented in Section 1. Here we touch upon
alternative guidelines and sketch the resulting designs.

Our basic framework provides per-packet obituaries. One
could argue for less information: ASes care to know where
losses occur, not necessarily where each individual packet
got lost. Hence, one design alternative is to keep per-flow
state instead of per-packet state: Each A-box opens a new
short-term entry for every newly observed flow; the entry
includes a packet counter, which is incremented with every
observed packet that belongs to the flow. When the flow is
over, the A-box closes the entry and puts it in a feedback



report. A flow is defined based on IP source and destina-
tion addresses and packet interarrival times. Given recent
evidence that Internet flows consist on average of 13 to 25
packets [2], such a flow-based approach reduces memory
and bandwidth requirements by an order of magnitude, at
the cost of providing coarser feedback.

Our basic framework returns a packet’s obituary to every
AS on that packet’s path. One could argue for less function-
ality: When an AS drops a packet, inform only the packet’s
source (so that it routes its packets around the failure) and the
culprit’s peer (so that it detects if their service level agree-
ment is violated). Hence, another design alternative is to
break the mechanism into two parts, where one part carries
feedback to the peer, and the other carries feedback to the
source.

Sending feedback directly to the source ASes simplifies
certain aspects of the accountability framework: First, feed-
back on a certain packet does not have to flow backwards
along the path traversed by the packet; this removes the need
for feedback report routing, packet encapsulation on intra-
AS edges, and the discovery process described in Section 3.3.
Second, each AS can send its feedback on a certain packet as
soon as it observes the packet; this removes the need to accu-
rately compute the AS-path length to the destination. Hence,
this approach reduces processing requirements, at the cost of
restricting the entities that receive a packet’s obituary to the
packet’s source and the culprit’s peer.

5. IMPACT ON THE INTERNET
The current Internet provides no explicit information about

the fate of packets. While there are tools such as traceroute
and ping to diagnose problems, they operate at the whim
of ISPs (who will likely decide to block their probes at some
point), and only provide information about the probe packets
themselves, not about previously sent packets. To provide
more detailed information, we proposed an accountability
framework that delivers packet obituaries to each AS along
the path, describing where packets were dropped (at the AS
level). Our preliminary analysis suggests that this approach
is viable, though there are several challenges that require fur-
ther work.

We believe that an accountability framework would have
a positive impact on the Internet, in several respects. Most
importantly, the framework exposes ISP performance. Good
ISPs will want to employ it, to prove to their customers that
they are not responsible for packet losses. This may, in turn,
drive the remaining ISPs to improve their (now measurable)
service. In this sense, accountability could bring better ISP
service by increasing competition on performance (which is
now only dimly observable), not just on price (which is glar-
ingly obvious).

The detailed performance information can also help hosts
(or any edge-system) choose alternate routes to improve their
performance. There are many proposals for letting hosts
control their routes, but far fewer for how those hosts might
gather the information necessary to intelligently choose their

routes. By giving hosts the knowledge of which ASes are
currently underperforming, they can narrow their search for
better routes. This may even remove the need for Inter-
net QoS mechanisms, since (ignoring access links) there are
usually uncongested paths between two network points; to
get good quality-of-service, edge-systems merely need to
find those paths. Our framework, though not a complete so-
lution to this problem, does provide useful information.

While this paper focused on the mechanistic details in or-
der to establish viability, there is a deeper architectural issue
at stake. The use of layering to hide implementation details
from higher layers is a crucial aspect of the Internet archi-
tecture; correspondingly, edge-systems view the Internet as
a black box, remaining ignorant of any network topology
or structure. But equally crucial is the end-to-end princi-
ple of implementing as much functionality as possible in the
edges. In particular, Internet applications should adapt to
Internet conditions rather than expecting the network to ad-
just to their requirements. Without more knowledge of the
Internet’s behavior, the edge’s ability to adapt is limited to
congestion control and related behavior.

The accountability framework is an effort to provide struc-
tural information out-of-band. It does not violate layering,
in that the semantics of IP are unchanged; the framework is
an external vehicle for informing the host of network con-
ditions. Many have called for an Internet knowledge [3] or
information plane [9] that would expose network informa-
tion to hosts. We view our accountability framework as a
very primitive step in this direction.

6. REFERENCES
[1] K. Argyraki and D. R. Cheriton. Loose Source Routing as a

Mechanism for Traffic Policies. In Proc. SIGCOMM Workshop on
Future Directions in Network Architecture, Aug. 2004.

[2] A. Broido, Y. Hyun, R. Gao, and kc claffy. Diversity and Disparity in
IP Traffic. http://www.caida.org/outreach/papers/
2004/diversity/diversity.pdf.

[3] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A
Knowledge Plane for the Internet. In Proc. ACM SIGCOMM
Conference, Aug. 2003.

[4] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True. Deriving traffic demands for operational IP networks:
methodology and experience. IEEE/ACM Transactions on
Networking, 9(3):265–280, 2001.

[5] A. Kuzmanovic and E. W. Knightly. Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants). In Proc.
ACM SIGCOMM Conference, Aug. 2003.

[6] L. A. Sanchez, W. C. Milliken, A. C. Snoeren, F. Tchakountio, C. E.
Jones, S. T. Kent, C. Partrige, and W. T. Strayer. Hardware Support
for a Hash-Based IP Traceback. In DARPA Information Survivability
Conference and Exposition, June 2001.

[7] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-based IP
Tracback. In Proc. ACM SIGCOMM Conference, Aug. 2001.

[8] A. C. Snoeren and B. Raghavan. Decoupling Policy from Mechanism
in Internet Routing. In Proc. Workshop on Hot Topics in Networking,
Nov. 2003.

[9] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An Information
Plane for Networked Systems. In Proc. Workshop on Hot Topics in
Networking, Nov. 2003.

[10] X. Yang. NIRA: A New Internet Routing Architecture. In Proc.
SIGCOMM Workshop on Future Directions in Network Architecture,
Aug. 2003.


