
Pathlet Routing

P. Brighten Godfrey, Scott Shenker, and Ion Stoica
{pbg,shenker,istoica}@cs.berkeley.edu

University of California, Berkeley

ABSTRACT

Source-controlled multipath routing can be highly beneficial

to both sources and to network providers. For a source, the

flexibility to choose among multiple paths can improve re-

liability and path quality. To a network provider, source-

controlled routing could be a salable service. Unfortunately,

the Internet’s interdomain routing protocol, BGP, offers no

multipath routing mechanism. Several proposals offer mul-

tiple paths, but are limited in the paths they can expose.

This paper introduces a new scheme, pathlet routing, in

which networks advertise fragments of end-to-end paths

from which a source can assemble an end-to-end route. Path-

let routing is a flexible mechanism that, we show, can emu-

late a number of existing routing protocols, including BGP

and unrestricted source routing. It also enables a new type of

routing policy, local transit (LT) policies, which allows net-

works to control the portions of routes which transit across

them, while giving a large amount of flexibility to sources.

Finally, we show that LT policies have much better scalabil-

ity than BGP.

1 INTRODUCTION

Multipath routing, in which a packet’s source selects its path

from among multiple options, would be highly beneficial to

both end hosts and network providers on the Internet.

For an end host, multipath routing is a solution to

two important deficiencies of the Border Gateway Protocol

(BGP) [12]: poor reliability [1, 7, 9] and suboptimal path

quality, in terms of metrics such as latency, throughput, or

loss rate [1, 13]. Both reliability and path quality could be

improved via multipath routing. End-hosts (or perhaps edge

routers) can observe end-to-end failures quickly and react

by switching to a different path, and can observe end-to-end

path quality in real time and make decisions appropriate to

each application. Greater routing flexibility may bring other

benefits as well, such as enabling competition and encourag-

ing “tussles” between different parties to be resolved within

the protocol [5].

For a network provider, multipath routing represents a new

service that can be sold to customers who desire the benefits

described above. In fact, commercial route control products

exist today which dynamically select paths based on avail-

ability, performance, and cost for multi-homed edge net-

works [3]; exposing more flexibility in route selection would

improve the effectiveness of such products.

Unfortunately BGP has very limited policy expressive-
ness: it greatly constrains the routing policies that a net-

work owner can encode—despite its position as the domi-

nant policy-aware routing protocol! For example, consider a

very permissive policy in which a network allows any possi-

ble route involving it to be used. Even if a network decided

to adopt this policy, perhaps because it had been paid suffi-

ciently, it could not be expressed in BGP.

Several proposals [16, 17] give networks the ability to of-

fer multiple paths, but we argue they are still relatively lim-

ited. For example, MIRO uses BGP routes by default, with

negotiation between autonomous systems for each additional

path; offering too many paths thus involves a prohibitively

large amount of state. NIRA [17] allows networks to offer

any valley-free path, but only valley-free paths, thus mak-

ing it in that respect more limited than BGP. It also requires

assumptions about the network topology.

Can we design a protocol which has rich policy expres-

siveness, thus allowing network operators to offer a service

of greater routing flexibility and hence greater reliability and

path quality?

This paper addresses that question with a novel scheme

called pathlet routing. In pathlet routing, networks adver-

tise pathlets—fragments of end-to-end paths—along which

they are willing to route. A sender concatenates its selec-

tion of pathlets into a full end-to-end source route, which is

specified in each packet. Pathlet routing is a simple gener-

alization of both path vector routing and source routing, in

terms of the end-to-end paths it can allow and disallow. If

each pathlet is a full end-to-end route, the scheme is equiva-

lent to path vector routing. If the pathlets are short, one-hop

fragments corresponding to links, then senders can use any

of the exponentially large number of paths in the network, as

in unrestricted source routing.

Pathlet routing has significant advantages over BGP, in-

cluding (1) highly expressive policies, and in particular, (2)

enabling a new type of routing policy which would offer dra-

matic improvements in router scalability and in route flexi-

bility for senders. In more detail, we evaluate pathlet routing

as follows:

• To demonstrate its policy expressiveness, we show

that pathlet routing can efficiently emulate unrestricted

source routing, path vector routing (BGP), and two

1

97

recent multipath routing proposals, MIRO [16] and

NIRA [17]. On the other hand there exist protocols like

FBR [18] which pathlet routing cannot emulate.

• We show that pathlet routing enables a new class of

policies, local transit (LT) policies, that allow networks

to control the portions of routes which transit across

their own networks. Subject to these restrictions, LT

policies expose the full flexibility of the Internet’s au-

tonomous system (AS)-level routes to sources. The

exponentially large set of paths dramatically increases

route flexibility relative to BGP and many other policy-

aware routing protocols.

• We argue that pathlet routing with LT policies has much

better scalability than BGP and MIRO where it matters

most—forwarding plane memory usage—and in other

scalability metrics is comparable to or better than BGP.

The remainder of the paper proceeds as follows. In Sec. 2,

we introduce our pathlet routing mechanism. We evaluate

its policy expressiveness in Sec. 3 by comparison with other

protocols. Finally, we introduce and evaluate LT policies in

Sec. 4.

2 PATHLET ROUTING

This section defines pathlet routing, beginning with its build-

ing blocks of vnodes and pathlets, and continuing with the

control and data planes.

2.1 Building blocks
Pathlet routing is built upon virtual nodes, or vnodes, which

are arbitrary abstract nodes created by an AS to represent the

structure of routes within its own network. This virtualiza-

tion enables flexible control. A vnode might variously repre-

sent an entire AS, a presence in a geographic area, a physical

router, a type of service within a router, or other granularities

that we will demonstrate later. There can be multiple routers

for each vnode, and multiple vnodes at each router.

Vnodes need to be associated with physical routers only

at peering points between ASes, where neighboring routers

announce their vnodes to each other. For other vnodes, the

mapping to physical routers is not exposed in the protocol.

Finally but importantly, a vnode can be tagged with a des-

tination, such as an IP prefix.

A pathlet represents a sequence of vnodes along which

the announcing AS x is willing to route. The first vnode

should be in x’s own network, but this may be followed by

vnodes in x or in other ASes as the pathlet may continue

outside x’s network.

A pathlet announcement consists of the following infor-

mation: (1) The path that packets using this pathlet will tra-

verse, given as a sequence of vnodes. Vnode identifiers are

local to each AS, so the path lists a pair (AS,vnode) to glob-

ally identify each hop. (2) A forwarding identifier sequence

(FIDseq): a sequence of forwarding identifiers (FIDs) to be

placed in the packet to instruct the first vnode to use this

pathlet.

The first entry of the FIDseq is a FID that uniquely identi-

fies pathlet p within the first vnode in p. Importantly, it need

not be globally unique like the identifiers in IP source rout-

ing, or even unique within an AS. The result is very compact

FIDs; for example a vnode handling 256 or fewer unique

pathlets could use one-byte FIDs. The remaining FIDs in the

FIDseq, if any, identify other pathlets that are used to effect

forwarding along this pathlet. (We will see examples in §3.)

2.2 Control plane
Pathlet construction. A router r announces to each neigh-

bor r′ its AS number and a vnode identifier v, indicating that

every packet sent from r′ to r will be interpreted as being

directed to vnode v. Thus, initially, a router can construct

pathlets that include its own vnodes and those of its neigh-

bors’ peering points. After learning other ASes’ pathlets,

it can concatenate multiple pathlets to produce new pathlets

spanning multiple ASes.

Pathlet dissemination. Any pair of routers, regardless

of physical location, may open a control plane connection

to disseminate pathlets. Presumably this will be done at
least by physically adjacent routers. Disseminating infor-

mation in distributed systems generally can be described as

either “push” or “pull”, and we will find it useful to in-

clude both of these fundamental communication patterns. In-

tuitively, pushing state is useful at least for bootstrapping,

while pulling allows additional state to be created on de-

mand.

First, a router may push some subset of the pathlets it

knows, according to a local export policy. For example, in

several cases we will use a gossiping policy, where each

router pushes to its neighbors all the pathlets it has con-

structed or learned. Second, a router may pull pathlets by

requesting certain pathlets from a router, such as those rele-

vant to a specified destination. We will use this pull dissem-

ination pattern to emulate both MIRO and NIRA.

2.3 Data plane
Route selection. Once a router has learned a set of pathlets,

it can select from among these a route for each packet. The

schemes by which routers learn dynamic path quality and

availability and select routes are decoupled from the pathlet

routing protocol. Separating these components, as in [17, 18]

but unlike BGP, gives room for a wide range of solutions to

coexist, such as each network operating a route monitoring

service for its users [17], commercial route selection prod-

ucts [3], individual sources probing paths, or a global “Inter-

net weathermap” service.

However, it is likely useful to include a basic availability-

monitoring protocol. In the rest of the paper, including the

scalability evaluation in Section 4, we will assume the fol-

lowing. We run a global link-state protocol disseminating the

state of all links between adjacent vnodes (where adjacency

is defined by advertised pathlets). A router keeps an active

2

98

set of pathlets, all of whose links are currently available. To

find a path to a destination, it can then run any shortest-path

algorithm on a graph whose edges are pathlets in the active

set.

Note it would also be possible to withdraw and re-

advertise pathlets in response to failure and recovery, instead

of using a link state protocol. This may incur more overhead

if many pathlets use a single link between vnodes.

Packet forwarding. The data structure routers use for for-

warding is as follows. For each vnode at a router, there is an

exact-match table that maps each valid FID f to two pieces

of information: (1) the FIDseq of the pathlet corresponding

to f , and (2) a next hop rule to send the packet to the next

pathlet routing-aware hop or its destination. Examples in-

clude transferring the packet to another vnode at the same

router; sending it on a certain outgoing interface; or tunnel-

ing it across an intradomain routing protocol like OSPF to

the IP address of an egress point.

We now describe the forwarding procedure. A packet con-

tains a sequence of FIDs (f1, f2, . . . , fn) of the pathlets form-

ing the route to its destination. Initially, this is set by the

sender to the selected route. When a packet is sent from

router r′ to r, it is interpreted as arriving at a specific vnode

v at r (which r declared to r′ in the control plane). Router

r checks for f1 in the forwarding table for vnode v. If no

entry is found, the packet is malformed and is dropped. Oth-

erwise, the table maps f1 to the FIDseq (f ′1, f ′2, . . . , f ′k) for

the pathlet, and a next hop rule. The router verifies that the

FIDseq is a prefix of the FIDs in the packet, i.e., fi = f ′i for

i ∈ {1, . . . ,k}, to ensure that the route is legitimate for this

pathlet, dropping the packet if the match fails. Otherwise,

the router pops the first FID off of the route and forwards the

packet according to its next hop rule.

In the next section, we will see several examples of the

protocol in action.

3 COMPARISON WITH OTHER PROTOCOLS

A key goal for pathlet routing is that it enables ASes to ex-

press a broad range of routing policies. In this section, we

give evidence for this policy expressiveness by showing that

pathlet routing can emulate several existing protocols: unre-

stricted source routing (USR), BGP, MIRO, and NIRA. By

“emulate” we mean that pathlet routing can match the same

set of end-to-end allowed and prohibited paths. Note that

these protocols have substantially different forwarding archi-

tectures, but all are special cases of pathlet routing. Finally,

we compare pathlet routing and Feedback Based Routing,

neither of which can emulate the other.

These sections also serve to illustrate the mechanisms of

pathlet routing described in Section 2, to which end we give

a fairly detailed description of pathlet routing’s emulation of

USR and BGP.

Unrestricted source routing (USR) at the AS level dis-

seminates the entire topology globally, and lets a source AS

use any path in the graph by putting a sequence of ASes in

each packet.

At a high level, pathlet routing can emulate USR by using

one pathlet for each directed link. We give a more detailed

description using the AS-level topology in Fig. 1. Each AS

has a vnode representing it, which for convenience we will

name a,b,c,d,e, each tagged with a destination (IP prefix).

Each AS discovers its neighbors’ vnodes, and creates path-

lets to them. We will write pathlets in the form (P : F) where

P is the path of vnodes and F is the FIDseq to be installed in

the packet to direct it along P. Then node b, for example, cre-

ates pathlets (b,a : 1), (b,c : 2), and (b,d : 3). Here the FID-

seqs have just a single entry because each pathlet is just one

hop. The FIDs themselves are arbitrary identifiers unique to

each vnode. Suppose the other ASes also announce path-

lets for each outgoing link and each terminal vnode, such as

(a,b : 1), (c,d : 2). All these pathlets are gossiped globally.

a b

c

d

Figure 1: Example

AS-level network

topology.

We can now send a packet at AS

a with the route (1,2,2) to use the

path (a,b,c,d). At vnode a the

router looks up index 1 in its for-

warding table, finding the pathlet

(a,b : 1) and the appropriate outgo-

ing interface along which to forward

the packet. It pops off the first FID and sends the packet with

route (2,2) to node b. This process repeats until the packet

reaches its destination d.

BGP. Pathlet routing can emulate BGP’s routing policies

using pathlets which extend all the way to a destination. We

give a simple example, again using the topology of Fig. 1.

Suppose that in BGP, d advertises a destination IP prefix; d
exports routes only to c but all other ASes export all routes;

and in the BGP decision process, all ASes select the shortest

of their available routes.

We emulate this in pathlet routing as follows. To allow se-

lective route exporting, each AS has one vnode per neighbor,

e.g. d’s vnodes are db and dc, as well as a terminal vnode d•
tagged with its IP prefix(es). It creates a pathlet (dc,d• : 1),
but no pathlet from db to d•: any packet arriving from b must

therefore be invalid and hence will be dropped. The other

pathlets created are (cb,dc,d• : 7,1), (ba,cb,dc,d• : 4,7,1).
Here the FIDseq has multiple entries, unlike the USR exam-

ple above. (Note again that the FIDs 4,7,1 are arbitrary.)

A packet can now be sent from AS a to AS b with route

(4,7,1) to use the path (ba,cb,dc,d•). The vnode ba looks

up index 4 in its forwarding table, verifies that the associated

pathlet’s path is a prefix of the packet’s path, and forwards

the packet to cb with route (7,1)—which, in turn, forwards it

to dc with route (1), which forwards it to d• with the empty

route (), where it is delivered.

MIRO [16] is a multipath extension of BGP. In addition to

using BGP’s paths, a MIRO router r1 can contact any other

MIRO router r2 and request alternate routes to a given desti-

nation d, potentially including preferences regarding which

alternate routes are returned. Router r2 responds with some

3

99

subset P of the alternate routes that r2 has available to d,

from which r1 picks one route p ∈ D. Finally, a tunnel is

constructed: r1 can send a packet along an existing path to

some IP address specified by r2, which forwards them to p.

MIRO’s tunneling is easy to emulate using source rout-

ing over pathlets, by placing two pathlets in a packet’s route:

one representing the tunnel, and a second representing the re-

mainder of the alternate route. To obtain the alternate-route

pathlet, a pathlet router can contact any other and pull routes

to a specified destination, similar to MIRO. We omit the de-

tails.

Pathlet routing can emulate MIRO; is the converse true?

MIRO can represent any possible end-to-end path with the

appropriate tunnels. But each allowed end-to-end route is

constructed and represented explicitly, so there are network

topologies for which MIRO would require Θ(n!) state to rep-

resent all possible routes in a graph of n nodes. Thus MIRO

cannot scalably emulate pathlet routing (or USR).

NIRA [17] offers more choice to sources than BGP, while

simultaneously reducing control plane state. NIRA supports

routing along so-called valley-free paths, which consist of an

“up” portion along provider links, then potentially a peer-

ing link, and finally a “down” portion along customer links.

Each AS learns all of its “up” routes and publishes them at

a well-known Name-to-Route Lookup Service (NRLS). A

source constructs the first half of a path by choosing a route

from its own up-graph, and the second half from the reverse

of a route in the destination’s up-graph, which it obtains by

querying the NRLS.

Pathlet routing can emulate NIRA’s routing policy, includ-

ing its compact routing state. We again use the “pull” mode

of obtaining pathlets in place of the NRLS. We concatenate

appropriately constructed pathlets representing the up route,

a short route across the core, and the down route. We omit

details due to space constraints.

MIRO and BGP cannot scalably emulate NIRA because

NIRA can compactly represent a very large number of paths

by allowing any up-route to be paired with any down-route.

On the other hand, NIRA cannot emulate USR, MIRO, BGP,

or pathlet routing since it is limited to valley-free routes.

Feedback Based Routing (FBR) [18] is an example of a

protocol which is incomparable with pathlet routing in the

sense that neither protocol can emulate the other. FBR is

source routing at the AS level, with each link tagged with

an access control rule, which either whitelists or blacklists a

packet based on its source or destination IP address. Pathlet

routing cannot emulate FBR for two reasons. First, a pathlet

router can decide whether to accept a packet based only on

its immediately previous hop and on its remaining hops—not

based on the full end-to-end path including the source. Sec-

ond, FBR has both blacklisting and whitelisting, while path-

let routing effectively has only whitelisting, meaning FBR

can represent some policies more efficiently.

However, FBR cannot emulate pathlet routing, either. For

example, controlling access based on source and destination

address ignores intermediate hops which can be taken into

account by pathlet routing.

Zhu et al [18] suggested that the access control rules could

be more complex than source/destination address matching.

Similarly, it is possible that pathlet routing could be extended

to include matches on the full end-to-end path and blacklist-

ing; this may be an interesting area of future research.

4 LOCAL TRANSIT POLICIES

In the previous section, we saw that pathlet routing can ef-

ficiently express a wide variety of routing policies, emulat-

ing a number of past schemes. In this section we discuss a

new class of policies enabled by pathlet routing, local tran-
sit (LT) policies. LT policies allow networks to control what

is arguably the most important aspect of routing policy: the

portions of routes which transit across their own networks.

We first define LT policies (§4.1) and argue that LT poli-

cies are useful (§4.2) and offer a large amount of route flex-

ibility to sources (§4.3). We then show how LT policies can

be implemented in pathlet routing (§4.4) and that this imple-

mentation has much better scalability than BGP (§4.5).

4.1 Definition
We define local transit policies as those policies in which a

network x’s willingness to carry traffic following some path

across its network depends only on the portion of the path

that crosses x’s network. In other words, under an LT policy

the permissibility and cost of some path, according to x, is a

function only of the ingress and egress point of the path in

x. Note that LT policies are independent of x’s preferences

on the paths taken by traffic that x sends, which may be arbi-

trary.

Consider Fig. 1. If AS b follows an LT policy and allows

the path (a,b,c), then it must also allow the path (a,b,c,d),
but possibly not (a,b,d) or (c,b,a) which have different

ingress or egress points. Essentially, in LT policies, pathlets

do not extend beyond a network’s ingress/egress points.

4.2 Capturing policies and costs
We argue that LT policies represent an important class of

routing policy, with two points. First, the direct costs to a

network of carrying traffic is incurred between its ingress

and egress points; for example, the path a packet follows

before it arrives at an AS x and after it leaves x do not affect

the congestion on x’s network. Second, a special case of

LT policies—namely valley-free routes [6]—is a common

route export policy in BGP today. Valley-free routes can be

defined as follows: each neighbor is labeled as a customer,

provider, or peer; a BGP route is exported to a neighbor x
if and only if either the next hop of the route is a customer

or x is customer. This is a function of the ingress and egress

point, and hence is an LT policy.

Of course, valley-freeness defines which routes are al-

lowed, but not which ones are preferred. In BGP, this is

handled by picking the single most preferred route for each

4

100

destination as the only route. This brings us to a key chal-

lenge: providing the incentive for a transit AS to offer more

than the single end-to-end path which is most convenient for

that AS.

We envision two ways this incentive could be provided.

The first is simply payment between ASes for a multipath

routing service which does not discriminate the cost of each

path—much as today’s transit services have a fixed rate re-

gardless of a packet’s destination.

Second, a more discriminatory service could differentiate

prices based on the path used. In pathlet routing, it would

be easy to annotate each pathlet with a cost. This does not

effect a monetary payment, but it does permit the commu-

nication of prices to sources, so that payment can happen

via some mechanism external to the protocol. Designing

such a payment mechanism is outside the scope of this paper.

However, note that measurements indicate that ASes’ rout-

ing preferences are based on next-hops (i.e., egress point) for

98% of IP prefixes [15]. Thus, once a payment mechanism is

in place, it would be possible to represent those preferences

as LT policies.

It is also possible that ASes would be reluctant to use LT

policies because their policies become more explicitly vis-

ible. But high level routing policies such as business rela-

tionships between neighbors can be inferred from publicly

available data from BGP routers today. [14]

4.3 Enabling route flexibility
LT policies can provide a dramatic amount of flexibility for

sources—potentially, any AS-level path—because the net-

works’ pathlets can be concatenated in an exponentially large

number of ways. But this flexibility is limited by the specific

LT policies that are chosen.

For example, networks could limit routes to being valley-

free. In this case there would still be vastly more flexibil-

ity than BGP, but no more than in NIRA. Unlike NIRA,

pathlet routing would not be limited to Internet-like topolo-

gies. Also, handling exceptions to policies is more difficult

in NIRA: a special source routing option is required in the

data plane and in the control plane, no mechanism for discov-

ering non-valley-free routes is provided. In pathlet routing,

if for example an AS wished to provide transit service be-

tween two peers or two providers, this would simply involve

advertising two additional pathlets (one in each direction).

However, much more flexibility than valley-free routes

may be available. Some incentive for this flexibility exists:

for example, a path which is not the cheapest may be worth-

while for real-time applications, or when cheaper paths have

failed. Whether ASes choose to expose these routes depends

on business decisions and payment mechanisms, but pathlet

routing makes it feasible at a technical level.

4.4 Implementation
LT policies are easy to implement in pathlet routing: for each

ingress x and egress y for which an AS allows routing from

x to y, it announces a pathlet (x,y), in addition to pathlets

Figure 2: vnodes and pathlets for a full LT policy (left) and a class-based

LT policy (right) in a single AS with two providers and three customers.

that terminate at its own IP prefixes. However, this results in

d2 pathlets for a network with d neighbors. Thus, for large

networks, it may be more appropriate to use what we call

class-based LT policies, in which each neighbor is assigned

to a class (such as a geographical region, or business rela-

tionship) represented by ingress and egress vnodes, and we

use full LT policies between only these class vnodes. These

two options are depicted in Fig. 2.

To the best of our knowledge, other policy-aware routing

proposals cannot efficiently implement the same set of pos-

sible paths that is exposed by LT policies. BGP cannot rep-

resent multiple paths per neighbor; MIRO must set up each

end-to-end path explicitly, resulting in exponentially more

state; NIRA represents only valley-free routes; and FBR ex-

amines a packet’s source and destination IP address, which

does not include information about the intermediate hops,

such as a transit from peer to customer vs. peer to provider.

4.5 Scalability

We evaluate the scalability of LT policies, which is simi-

lar to that of unrestricted source routing. It has been sug-

gested [16] that source routing schemes may not scale since

each router must have current knowledge of the entire net-

work. On the contrary, we argue that pathlet routing with LT

policies in fact has much better scalability than BGP (and,

hence, MIRO [16]) where it matters most—forwarding plane

memory usage—and in other scalability metrics is compara-

ble to or better than BGP.

In this evaluation, we assume class-based LT policies with

three classes representing the customer, provider, and peer

business relationships. (Our conclusions would be substan-

tially similar with full LT policies on all ASes except for the

very high degree (top 1%) ASes, or with other class-based LT

policies with a limited number of classes.) Following the pat-

tern in Fig. 2 which depicts two classes, using three classes

results in 6 + d pathlets created by each AS with d neigh-

bors, plus 3 pathlets to link each class to a destination vnode

with associated IP prefixes. In fact, this may overestimate

the number of pathlets, e.g. if the provider→provider pathlet

is omitted in order to disallow transit between providers.

We produce numerical results by analyzing an AS-level

topology of the Internet generated by CAIDA [4] and data

5

101

from APNIC on global IP prefix allocation [2], both from

August 18, 2008.

Forwarding plane memory. Because it has to operate

at high speeds and often uses SRAM rather than commod-

ity DRAM, memory that stores a router’s Forwarding Infor-

mation Base (FIB) is arguably more constrained and expen-

sive than other resources in a router [10]. LT policies dra-

matically reduce the necessary size of the FIB relative to

BGP. Using class-based LT policies as described above in

this topology results in a maximum of 2,317 and a mean of

only 6.1 pathlets to represent an AS. This is also an upper

bound on the number of pathlets per router assuming at least

one router per AS. In comparison, BGP FIBs would need to

store entries for 266,073 IP prefixes.

Control plane memory. In the AS-level measured topol-

ogy, there are a total of 157,454 pathlets; tagging vnodes

with IP prefixes brings the total to 423,527 entries. In com-

parison, the RIB in a BGP router with d neighbors advertis-

ing a route to every prefix would contain 266,073 ·d entries,

which is already worse than pathlet routing for d ≥ 2 and can

become problematic in practice for larger d [8].

Control plane messaging. Here we employ simple anal-

ysis. Consider the effect of a single link failure in a AS-level

topology of n nodes, mean degree d, and mean path length

�. In pathlet routing, a standard gossiping protocol (§2.3) re-

sults in a link state update being sent once along every edge

in the graph, i.e., dn/2 messages.

In BGP, the number of updates is at least the number N
of source-destination pairs that were using the failed link.

Suppose a random link fails, and let �st be the length of a

path s→ t. Then we have

E[N] = ∑
s,t

Pr[failed link ∈ path s→ t]

= ∑
s,t

�st

nd/2

=
2(n−1)�

d
.

In the Internet AS-level topology, we roughly have �≈ d≈ 4,

making the messaging cost for both protocols close to 2n.

Moreover, BGP’s messaging cost would likely be substan-

tially higher than this lower bound for two reasons. First,

because BGP operates at the IP prefix level instead of the

AS level, it has in effect about 9n destinations [2] rather than

n. Second, BGP’s path exploration can result in much more

than one message per source-destination pair with a failed

link. [11]

REFERENCES

[1] David G. Andersen, Hari Balakrishnan, M. Frans

Kaashoek, and Robert Morris. Resilient overlay net-

works. In Proc. 18th ACM SOSP, October 2001.

[2] Routing table report. http://thyme.apnic.net/ap-

data/2008/08/18/0400/mail-global.

[3] Avaya. Converged network analyzer.

http://www.avaya.com/master-usa/en-

us/resource/assets/whitepapers/ef-lb2687.pdf.

[4] CAIDA AS ranking. http://as-rank.caida.org/.

[5] David Clark, John Wroclawski, Karen Sollins, and

Robert Braden. Tussle in cyberspace: defining tomor-

row’s Internet. In SIGCOMM, 2002.

[6] L. Gao and J. Rexford. Stable Internet routing with-

out global coordination. IEEE/ACM Transactions on
Networking, 9(6):681–692, December 2001.

[7] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D.

Gribble, Henry M. Levy, and David Wetherall. Improv-

ing the reliability of internet paths with one-hop source

routing. In Proc. OSDI, 2004.

[8] Elliott Karpilovsky and Jennifer Rexford. Using for-

getful routing to control BGP table size. In CoNEXT,

2006.

[9] N. Kushman, S. Kandula, and D. Katabi. Can you hear

me now?! it must be BGP. In Computer Communica-
tion Review, 2007.

[10] D. Meyer, L. Zhang, and K. Fall. Report from the

iab workshop on routing and addressing. In RFC2439,

September 2007.

[11] Ricardo Oliveira, Beichuan Zhang, Dan Pei, Rafit

Izhak-Ratzin, and Lixia Zhang. Quantifying path ex-

ploration in the Internet. In Proc. Internet Measurement
Conference, October 2006.

[12] Y. Rekhter, T. Li, and S. Hares. A border gateway pro-

tocol 4 (bgp-4). In RFC4271, January 2006.

[13] Stefan Savage, Thomas Anderson, Amit Aggarwal,

David Becker, Neal Cardwell, Andy Collins, Eric Hoff-

man, John Snell, Amin Vahdat, Geoff Voelker, and

John Zahorjan. Detour: Informed Internet routing and

transport. In IEEE Micro, January 1999.

[14] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz.

Characterizing the internet hierarchy from multiple

vantage points. In IEEE INFOCOM, 2002.

[15] F. Wang and L. Gao. On inferring and characterizing

internet routing policies. In IMC, 2003.

[16] Wen Xu and Jennifer Rexford. MIRO: Multi-path In-

terdomain ROuting. In SIGCOMM, 2006.

[17] Xiaowei Yang, David Clark, and Arthur Berger. NIRA:

a new inter-domain routing architecture. IEEE/ACM
Transactions on Networking, 15(4):775–788, 2007.

[18] Dapeng Zhu, Mark Gritter, and David Cheriton. Feed-

back based routing. Computer Communication Review
(CCR), 33(1):71–76, 2003.

6

102

