Policy-controlled Event Management
for Distributed Intrusion Detection

Christian Kreibich
University of Cambridge
Computer Laboratory
christian.kreibich@cl.cam.ac.uk

Abstract— A powerful strategy in intrusion detection is the
separation of surveillance mechanisms from a site’s policy for
processing observed events. The Bro intrusion detection system
has been using the notion of policy-neutral events as the basic
building blocks for the formulation of a site’s security policy
since its conception. A recent addition to the system is the ability
to exchange events with other Bro peers to allow distributed
detection. In this paper we extend Bro’s existing event model to
fulfill the requirements of scalable policy-controlled distributed
event management, including mechanisms for event publication,
subscription, processing, propagation, and correlation.

Index Terms— distributed systems, intrusion detection, event-
based communication, publish/subscribe, group management,
type systems.

I. INTRODUCTION

In the light of ever-increasing numbers of security incidents
in computer infrastructures, the field of intrusion detection
has received a significant amount of interest in recent years.
The goal of these systems is to detect malicious activity as
quickly as possible in order to allow swift response and to
provide substantial forensic evidence to understand the damage
inflicted. This effort has led to the development of a variety
of different intrusion detection systems (IDSs) [1]. One of the
lessons learned in the field is that IDSs operating individually
do not understand the “big picture” by themselves — activity
in a networked computer infrastructure is too multi-faceted to
permit this. In addition, security and operational considerations
such as system load, dependability, and ease of analysis do
not allow a stand-alone setup for organisations for all but
the smallest LANs. As a consequence, distributed IDSs have
been proposed that allow the various detection systems to
communicate in order to increase each other’s field of vision.

In this application setting, the event-based communication
paradigm is an obvious match: an individual IDS observes
elementary events that are processed either in situ or for-
warded to another system for analysis, possibly generating
new higher-level events for which the process repeats, until the
system at large has determined with sufficient certainty that a
security-relevant event is occurring. This event is then logged,
presented to the analyst, or triggers an autonomous response.
Traditionally, the communication model such distributed IDSs
have employed is a straightforward sensor/manager archi-
tecture where events are propagated unidirectionally from
“dumb” sensors to “smart” manager nodes which abstract the
elementary events into semantically richer composite events.

Robin Sommer
Technische Universitdt Miinchen
Computer Science Department
sommer @in.tum.de

DIDS [2] was the first to employ a such model, gathering low-
level data remotely while performing the higher level semantic
analysis centrally. Today, many commercial systems follow a
similar model. Other systems, such as Emerald [3], build up
a hierarchical structure and propagate information up to the
root level. Similarly, AAFID [4] builds on autonomous agents
which communicate their results to hierarchically organised
monitors. NetSTAT [5] preconfigures a set of probes with
attack scenarios and distributes them throughout a network.
If a probe is not able to detect an attack by itself due to the
characteristics of its environment, it communicates its analysis
to other probes as appropriate.

The Bro IDS [6] has always relied heavily on the idea
of policy-neutral events as vehicles to convey the occurrence
of interesting activity. Examples of such events include the
establishment of a new TCP connection or the arrival of a
new HTTP request message. The site-specific security policy is
formulated in a domain-specific policy scripting language and
defines the interpretation of such events. A major improvement
of the system was the introduction of a communications
framework that allows multiple Bro peers' to exchange state
information [7]. While our initial experiments with distributed
event management have been very encouraging, it also became
apparent that more powerful event processing mechanisms
than we had at our disposal were conceivable and in fact
necessary to satisfy our requirements.

In this paper, we present the event model we are devel-
oping for the Bro IDS to support scalable policy-controlled
distributed event analysis. The remainder of this paper is
structured as follows. We specify the requirements of our event
communication requirements in Section II. We then outline
Bro’s architecture in Section III. Our event model provides
a flexible group-based publish/subscribe mechanism, supports
arbitrary event diffusion patterns, and allows for complex
abstraction of event occurrence into composite events. We
present the model in detail in IV. Distributed intrusion detec-
tion is a highly complex problem setting, and turning the Bro
system into a fully distributed IDS is an ongoing process. We
therefore discuss our assumptions, experiences with the event
model, and expectations for future development at length in
Section V before we conclude the paper with Section VI.

"We will refer to communicating Bro IDSs as peers when context refers to
a group of nodes engaged in mutual communication, and as nodes when the
focus is on members of a network in general.

II. EVENT COMMUNICATION REQUIREMENTS

As a starting point, we begin by identifying the requirements
of our event model.

« EXPRESSIVENESS: Events must be expressive enough to
allow arbitrary types of activity to be captured, and must
be structured enough to permit type-safe processing.

e POLICY-CONTROLLED LOCAL EVENT PROCESSING:
All aspects of the event model must be configurable in a
site’s policy, including local event handling as well as
event delivery & forwarding schemes. The processing
policy of events should be entirely maintained locally.
Cooperative policy configuration is of course desirable
and in fact necessary to achieve useful results, but remote
nodes should not be able to interfere with local policy.

e SELECTIVE RECEIVER INTEREST & NOTIFICATION: It
must be easy for Bro peers to indicate interest and end of
interest in both local and remote events. Peers must not
be bothered with events they are not interested in. At the
same time, a node must be given enough flexibility in the
notification process to allow for suitable communication
patterns (e.g., broadcast or request/reply).

o EVENT ABSTRACTION: The policy language must allow
the definition of event patterns and consequential abstrac-
tion into higher-level events.

e SCALABILITY AND PERFORMANCE: The model must
be highly scalable and lend itself to a high-performance
implementation. Target environments are both local net-
works and Internet-wide cooperations.

¢ SECURE COMMUNICATION: Only authorised peers can
be allowed to exchange events. Mechanisms must be
provided to make sure communication actually occurs
with the intended peers only. All other hosts and network
components must not be able to eavesdrop into the flow
of events.

¢ HOMOGENEOUS LANGUAGE EXTENSION: The changes
to the Bro scripting language necessary to support dis-
tributed event communication should blend in with the
existing syntax and semantics as much as possible.

III. ARCHITECTURE OF THE BRO IDS

Bro’s architecture is described in detail in the original paper
[6] and remains basically unchanged, with the exception of
support for communication among Bro nodes. We repeat the
architecture’s key elements here in condensed form to put in
context the event model and its implications for distributed
event processing. Figure 1 illustrates Bro’s architecture.

A. Separation of Mechanism from Policy

The core idea of Bro is to split event detection mech-
anisms from event processing policies. Event generation is
performed by analysers in Bro’s core: these analysers operate
continuously based on input observed by Bro instances and
trigger events asynchronously when corresponding activity is
observed. Due to its strong basis in network-based detection,
Bro’s core contains analysers for a wide range of network
protocols such as RPC, FTP, HTTP, ICMP, SMTP, TCP, UDP,

Bro IDS
Policy Layer

Login Policy Scan Detector Worm Detector

S

Policy Script Interpreter

Event Engine
Network Analysis Peer
UDP TCP HITP ... Signature Engine Communication /O
libpcap SSL
Network

Fig. 1. Architecture of the Bro IDS.

and others. These analysers trigger events whenever interesting
activity in a network flow containing one of these protocols
is observed, for example when a new TCP connection is
established or an HTTP request is made. Besides that, a sig-
nature engine allows typical misuse-based intrusion detection:
it matches byte string signatures against traffic flows and
triggers events whenever a signature matches. Once an event
is triggered, it is passed to the policy layer which then takes
care of processing the events. Care is taken to minimise CPU
load: only analysers responsible for triggering the events used
at the policy layer are actually enabled.

B. Policy Configuration

Each Bro peer runs a policy configuration in its policy layer.
This policy embodies all or part of a site’s security policy,
expressed in scripts containing statements in the special-
purpose Bro scripting language. To understand the significance
of this approach it is important to realise that the relevance of
an event varies from site to site — some sites may consider
the detection of a Microsoft IIS exploit attempt on a pure
UNIX network a threat, while others may not. Bro’s policy
language is strongly typed, procedural in style, and provides a
wide range of elementary data types to facilitate the analysis
of activity on a network. The user can introduce new data
types in the form of records that combine existing types.
Record types can be inherited, provide encapsulation, static
and instance member variables, and methods.? Functions and
namespaces further serve to structure the policies. Elements
in the policy can be tagged with attributes, these attributes
serve to define meta-information about these elements, such as
state expiration, persistence for on-disk storage of state across
instances, etc. The basic building blocks of a policy are event
handlers which process occurring events in the fashion called
for by a site’s security policy.

C. Communication Framework & State Management
Bro’s communication framework allows the serialisation
and transmission of arbitrary kinds of state between Bro

2The naming of these records types is historical; Bro’s records are equiv-
alent in all respects to objects in object-oriented languages.

instances. The driving idea behind its design was to allow
the realisation of independent state: state accumulated at the
policy layer should no longer be thought of as a local concept
but rather as information dispersed throughout the network.
The communication model imposes no hierarchical structure
of any kind. Examples of exchangeable state include triggered
events, state kept in data structures in policies, and the policy
definitions themselves. For the purpose of this paper it is
sufficient to think of the entities exchanged between peers as
events, though that ignores a large part of its flexibility.
Since Bro peers exchange highly security-relevant infor-
mation, it is important to ensure that only authorised peers
are allowed to talk to each other and that no other hosts
can eavesdrop into the conversation. Therefore, while event
communication itself remains loosely coupled, the peers’
identity is controlled tightly: each peer maintains an access
control list that defines which peers are allowed to talk to it.
Furthermore, peers authenticate each other using certificates
and communicate over encrypted channels, using the SSL
protocol. Peer communication can but need not happen over
the same network that Bro’s network analysers are monitoring.

IV. BRO’S EVENT MODEL

We will now outline the event model we are currently
developing for Bro. Bro events capture asynchronously the oc-
currence of particular activity. An event in Bro has a fype that
is defined by a name and the sequence and types of the event’s
arguments. An event materialises by assigning corresponding
values to the event arguments. All state associated with a
Bro event is mobile: the values of the event’s arguments are
always distributed alongside the event itself and are not bound
to any particular node’s address space. Once instantiated, all
event handlers defined for the event’s type in the policy are
triggered. This triggering of an event can happen inside the Bro
core, or in a policy script using the event statement. In both
cases, all event handlers see the same version of the event,
i.e., event handlers cannot modify the event before another
event handler processes it. However they can of course trigger
different follow-up events according to their implementation.
Events are also available to event handlers as first-order data
structures in the policy language: instances of record type
event contain elementary event parameters such as the time
of creation, a description of the Bro peer that triggered the
event, and more. This event-specific variable is made available
to the event handlers through the special this variable that is
always defined, similar to the this/self concepts in many
object-oriented languages. Figure 2 gives an example of an
event handler.

A. Event Subscription

In addition to the local event processing mechanism just
described, triggered events can also be delivered to other Bro
instances. We use the widely used publish/subscribe model [8]
for letting each node specify in its policy which events it
would like to receive from its peers: a node requests events by
providing a regular expression that matches the event names of
interest. Only peers that have indicated interest in an event type

type conn_stats: record {
start_time: time;
num_pkts: count &default = 0;
num_bytes: count &default = 0;
bi

table[conn_id] of conn_stats
5 mins;

global active_conns:
&write_expire =
event connection_established(c: connection) {
local stats: conn_stats;
stats$start_time = network_time () ;
active_conns[c$id] = stats;

Fig. 2. Example of a simple event handler. conn_stats is a user-
defined record type that holds per-connection accounting information. The
default attribute causes selected record fields to be initialised to zero.
active_conns is a table indexed by connection identifiers (conn_id
records) and yielding conn_stats records. The write_expire attribute
causes entries that remain unmodified for more than 5 minutes to be removed.
The event handler for the connection_established event has a single
parameter, a connection record. When triggered, the handler inserts a
new conn_stats record with the current time taken from the last network
packet’s timestamp into active_conns for the connection provided as an
event argument. (The “$” operator selects a field of a Bro record; similar to
the “.” operator in C.)

Fig. 3. Dispatching events to varying subsets of the subscriber set: the white
node sends an event to the central node, whose processing triggers another
event to which all of the ring nodes are subscribed. Depending on the central
node’s dispatching policy, different subsets of the subscriber set are included:
(A) full broadcast, (B) limited broadcast, (C) subgroup, (D) sender only.

are delivered such events. To allow for simpler expressions,
the matching can be restricted to event names in a given
namespace. For example, Worm: : * stands for all events in
the Worm namespace and Worm: : *infectee* represents
all events in the same namespace whose names contain the
substring “infectee”. In practice, a peer requests event delivery
by adding an entry to a well known table: this entry provides
the regular expression, the IP address and listening TCP port
of the peer, and various other connection parameters.

B. Event Dispatching

One of our first observations with distributing events in this
manner was that while broadcasting events to all subscribers
is often appropriate, some events require a different approach:
one of our standard events is a heartbeat in the form of a “ping”
event to a peer that is answered with a corresponding “pong”
event. In the standard model, multiple clients pinging a single
peer at the same time will cause the entire subscriber group
of the pong event to receive a copy of every pong event, even
though each subscriber is only interested in the pong event
associated with its own pings. Clearly, the policy layer needs

global pong(seq: count): event &dispatch=sender;

global signature_match(state: signature_state,
msg: string,
data: string):

event &dispatch=broadcast;

global heartbeat (): event &autotrigger=5mins;
function sender (e: event): set[event_peer] {
local receivers: set[event_peer];
add receivers|e$Speer];
return receivers;

}

function broadcast (e: event):
return e$subscribers;

set [event_peer] {

}

Fig. 4. Example of the dispatch and autotrigger attributes
pong events use the sender function as their dispatcher, which selects
only the peer who originated the event in the resulting event peer set.
signaturematch events use the broadcast dispatcher which simply
uses the entire subscriber set provided with the event. Finally, heartbeat
events will be triggered automatically every 5 minutes.

to be able to specify the event dispatching mechanism more
precisely. Our goal is illustrated in Figure 3: the policy must al-
low for different event dispatchers for each event type, because
each individual event can potentially require the selection of a
different subset of the subscriber set. Besides the broadcast and
request/reply scenarios many others are conceivable, such as
anycast variations or event sampling. Note that this means that
we do not guarantee that every subscriber sees every instance
of event types that it indicated interest in — that selection is
up to the policy of the dispatching node.

Our model uses a combination of event handlers, event
record types, element attributes, and subscriber sets. Bro
already treats event handlers as elements of the scripting
language, i.e., they can be assigned to variables, called in-
directly, etc. We extend this approach by allowing event
handlers to be tagged with attributes as well: the two attributes
we are currently using are dispatch and autotrigger.
Using dispatch, the user can specify a dispatcher callback
that serves as an active forwarding filter: the dispatcher is
passed the event as an instance of the event record type
and returns an instance of type set [event _peer] which
contains all subscribed peers that event will be forwarded
to. The evaluation of this function and the actual event
forwarding happen after the event is triggered and before
the event handlers are executed. Given that sets are standard
types in Bro’s scripting language, dispatchers can leverage
all set manipulation operators offered by the language. The
autotrigger attribute contains a temporal value and causes
an event to be triggered automatically once the specified period
of time expires. We expect that further event attributes will be
added in the future as the need arises.

Note that an event type can and frequently does have
multiple event handlers. Allowing every event handler to use
a different dispatcher could lead to conflicts: for example, one
event handler could request that an event never be forwarded
to any of the subscribers, another could forward the event to
a subset of the subscribers, while yet another could request
full broadcast. What is the correct way to handle this? Our

answer is to provide one event dispatcher per event type.
The assignment of a dispatcher happens when an event type
is declared in the policy script. Figure 4 illustrates these
concepts.

Since a dispatcher could theoretically return arbitrary nodes
in the resulting recipients set, the set is automatically inter-
sected with an event type’s actual subscriber set to make sure
the recipients remain within the subscriber set.

C. Event Chains

Thanks to the event statement, an event handler can trig-
ger the occurrence of another event, leading to chains of events
(and consequentially, of event handler invocations). This poses
questions regarding the propagation of properties from one
event to the next. We currently track event chains only locally,
i.e., among sequences of event handler invocations on the same
host. Note that a single event can lead to multiple event chains
because of the possibility of multiple event handlers per event
type: each new event can start a new set of chains. In the light
of our event dispatcher model, we are primarily interested in
the original source of the event and the time of creation. We
propagate these properties from one event to the next one and
leave the dispatch policy up to each event type. That way, in
an event chain A — B — C of three events, C’s event handler
could still implement the dispatch policy sender as shown
in Figure 4 that would cause event C to be sent only to the
peer from which the node originally received A.

D. Composite Events

Often we are not interested in the occurrence of a single
event but in the occurrence of a pattern of events. For
example, successful attacks usually involve multiple stages:
a reconnaissance phase in which the attacker scans for
vulnerable machines, the break-in itself into one or more
victim machines, and finally the attempt of removing any
evidence and maintaining access to the machines. Not all
of these steps need occur sequentially, and many of them
have various different incarnations. Each stage however can
generate events individually. Therefore, detection accuracy
benefits from combining such patterns into semantically more
high-level composite events [9]. In general, composite events
consist of a set of input events, a number of conditions, and
an output event which is triggered if the conditions are met.
In the intrusion detection domain, many approaches have been
devised to correlate lower-level events into composite events
(and eventually into alerts). The STAT suite models attack
scenarios with state machines, using a custom language [10].
Emerald features P-BEST [11], a production-based expert
system. Other correlation schemes include identifying groups
of events which share common attributes [12]; transforming
high-level attack descriptions into acyclic directed graphs [13];
and matching consequences of one step with the prerequisites
of others [14].

Implicitly, Bro has always used composite events: its event
handlers can keep state across invocations, allowing policies
that track precisely the type and parameterisation of events
that have occurred previously. For instance, Bro’s scan detector

trigger scanner raises {
successful_scanner,

}

global scanners: set[addr]

&write_expire = lhr;

event is_scanner (ip: addr) {
add scanners[ip];

}

event connection_established(c:
if (c$Sorig_h in scanners &&
cSresp_h in local_nets)
event successful_scanner (c$orig_h);

connection) {

Fig. 5. Example of a trigger. The is_scanner handler inserts detected
scanners into the scanners set. The connection_established han-
dler raises a new event if a known scanner has successfully setup a connection
to a local host.

tracks connection attempts per originator. If a certain scanning
threshold is reached, a new event is raised which reports
the detected scanner. Thus, the detector implicitly defines a
pattern of connection attempt events that eventually trigger a
composite event. With the development of the communications
framework we have made the representation of composite
events more explicit by the introduction of triggers. Triggers
follow the event-condition-action paradigm [15][16] and con-
sist of small self-contained programs that encode the logic
necessary to detect composite events. Triggers consist of a set
of input event handlers which evaluate the composite event’s
triggering condition which, if met, leads to the triggering of
possible output events. The key difference to other policy
statements is that triggers are self-contained and mobile. Thus,
we can initialise triggers as we see fit and transfer them
from one peer to another® while any output events are sent
to the peer that originated the trigger. The state required
for correlating input events is maintained inside the trigger’s
scope. No external variables may be referenced inside triggers,
making trigger state similar in spirit to closures in functional
programming.

As an example, consider the following situation: we want
to detect scanners which have successfully set up a connection
into our internal network shortly after performing their scans.
More precisely, the system is to raise the event success—
ful_scanner if (1) the event is_scanner is raised for
an IP address X; and (2) within the next hour, the event
connection_established is raised for a connection be-
tween X and a local responder. Figure 5 shows a trigger which
raises the output event successful_scanner if these two
conditions are met.

V. DISCUSSION

A. Characterisation of Events in Intrusion Detection

Given the vast application space of event-based systems, it
behooves us to consider carefully the characteristics of events
in the intrusion detection space. Successful intrusion detection
needs to cope with an extraordinary range of environmental

3Bro already supports the serialisation of scripts into a binary representa-
tion [7]. Therefore, sending a trigger presents no technical difficulty.

context, policy implications, semantical ambiguities, and tech-
nical limitations. We believe this has two implications relevant
to our discussion. First, there is strong reason to believe that
IDS events need to be just as semantically variable as their
problem setting. This implies that the mechanisms for moving
events around have to be rich in terms of type information
themselves. Second, IDS events require a great deal of context
to allow justifiable decisions in the analysis stage. The value
of IDS events varies tremendously with their context. This
implies that particularly the propagation of IDS events of high
abstraction level will require nontrivial optimisations to deal
efficiently with the amounts of state involved.

B. Topic- vs. Content-based Subscription

Our subscription mechanism at this point is topic-based:
each event type’s name defines a topic that subscribers indicate
interest in. However, support for content-based subscription
is provided with triggers because they can encode arbitrary
predicates for filtering event delivery. Note that the content-
based approach can be considered complementary to our
dispatchers: we let the event-triggering node’s policy govern
which subscribers receive the event, whereas triggers represent
the potential recipient’s event interest. At present, we consider
our topic-based approach fine-grained enough for normal
publish/subscribe situations — Bro’s core alone can currently
deliver around 200 different events.

C. Incorporating Type Information

We believe that the powerful semantics provided by the
object orientation implemented in Bro’s record types can be
leveraged for sophisticated event processing techniques.

While type-based publish/subscribe has been discussed
before [17], there remain interesting possibilities for event
management. As just pointed out, topic-based subscription in
Bro is mostly name-based. Even without inheriting event types
themselves, we can leverage type information at the event
handler level by allowing for event handler selection based
on argument subtypes. That is, multiple event handlers for
the same event type can be provided with different (sub)type
selections for the record types in the event’s argument set.
This opens many possibilities; one that we are investigating
is the use of this type distinction to restrict the invocation
of event handlers to the handler matching the provided types
most closely.

Location dependence of a record’s method implementation
is another technique. When a record value is transmitted
between peers, the implementation of the type’s methods
need not necessarily be the same in both peers (unless the
implementation is specifically sent along). Such “spatial poly-
morphism” can be used to vary the behaviour of an event
argument depending on the event’s location. We believe this
will have many uses, particularly given the fact that Bro’s event
handlers do not return a value while a record type’s methods
can. We defer the selection of a specific combination of such
type-dependent event management techniques because we are
still in the process of exploring this design space.

D. Performance Considerations

While our dispatcher scheme provides great flexibility,
attention needs to be paid to performance: low-level events
can occur hundreds of times per second. Evaluation of the
dispatcher of such events for every event triggered could
quickly lead to missed events in other parts of the system.
We tackle this problem from two directions: first, we believe
that in a large majority of cases, only a small number of simple
dispatchers will be used. We can implement them in the Bro
core, avoiding the overhead of script interpretation. Second,
additional language attributes could be used to indicate that a
dispatcher’s evaluation does not change, hence it would need
to be executed only once and the resulting subscriber set could
be cached.

E. Event Composition & Routing

Event triggers retain the comparatively low-level approach
to expressing event patterns through state in script variables.
We are investigating the use of more high-level language
elements to ease this task; we envision a language model
similar to the one used in [9] but based on Petri nets.

Our event model is currently not very routing-friendly:
when node A subscribes to an event type at peer B, this
implies a direct connection between A and B. The only routing
mechanism provided is the configuration of explicit forwarding
policies. This has to date not presented a problem and we
defer more advanced routing support until we experience a
stronger need. The same applies to the extension of node-
local event chain tracking to a global one, which would allow
the introduction of route tracing functionality such as “source
routing” or “record route” across event instantiations.

F. Node Flexibility

Bro is a fairly heavyweight application that may not be the
best choice for the purposes of all nodes in a Bro network.
For cases where this is a problem, we have implemented
a lightweight and highly portable library supporting Bro’s
communication protocol called Broccoli * that we use to allow
nodes that are not instances of the Bro IDS to partake in the
event communication. Broccoli nodes can request, send, and
receive Bro events just like Bro itself, but cannot be configured
using Bro’s policy language. A Broccoli node’s policy has to
be implemented directly in the code or through mechanisms
such as configuration files.

VI. SUMMARY

We have outlined our steps towards an event model for the
Bro IDS that we expect to provide the flexibility and control
necessary for creating large-scale distributed IDSs based on
Bro. Indeed, we believe that the combination of Bro’s commu-
nication framework with policy-configurable event processing
allows us to think of Bro not only as a distributed IDS but also
as a more general system for highly configurable distributed
event processing. In the future we plan to experiment with

4Broccoli is the healthy acronym for “Bro Client Communications Library.”

increasingly large networks of Bro nodes, possibly spanning
the current Bro deployments at institutions such as ICIR,
Lawrence Berkeley National Laboratory, and Technische Uni-
versitidt Miinchen.

VII. ACKNOWLEDGMENTS

This work has been carried out in collaboration with Intel
Research Cambridge and ICIR. We would like to thank Jon
Crowcroft, Holger Dreger, Anja Feldmann, and particularly
Vern Paxson for interesting discussions and valuable feedback.

REFERENCES

[1] S. Axelsson, “Intrusion Detection Systems: A Survey and Taxonomy,”
Depart. of Computer Engineering, Chalmers University, Tech. Rep. 99-
15, Mar. 2000.

[2] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C.-L.
Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and
D. Mansur, “DIDS (distributed intrusion detection system) — motivation,
architecture, and an early prototype,” in Proc. 14th NIST-NCSC National
Computer Security Conference, 1991.

[3] P. A. Porras and P. G. Neumann, “EMERALD: Event monitoring
enabling responses to anomalous live disturbances,” in National Infor-
mation Systems Security Conference, Baltimore, MD, October 1997.

[4] E. H. Spafford and D. Zamboni, “Intrusion detection using autonomous
agents,” Computer Networks, vol. 34, no. 4, pp. 547-570, 2000.

[5] G. Vigna and R. A. Kemmerer, “Netstat: A network-based intrusion
detection system,” Journal of Computer Security, vol. 7, no. 1, pp. 37—
71, 1999.

[6] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” Computer Networks (Amsterdam, Netherlands: 1999),
vol. 31, no. 23-24, pp. 2435-2463, 1998. [Online]. Available:
ftp://ftp.ee.Ibl.gov/papers/bro-CN99.ps.gz

[71 R. Sommer and V. Paxson, “Exploiting Independent State For Network
Intrusion Detection,” TU Miinchen, Tech. Rep. TUM-10420, 2004.

[8] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The Many Faces
of Publish/Subscribe,” ACM Computing Surveys, vol. 31, pp. 114-131,
jun 2003.

[9] P.R. Pietzuch, B. Shand, and J. Bacon, “A Framework for Event Com-
position in Distributed Systems,” in Proc. of the 4th ACM/IFIP/USENIX
Int. Conf. on Middleware (Middleware ’03). Rio de Janeiro, Brazil:
Springer, June 2003, pp. 62-82.

[10] S. Eckmann, G. Vigna, and R. Kemmerer, “STATL: An Attack Language
for State-based Intrusion Detection,” Journal of Computer Security,
vol. 10, no. 1/2, pp. 71-104, 2002.

[11] U. Lindqvist and P. A. Porras, “Detecting computer and network misuse
through the production-based expert system toolset (P-BEST),” in Proc.
IEEE Symposium on Security and Privacy. 1EEE Computer Society
Press, May 1999.

[12] H. Debar and A. Wespi, “Aggregation and Correlation of Intrusion-
Detection Alerts,” in Proc. of Recent Advances in Intrusion Detection,
ser. Lecture Notes in Computer Science, no. 2212. Springer-Verlag,
2001.

[13] C. Kriigel, T. Toth, and C. Kerer, “Decentralized Event Correlation for
Intrusion Detection ,” in Proc. of Information Security and Cryptology,
ser. Lecture Notes in Computer Science, vol. 2288, 2001.

[14] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios
through intrusion alerts,” in Proc. 9th ACM Conference on Computer
and Communications Security, 2002.

[15] J. Lobo, R. Bhatia, and S. Naqvi, “A policy description language,” in
Proc. of AAAI Orlando, Florida, July 1999.

[16] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” Lecture Notes in Computer Science, vol. 1995,
2001.

[17] P. Eugster, R. Guerraoui, and O. . C.H. Damm, “On Objects and
Events,” in Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Tampa
Bay, Florida, USA, Oct 2001.

