
ROFL: Routing on Flat Labels
Matthew Caesar Tyson Condie Jayanthkumar Kannan

Karthik Lakshminarayanan Ion Stoica Scott Shenker
University of California at Berkeley

{mccaesar,tcondie,kjk,karthik,istoica,shenker}@cs.berkeley.edu

ABSTRACT
It is accepted wisdom that the current Internet architecture conflates
network locations and host identities, but there is no agreement on
how a future architecture should distinguish the two. One could
sidestep this quandary by routing directly on host identities them-
selves, and eliminating the need for network-layer protocols to in-
clude any mention of network location. The key to achieving this is
the ability to route on flat labels. In this paper we take an initial stab
at this challenge, proposing and analyzing our ROFL routing algo-
rithm. While its scaling and efficiency properties are far from ideal,
our results suggest that the idea of routing on flat labels cannot be
immediately dismissed.

Categories Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking;
C.2.2 [Computer-Communication Networks]: Network Proto-
cols – Routing Protocols; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design

General Terms
Algorithms, Design, Experimentation.

Keywords
Routing, naming, Internet architecture

1. INTRODUCTION
For a variety of reasons, including the NewArch project [47],

various commentaries [29], NSF’s GENI [45] and FIND [44] pro-
grams, and pent-up frustration at the current state of affairs, it has
become fashionable to consider clean-slate redesigns of the Inter-
net architecture. These discussions address a wide range of issues,
and would take the architecture in many different (and sometimes
opposing) directions. However, the one point of consensus (among
those who comment on the matter) is that any new architecture
should cleanly separate location from identity.1 The current use of
IP addresses to signify both the location and the identity of an end-
point is seen as the source of many ills, including the inability to
1By location we mean a label that enables one to find the object in the net-
work, and by identity we mean a label that uniquely and persistently spec-
ifies that object. We will use the terms name and identity interchangeably
throughout this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

properly incorporate mobility, multihoming, and a more compre-
hensive notion of identity into the Internet architecture. As long ago
as Saltzer’s commentary [31] and the GSE proposal [28], and prob-
ably even before that, there have been calls for separating the two,
either through new addressing schemes (as in GSE), or through
more radical architectural changes (e.g., TRIAD [10], IPNL [16],
HIP [22], FARA [11], LFN/DOA [3, 38], i3 [33], SNF [23], etc.).

All of these proposals define or assume the existence of a (not
necessarily global) endpoint namespace (or namespaces), but they
differ greatly in the nature of the namespace, from using FQDNs,
to flat names, to allowing any namespace at all (i.e., the architecture
is namespace-neutral).

Despite the differences in namespaces and many other factors,
there is an underlying similarity in how these proposals use end-
point names. Most designs involve resolution; that is, at some point
in the process, the name gets turned into a location (be it an ad-
dress or a more general forwarding directive [11]), and the network
uses this location information to deliver the packet to the destina-
tion. This location information is considered ephemeral, and only
the name serves as a long-term identifier. The resolution could be
done through DNS, or by the network (as in [33]), or through some
other unspecified process.

This paper takes a very different approach. Rather than split iden-
tity from location, we get rid of location altogether. That is, we pro-
pose that the network layer not contain location information in the
packet header; instead, we propose to route directly on the identi-
ties themselves.2 This approach inherits all the advantages of the
location-identity split, such as mobility, multihoming, and stable
identities, but also has several practical advantages of its own:

• No new infrastructure: There is no need for a separate name
resolution system (which already exists for DNS names,
but would have to be created for anything other than DNS
names).

• Fate-sharing: Packet delivery does not depend on anything
off the data path, because there is no need to contact a reso-
lution infrastructure before sending a packet.

• Simpler allocation: Unlike IP addresses, which need to be
carefully allocated to ensure both uniqueness and adherence
to the network topology, the allocation of identities need only
ensure uniqueness.

• More appropriate access controls: Network-level access con-
trols, which are now largely based on IP addresses, can now
be applied at a more meaningful level, the identifier.

However, this design isn’t motivated solely by these advantages.
The real driving force is our wanting to question the implicit as-
sumption, which has been around for as long as the Internet, that
2We will return to these papers later when we review related work, but for
now we note that TRIAD and IPNL both routed on FQDNs; however, they
used resolution to reach objects that are outside of their home realm. The
design in [18] does not use resolution, but cannot scale if many objects don’t
follow the DNS hierarchy. Thus, none of these three designs can scalably
route on fully general (and movable) identities.

scalable routing requires structured location information in the
packet header. So we now ask: how can you route just on names,
and how well can it be done?

First we need to settle what these names look like. If they are
to be the cornerstone of the architecture, one would like names to
serve as persistent identifiers. As argued in [3, 33, 38], though, per-
sistence can only be achieved if the names are free of any mutable
semantics. The easiest way to ensure a name has no mutable seman-
tics is to give the name no semantics at all. Thus, in what follows
we use a flat namespace, where names have no semantic (but per-
haps have cryptographic) content (see, e.g., [3,22,26,33,38]). One
can argue for or against the desirability of flat namespaces, and we
certainly don’t have the space to make a persuasive case here, but
not only do we believe they have significant advantages, we also
believe that if you route on any form of structured names then you
are indeed back in the realm of using structure to scale routing.

The technical challenge, then, is to scalably route on flat labels
(we use the term label because from a routing perspective it doesn’t
matter whether these are names or something else; the goal is to
route to wherever that label currently resides). To our knowledge,
every practical and scalable routing system depends on the structure
of addresses to achieve scalability,3 so this is a daunting challenge
indeed. Our goal isn’t to prove that ROFL can match the perfor-
mance of the current Internet, it is merely to see how far we can get
in this direction of the design space.

Our quest is related to the work on compact routing (which is
essentially how to route on flat labels), which for the Internet con-
text has been most usefully explored in [24, 25]. The focus there
was on the asymptotic static properties of various compact routing
schemes on Internet-like topologies, but there was no attempt to
develop or analyze a dynamic routing protocol that implemented
these algorithms. It is precisely that problem, the definition and
performance of a practical routing protocol on flat labels, that is
our focus here. While ROFL falls far short of the static compact
routing performance described in [24, 25] and elsewhere, it seems
far better suited for a distributed dynamic implementation.

Roadmap: We start by giving a high level overview of our de-
sign in Section 2. We then provide a more detailed description in
two parts: Intradomain routing (routing within a single ISP, Sec-
tion 3), and Interdomain routing (Internet-scale routing across ISPs,
Section 4). We touch on extensions to the basic ROFL design to
address related concerns in routing (Section 5) and then discuss
simulation results (Section 6). We then conclude in Section 7.

2. OVERVIEW
Before we present our design, we should note the three dimen-

sions along which it should be evaluated.
Architecture: These are the broad issues raised in the previous
section about what benefits flow from routing on flat names.
Features: We will show, in the detailed design sections, that ROFL
can support policy routing (Section 4) and can be extended to sup-
port anycast and multicast (Section 5).
Performance: We will address this through simulation, where
we study stretch, join-overhead (which captures the effect of host
churn), and failure-recovery. The numbers aren’t pretty, but they
suggest that with a big enough cache, one that is well within reach
of current technology, the performance might be acceptable.

3While DHTs might appear to be a counterexample, they run on top of a
point-to-point routing system and thus don’t truly address the problem of
building, from scratch, a system that routes without using structured loca-
tion information.

We now give a very high-level view of our ROFL design,
which borrows heavily from insights and techniques in HIP [22],
Chord [34], Canon [17], and Virtual Ring Routing (VRR) [7].

2.1 Preliminaries
Identifiers: We use self-certifying identifiers; that is, we assume a
host’s or router’s identity is tied to a public-private key pair, and its
identifier (ID) is a hash of its public key. In general, a physical box
can have multiple IDs, and an ID can be held by multiple boxes
(which is how we will implement anycast and multicast), but for
this simple description we will assume each host and router has a
single, globally unique ID. We wrap these values to create a circu-
lar namespace and, as in Chord, we use the notions of successor
and predecessor and will establish a ring of pointers that ensures
routing is correct; some additional pointers cached along the way
will lead to shorter routes. Nodes maintain pointers to both internal
(within the same AS) and external (in a different AS) successors,
as shown in Figure 1.
Source routes: As done today, hosts are assigned to a first-hop
or gateway router through either DHCP or manual configuration
(and, in fact, a host can have several gateway routers). We say that a
host’s ID is resident at this gateway router, so each router maintains
a set of resident IDs (in addition to its own ID), and it maintains
source routes to their successors on their behalf. We call the router
at which an ID is resident the ID’s hosting router. A source route
or path from one ID to another is a hop-by-hop series of physically
connected router IDs that goes from one hosting router to another.
Classes of nodes: There are three classes of nodes in the system:
routers, stable hosts (e.g., servers and stable desktop machines), and
ephemeral hosts (hosts that are intermittently connected at a partic-
ular location, either because of mobility, e.g., laptops, or because of
frequent shut-downs or failures, e.g., home PCs turned off when not
in use). The decision about whether a host is stable or ephemeral is
made by the authority who administers the router at which it is res-
ident. When we use the term host without a modifier, we will mean
a stable host; ephemeral hosts will be treated as a special case and
dealt with later in this section.
Source-Route Failure Detection: In order to detect source route
failures, ROFL assumes an underlying OSPF-like protocol that pro-
vides a network map (and not routes to hosts) and can identify link
failures in the physical network. In the intra-domain case, this pro-
tocol finds paths to other hosting routers within the same AS. In the
inter-domain case, this protocol maintains routes to external bor-
der routers whom the internal hosting routers have pointers to. This
protocol can also be used to find the egress router by which an ad-
joining AS can be reached. This protocol is used to detect link and
node failures, and notifies the routing layer of such events.
Security: The self-certifying identifiers can also help fend off at-
tacks against ROFL mechanisms itself. When a host is assigned
to a hosting router, before its ID can become resident, the host
must prove to the router cryptographically that it holds the appro-
priate private key. Thus, there can be no spoofing of IDs unless,
of course, the router misbehaves. However, end-to-end verification
(both from routers and from hosts) can prevent such spoofing even
with a misbehaving router. A more subtle attack is the Sybil at-
tack [13], where-in a compromised router may concoct identifiers
to gain a larger footprint in the system. Damage control against
such attacks may be achieved by auditing mechanisms within an
AS that limit the number of IDs hosted by a router.

For ease of exposition, we first describe how ROFL does intra-
domain routing, and then go on to the more complicated case of

3

R1

Provider ISP

R2
Host (ida)

Succ(ida)

Ext_succ(ida)

Figure 1: A host with ida has pointers to an internal successor,
Succ(ida), and an external successor, Ext succ(ida).

inter-domain routing. The discussion here is informal (the more
detailed and precise explanation is presented in the following sec-
tions) and we focus on the steady-state (when no joins or leaves are
in progress) for clarity.

2.2 Intradomain
Joining: Whenever a new host a arrives, its hosting router sets up
a source route from ida to its successor ID, and contacts the hosting
router for the predecessor ID to have it install a source route from
it to ida. This can be done using Chord-like joining algorithms,
which return an ID’s predecessor and successor. In steady-state, the
set of nodes forms a ring, with each ID having a source-route to its
successor and predecessor IDs. The same is true for newly arrived
routers, except that they do their own path establishment (routing
through one of their physically connected next-hop routers).
Caching: Whenever a source route is established, the routers along
the path can cache the route (keeping track of the entire path).
Thus, in steady-state each router has a set of pointers to various
IDs, some emanating from their own resident IDs to successor and
predecessor IDs, and others being cached from source routes pass-
ing through it. The pointer-cache of routers is limited in size, and
precedence is given to pointers in the former class.
Routing: Routing is greedy; a packet destined for an ID is sent in
the direction of the pointer that is closest, but not past, the destina-
tion ID. This is guaranteed to work in steady state because in the
worst case it can always walk along the series of successor pointers.
Recovering: In the case of a router failure, the neighboring routers
inspect all their cached pointers and send tear-down messages along
any path containing the failed router. In the case of host failure (or,
as we will call it, ID failure), the router sends tear-down messages
to each of the ID’s successors and predecessors. When a tear-down
message reaches a hosting router, it rejoins the relevant ID so it can
find its current successor/predecessor. To increase resilience to ID
failure, nodes can hold multiple successors (i.e., the successor and
its successor), and we will call these successor-groups.

Finally, certain sequences of failure events could cause the suc-
cessor ring to partition into multiple pieces, even if the underly-
ing network is connected. To prevent this, routers continuously dis-
tribute routes to a small set of stable identifiers. Routers locally
perform a correctness check based on the contents of this set, then
execute a partition-repair protocol that ensures network state con-
verges correctly into a single ring. This ensures that if a path exists
between hosts a and b, ROFL will ensure a and b can reach each
other.
Ephemeral hosts: Ephemeral hosts cannot serve as successor or

predecessor to other IDs; they merely establish a path between
themselves and their predecessor, which keeps a source-route to the
ephemeral hosts; when other nodes route to this ephemeral ID, the
packet will travel to the predecessor router, and then be forwarded
to the host. Ephemeral hosts (or, rather, their hosting router) can set
up these backpointers at other routers for more efficient routing, but
state at the predecessor is necessary.

2.3 Interdomain
Our inter-domain design is similar in spirit to our intra-domain

design, but it must be modified to abide by AS-level policies.
ROFL’s interdomain design leverages the fact (see [35, 36]) that
most current policies can be modeled as arising out of a simple
hierarchical AS graph. For supporting such policies, we extend
Canon [17] which, when translated from its original DHT context
to our interdomain one, only supports standard customer-provider
relationships as they would arise in a tree graph (namely, every AS
has a single provider). Our extensions to Canon (for our context)
allow ROFL to support most of today’s Internet policies — such
as customer-provider, multihoming, peering (direct/indirect) — but
not all policies implemented today using BGP.
Constructing a global ring: In our design, each AS X runs its
own ROFL-ring (RR), RRX , as specified by our intra-domain de-
sign. In order to ensure that hosts within its RR are reachable from
other domains, RRX needs to be merged with the RRs of other do-
mains. This is done in three phases. First, AS X discovers its up-
hierarchy graph GX , which consists of all ASes “above” X in the
AS hierarchy (X’s providers, its providers’ providers, and so on).
Edges in GX correspond to X’s view of the customer-provider,
multihoming, and peering relationships in X’s up-hierarchy. GX

does not need to be complete: providers of AS X may choose not
to reveal certain links to X , or X may decide to prune GX to re-
duce its join and maintenance overhead (which is roughly linear in
the number of edges in this graph).

Next, X performs a Canon-style [17] recursive merging protocol
(Section 4.1) that constructs additional successors to RRs in other
ASes. This is done by merging X’s RR with all the RRs in the
domains at or below X in the AS graph. This is done in a manner
that respects certain interdomain policies. Moreover, the merging
process provides a useful isolation property: when a host in domain
X sends a packet to a host in domain Y , the data path is guaranteed
to stay within the subtree rooted at the earliest common ancestor of
these two domains. As a corollary, traffic internal to an AS stays
internal.

In addition to using successor pointers, our inter-domain design
also uses proximity-based routing tables to reduce stretch. These
are routing tables that allow fast progress in the ID-space, and are
similar to Pastry routing tables: the main difference is that a routing
table entry for an ID in AS X points to the node with the appro-
priate prefix which resides in the lower-most level of the hierarchy
(relative to X). This ensures that following routing tables does not
violate the isolation property.
Joining: Whenever a host with ida comes up in AS X , and wishes
to be globally reachable, its hosting router is responsible for finding
a successor and predecessor at each level of the GX sub-hierarchy.
This can be done by looking up the predecessor and successor of
ida at each level of the AS hierarchy. The hosting router then asso-
ciates the successor and predecessor pointers for ida with an AS-
level source-route to the routers hosting the predecessor and suc-
cessor identifiers for ida. This can be any source route consistent
with the graph GX , and there can be multiple source routes for
resilience to failure. These AS-level routes are used in determin-
ing which of these pointers are available for relaying a packet (in a

process quite similar to how BGP determines the links to forward
a route advertisement). To reduce stretch, the hosting router uses a
similar procedure to discover fingers at each level. Border routers
in an AS may optionally maintain bloom filters that summarize the
set of hosts in the subtree rooted at the AS. These bloom filters are
also updated during the join process.
Routing: Our mechanism for routing relies on greedy routing,
augmented with in-packet AS-level source-routes. As a packet is
routed towards its destination, it is marked with an AS-level source
route denoting the path traversed until that point. When a router
receives a packet, it uses the source-route in determining the candi-
date set of outgoing pointers can be used in forwarding the packet;
that is, it finds the paths that are consistent with policy. This de-
cision is made by comparing the source-route on the packet to the
source-routes on the pointers using BGP-like import and export fil-
tering rules. Then, greedy routing is used to determine the closest
candidate pointer, whose source-route is tacked on to the packet.
Note that the salubrious properties of greedy routing (such as loop-
free forwarding, eventual reachability) apply even when the packet
is forwarded in this fashion.
Recovering: In the case of a router failure, routers with pointers
to the failed router are notified either pro-actively by neighbors of
the failed router, or discover the failure when forwarding a packet.
In the case of host failure, the router sends tear-down messages to
each of the ID’s successors and predecessors. When a host/router
failure is noticed by a router which has pointers to the ID, it rejoins
the relevant ID by finding successors/predecessors at the relevant
level.

In the case of AS-level link failures that lead to a partition in
G, the isolation property ensures that hosts in ASes X and Y can
route to one another provided there is a subtree in GX ∪ GY such
that all AS-level links in the subtree are functional. Hence in the
common case where one access link of a multi-homed AS goes
down, incoming and outgoing traffic will be automatically shifted
to the other access links. Note however that in some failure patterns,
there is a path in the Internet graph between ASes X, Y , but no
fully functional subtree in GX ∪ GY . In this case, AS X can either
prune the graph GX to only working links, and redetermine the
successors of its IDs over this graph; or, it can add working links
to GX to ensure that such a working subtree exists, and re-join its
IDs over those links.
Handling Policies: Our design also handles peering and multi-
homing relationships between ASes. We treat multi-homing links
as backup links; an AS joins the global ROFL ring through one of
its providers, and uses the other providers as backup, in case the
primary provider fails.

Peering relationships can be handled in our design in two dif-
ferent ways. One design option is to transform the graph G so that
doing greedy routing over the links established via joins in G suf-
fices to handle peering. In this case, the property we provide is that,
if a customer of provider X routes to a customer of a peer AS Y of
X , it is guaranteed to use the peering link for that purpose. How-
ever, the limitation here is that the peering link may also be used
in routing packets destined to customers not belonging to Y ; such
packets will be simply returned via the peering link, and will be
routed via X’s provider. This is necessary since it is not possible to
determine whether the destination is a customer of Y without doing
a complete search of the customers of Y . Our second design option
is to use bloom filters. In this method, AS X uses the bloom filters
of its peers to determine if the destination is possibly a customer of
any of its peers. If so, it uses the peering link to forward the packet
to Y , which uses its pointer to route to the destination. Note that in

order to handle false positives in the bloom filter, this method may
require back-tracking, in case the destination is discovered to not
be in Y .

We note that our design requires ISPs to reveal customer-
provider, multi-homing, and peering relationships to their down-
stream customers (since a downstream-customer X uses them to
compute GX). This may not be a serious concern, since as shown
in [35], such relationships are mostly inferable in BGP today. Fi-
nally, our design allows multi-homed ASes some degree of control
over incoming traffic on their access links, though we are yet to
fully understand how this degree of freedom compares to that per-
mitted (or forbidden) by BGP. This control in ROFL is achieved
by investing the join process and identifiers with some traffic-
engineering semantics (described in Section 5).

3. INTRADOMAIN

3.1 Host Join

Algorithm 1 The join internal(id) function is executed by a router
upon receipt of a host request for joining the network. The function
bootstraps a virtual node on behalf of the host.

1: authenticate(id) # exception on error
2: vn = new VirtualNode(id)
3: register virtual node(vn)
4: pred = find predecessor(id)
5: # Setup state with local participants
6: vn.successorinternal = pred.successorinternal

7: pred.successorinternal = vn

8: S = select providers()
9: for all s ∈ S do

10: br = locate border router(s)
11: p = get path to root(s)
12: br.join external(vn, p)
13: end for

The joining host with ida first selects an upstream gateway router
to join the ring on its behalf. It opens a session to the router and
calls join internal (Algorithm 1), which performs the bootstrap
process. The router authenticates the host and spawns a virtual node
vn(ida) that will hold the routing state with respect to this host’s
identifier. The router then joins the internal ring by using the host’s
identifier to locate the predecessor in the internal AS. The prede-
cessor is used to initialize the internal successor state in vn(ida).
The router then discovers the external successor state by first de-
termining the set of paths along the up-hierarchy on which to join.
This set of paths is selected in a manner obeying the policies of the
joining host and its internal AS. For each of these paths, the router
then selects a border router connected to the next AS-hop along
the path. The router forwards the join request to this router, which
in turns performs an external join using the join external function
(described in Section 4.1).

However, this procedure does not work if ida is the router R’s
first resident ID, since R does not have any pointers and hence can-
not make progress in the ring. To deal with this, when R first starts
up it creates a default virtual node. The default virtual node’s ID
is the router-id, and its successors act as default routes if it has no
other successors that it can use to make progress. The default vir-
tual node joins by flooding a message containing the router-ID. The
router-ID’s predecessors add a pointer to the router-ID, and its suc-
cessors respond back via the path contained in the message. This
ensures that all resident IDs find a predecessor in the internal AS
when joining.

When forwarding a control message, intermediate routers may
cache destination IDs contained in the message if they have spare
memory. The control messages also build up a list of routers along
the way, and this list is stored by the router hosting the destination
ID. This list is used to maintain consistency in the presence of host
failure, as described below.

3.2 Failure
We aim to maintain routing state so as to preserve two invari-

ants: (a) if there is a working network-path between a pair of nodes
(A, B), then ROFL ensures that A and B are reachable from each
other (b) if A has a pointer to B, and if either B or the path to B

fails, then A will delete its pointer. We describe how this is achieved
below.
Router failure: If a router R hosting several IDs goes down,
there are two things that need to happen. (1) Each host connected
to the router R discovers the outage (via a session timeout) and
needs to rejoin via an alternate router. Alternatively it can do this
proactively by joining via multiple routers during its initial join. (2)
There are a set of virtual nodes residing at other routers with point-
ers to IDs at R that need to be updated. Although we could simply
rejoin each virtual node affected by the failure, we instead improve
performance by having routers in advance agree on a sorted list of
routers that will be failed over to in event of failure. Upon node
failure, the end host and remote routers deterministically fail over
to the next alive router on the list.
Host failure: When host with ID ida fails, the gateway router R

will detect the failure through a session timeout. R needs to in-
form all other routers with pointers to ida that it has failed. One
simple way to do this would be to flood all routers with an invalida-
tion message. However, flooding the entire system on host failure
would not be efficient. Instead, we address this by constraining the
set of routers in the system that are allowed to maintain cached
state for ida. For simplicity we constrain this set to be routers hold-
ing predecessors of ida and routers that lie on the shortest path
to those routers. When there is a host failure, the router sends a
directed flood, i.e. a source-routed flood that traverse only this sub-
set of routers. When shortest paths change, or links fail, routers
can optionally update this set via additional directed floods, how-
ever this is an optimization that is not necessary for correctness. As
a fallback to handle router failure, routers also monitor link-state
advertisements and delete pointers to IDs residing at unreachable
routers.
Link failure, no partition: If the set of links that fail do not create
a partition, then the router need not make any changes on behalf
of its resident IDs since the network map will find alternate paths
to their successors. However, the contents of pointer caches that
traverse the link should be temporarily invalidated while the link is
failed (to avoid sending packets over the failed link).
Link failure, partition: In the event of a network-layer partition,
the successor pointers maintained by routers need to remerge into
two separate, consistent namespaces. First, invalid pointers (point-
ers that terminate at routers that are no longer reachable) are torn
down. Next, the router attempts to repair these pointers locally by
shifting the successors down to fill the empty space left by each
failed successor (since it knows no closer IDs may exist in the net-
work), then it tries asking each of its successors Si starting at the
one furthest away to fill the gap at the end of its successor list.
Unfortunately this process could cause the ring to partition into
multiple pieces, even if the underlying network is connected. To
recover from this, we require routers to distribute the smallest ID
they know about (the zero-ID, i.e. the ID closest to zero) to all its

neighbors. The zero-ID a router propagates is set equal to the mini-
mum of the smallest ID it is hosting and the smallest ID it receives
from its neighbors (the path is also distributed to avoid circular de-
pendencies and allow all nodes to reach the zero node). The end
result is that all routers become aware of the smallest ID in the net-
work. This ensures multiple partitions will heal if the network layer
is connected: if the zero-ID is on one ring, its predecessor on the
other ring will learn about it and add it, triggering a merging pro-
cess. The zero-ID will repair its successor and predecessor, who in
turn repair their successors, and so on until the rings are merged.
In practice, the zero node advertisements are piggybacked on link-
state advertisements, and we use the router-IDs of routers instead
of the zero-ID to reduce sensitivity to churn and balance load over
several routers during the recovery phase.

3.3 Packet forwarding
When a router forwards a packet, it selects the closest ID it

knows about to the destination ID. This is done using the link-
state database to return the next hop towards the router containing
that ID. This approach requires routers to return the closest entry
in the namespace as opposed to the shortest-prefix match lookups
commonly done today. Finding the closest entry can be imple-
mented with minor modifications to routers that support longest-
prefix match. The key observation is that, given a list of IDs in
sorted order, the closest namespace distance match is either the
shortest prefix match or the one right before it in the sorted list.

Algorithm 2 The route (pkt) function is executed by a internal
router upon receipt of a packet destined for a particular virtual node.

1: next hopvn = VN.best match(pkt.destination.id)
2: if pkt.destination.id == next hopvn.id then
3: deliver to host(next hopvn, pkt)
4: else
5: next hopc = PC.best match(pkt.destination.id)
6: if next hopvn.id < next hopc.id then
7: sendto(next hopc.path to router, pkt)
8: else
9: sendto(next hopvn.path to router, pkt)

10: end if
11: end if

The forwarding algorithm is shown in Algorithm 2. The router
maintains a list of resident virtual nodes (V N), which exports a
best match function that determines the next hop by choosing the
closest ID among all resident IDs and their successors that does
not overshoot the destination. If the destination is an attached host,
VN.best match returns the interface for the host, which the router
uses to deliver the packet. Otherwise, next hopvn is set to the suc-
cessor state of some resident virtual node. Before forwarding the
packet, the router first checks its pointer cache (PC) for an entry
that is closer to the destination than the value stored in next hopvn.
If such a cached entry exists, the router uses its value, stored in
next hopc, instead.

4. INTERDOMAIN
In this section we describe our design for interdomain ROFL

(which borrows heavily from Canon [17]). First, we give an
overview of how the basic protocol works. Next we provide more
details regarding how hosts join, how packets are routed, and how
failures are handled. Then we describe how customer-provider,
peering, and multihoming policies are supported by our augmented
greedy routing protocol over a suitably defined Directed Acyclic
Graph (DAG).

Internal finger

External
finger

Parent

ChildChild

Figure 2: Merging rings

4.1 Basic design
Interdomain ROFL constructs a DHT over a hierarchical graph,

where nodes correspond to ASes and links correspond to inter-AS
adjacencies. Within each AS, the identifiers form an internal ring
as described in Section 3. These rings are then merged with one
another in a bottom-up fashion (traversing up towards the root of
the AS-hierarchy) by having virtual nodes maintain routes to exter-
nal successors that reside in other ASes, as shown in Figure 2. For
a identifier ida in ring 1, these external pointers are established to
identifiers idb in ring 2 that satisfy two conditions: (a) idb would be
ida’s successor if the two rings were merged into a single ring, and
(b) there are no identifiers in either AS within the interval [ida, idb].
This approach is repeated for each level in the hierarchy. Condition
(b) thus limits the number of external pointers that are formed. Prior
work has shown that the expected total number of pointers (both in-
ternal and external) is O(log(n)) (where n is the total number of
identifiers across all stub domains) [17].

Routing occurs as in Chord. Note that on a single customer-
provider hierarchy, a packet sent between a pair of ASes will tra-
verse no higher than their least-common ancestor in that hierarchy.
Moreover, if a host within an AS sends a packet to another host in
that same AS, no external pointers will be used. We refer to this as
the isolation property.

Figure 3: Routing state for virtual node with identifier 8.

For example, Figure 3 shows the internal and external routing
state for a router hosting an identifier 8 residing in AS 4. The host-
ing router has an internal successor pointer to the router hosting
identifier 20 and external successors to hosting routers residing in
ASes 5 and 3. The join protocol discovers the external successor at
each level of the joining node’s up-hierarchy. For instance, the host-
ing router for 8 maintains a external successor to 16 at the level of
AS 2, and an external successor to 14 at the level of AS 1.
Joining: When a hosting router R performs a join for an end-host
with ID ida, R joins both the internal ring (as described in Sec-
tion 3) and also the ROFL ring on behalf of ida. ida joins the ROFL
ring by, for each AS X in its up-hierarchy, routing towards its suc-
cessor using links that traverse no higher than X . In this fashion,
it builds a list of candidate successors, one corresponding to each

AS in its up-hierarchy. It then removes unnecessary successors. For
example in Figure 3, if the identifier in AS 5 were 12 instead of 16,
8 would not maintain 14 as a successor (as doing so could vio-
late isolation). Finally, if ida is the first host in the ISP, it needs a
way to bootstrap itself into the ROFL ring. This is done by having
host identifiers register with their providers (and their provider’s
providers, and so on) when they join. Their providers need only
maintain a short list of such identifiers (a few at each level of the
hierarchy for resiliency purposes). When a new host joins that does
not have a predecessor in its internal ring, the ISP will forward the
join request to one of its providers to lookup a bootstrap node. The
registration process also allows operators to control which set of
ASes ida can join through, and to constrain connectivity to follow
policy or traffic engineering goals.

Algorithm 3 The join external (vn, p) function is executed by a
border router upon receipt of a request for a joining virtual node vn
along the path p.

1: pred = find predecessor(vn.id)
2: RSpred = pred.successorexternal ∪ pred.successorinternal

3: RSvn = vn.successorexternal ∪ vn.successorinternal

4: prune route entries(RSpred , p)
5: prune route entries(RSvn , p)
6: if min id(RSpred) < min id(RSvn) then
7: vn.successorexternal.add(min id(RSpred))
8: end if
9: if vn.id < min id(RSpred) then

10: pred.successorexternal.add(vn)
11: end if
12: br = next border router(p)
13: if br! = NULL then
14: br.join external(vn, p)
15: end if

The join external function (Algorithm 3) shows this process in
more detail. First, the external successor at a level is discovered by
routing towards the external predecessor at that level and then prun-
ing away any references to virtual nodes outside the current hierar-
chy in both the predecessor’s and the virtual node’s routing state.
After pruning, the virtual node with the minimum identifier in the
predecessor’s routing state is kept if it is a better external succes-
sor than the virtual node’s current set of successors. The next step
of the algorithm tests if the virtual node itself is a better external
successor to the predecessor, and if so adds it to the predecessor’s
routing state. The final step uses the path vector passed in as the
argument to recursively call this same function at the border router
of the next provider. This recursive call terminates at the root of the
hierarchy.
Exploiting network proximity: ROFL exploits network proxim-
ity to reduce routing stretch by maintaining proximity-based fingers
in addition to successor pointers. That is, when selecting fingers at
each level of the hierarchy, ROFL tries to select fingers that are
nearby in the physical network. This reduces the number of net-
work level hops required to make a given amount of progress in the
namespace.

We store these fingers in a prefix-based finger table (along the
lines of Bamboo/Pastry/Tapestry), where each row corresponds to
a given prefix-length and each column corresponds to a digit at that
prefix. Each entry contains an ID that is reachable via the smallest
number of up-links. In other words, an entry K may be inserted in
the element (i, j) in J’s finger table iff (a) K matches i bits of J’s
ID and K’s [i, i + b] bits are equal to digit j (b) of all joined IDs
L matching the position (i, j), it is not the case that the path from
J to L contains fewer up-links than the path J to K. If this table is
correctly maintained, the isolation property is preserved. To exploit

proximity, entries that are reachable via fewer AS-level hops are
preferred. For correctness purposes, each ID also maintains a list
of IDs that are pointing to it.

Our joining and maintenance protocols for these fingers are
adapted from the proximity extensions in [9] to support the poli-
cies and properties described in Section 4.2. The join consists of
three phases. First, the joining host sends a join request towards its
own ID. At each network-level hop n, n attempts to insert entries
from its own finger table into the message. The message is then re-
turned back to J after it reaches J’s predecessor. At this point, J’s
entries are correct. Next, J may need to be inserted into the finger
tables of other IDs. This is done by having virtual nodes maintain
copies of their finger’s finger tables. In particular, we modify the
join to also record a list of IDs that need to insert J . J then sends
a multicast message containing its ID to every virtual node in this
list. Upon receipt of this message, virtual nodes check to see if any
of their fingers need to insert J , and if so update their neighbors,
and so on. Nodes also piggyback probes on data packets to ensure
this state is maintained correctly (note if this state becomes incon-
sistent, isolation may be violated, but we will still reach the correct
final destination).

We now describe several other detailed issues:
Failure recovery: The isolation property ensures that failures and
instability outside of a particular hierarchy will not influence rout-
ing within the hierarchy. Because of this, link failures that cause
partitions (the inability to reach successors via a certain level of the
hierarchy) are not reacted to immediately, as ROFL ensures that al-
ternate paths are available. Also, an ISP may host virtual servers
on behalf of a customer ISP, which it can maintain during that cus-
tomer’s outages. Finally, in the event of long-term failures, we need
to ensure that the ring converges consistently at each level of the
hierarchy. We do this using a similar approach to that given in Sec-
tion 3.2. In particular, each AS maintains a route to the zero-ID
(the ID closest to zero) in their down-hierarchy. Hosts then merge
changes to the zero-ID to ensure partitions and other anomalous
conditions (e.g. loopy cycles) heal properly.
Integrating EGP and IGP routing: Today’s Internet uses iBGP
to redistribute externally learned routes internally. In our architec-
ture, we have a similar need for a protocol to do this redistribution.
As mentioned in previous sections, packets contain a list of ISPs
that can be used to reach the final destination. Hence a router con-
taining a packet needs to know how to reach the next-hop AS in
the list. To solve this problem, we have border routers flood their
existence internally. We believe doing this does not significantly
impact performance since even the largest ISPs typically only have
a few hundred border routers. Moreover, these advertisements can
be aggregated if ISPs wish to treat two routes to the same next-hop
ISP through different border routers as being equal.
Exploiting reference locality: ROFL exploits locality by us-
ing pointer-caches [7]. Routers maintain caches in fast memory
which contain frequently accessed routes. When routing a packet,
the router checks its pointer cache, and shortcuts if it observes a
cached pointer is numerically closer to the final destination. How-
ever, naive pointer-caching violates the isolation property, as an AS
may select a pointer from its cache that traverses its provider. Hence
ASes that cache pointers maintain bloom filters containing the set
of hosts joined below that AS. When receiving a packet destined to
identifier idb, the border router consults the bloom filter to see if
identifier idb is below it in the hierarchy. If not, the router is free to
use its pointer-cache to find a closer next-hop ID. The source-route
on the packet is used to determine which pointer-cache entry to use
based on policy. Note that the use of bloom filters guarantees the

Figure 4: Conversion rules for (a) peering (b) multihoming and
backup.

isolation property in the presence of caching. Further, the size of
bloom filters can be traded off against the false positive rate. Fi-
nally, the decision of whether to use pointer caches can be made
by each ISP in isolation. Unless otherwise mentioned, in our simu-
lations we assume no ISPs use interdomain pointer caches or their
associated bloom filters.

4.2 Handling policies
We aim to support four common types of inter-ISP relation-

ships arising from the Internet’s hierarchical structure: provider-
customer links where a customer ISP pays a provider to forward
its traffic, peering links where two ISPs forward each other’s traffic
typically without exchanging payment, backup links where an ISP
forwards to its neighbor only if there is a failure along its primary
link, and multihomed connections, where an ISP may have several
outgoing links. We extend Canon [17] to support policies using two
conversion rules (Figure 4) that conceptually convert the AS hierar-
chy into a Canon-style hierarchy (these rules do not actually mod-
ify ISP relationships, but rather are implemented as modifications
to the Canon join).
Handling peering: As previously mentioned, we can handle a
peering relationship in two ways. In the first option, we modify
the AS relationship graph to include virtual ASes. A virtual AS is
a construct that allows ROFL to discover successors reachable via
peering links (it is not explicitly maintained as additional state, but
is implemented as an additional set of join rules). An example is
shown in Figure 4a. For each peering link, a virtual AS is con-
structed that acts as a provider for the ASes on either side of the
link, and as a customer of each AS’s provider. When virtual nodes
join, they treat links to virtual ASes as multihomed links, and join
them as they would a provider. In this fashion, a host in AS 2 will
discover its successors in AS 3, however Canon will ensure that
its join will not traverse AS 1 (because relaying between providers
is prevented as described below). Note that if several ASes are all
peered together in a clique (e.g. the Tier 1 ISPs), we only need a
single virtual AS rather than a separate virtual AS for each link.

In the second option, we use bloom filters to deduce when a
packet should be allowed to traverse a peering link. When the
packet is being routed via an AS (using successor pointers or rout-
ing table entries), the AS can check the bloom filters corresponding
to its peers to determine if the destination is a customer of any of
them. If so, the packet is routed over the peering link, and a bit
set to indicate that it has traversed a peering link. In this mode, the
packet is not allowed to go up the hierarchy (this ensures that an
AS would not use its provider to route packets for its peer). If the
destination is not found in the down hierarchy, then it is returned
over the peering link, at which point, the packet continues on its
original path.

These two options have complementary advantages and disad-
vantages. The virtual AS option has the disadvantage of increasing
join overhead (due to joins corresponding to the peering links), but
it makes the data plane protocol simpler. The bloom filter option
has the disadvantage of requiring a complicated backtracking pro-
tocol, but requires no joins over peering links. For this reason, we
describe simulation results comparing both of these design options.
Handling multihoming: A multihomed ISP purchases connectiv-
ity from more than one provider and typically has policies indi-
cating how each access link is to be used. There are three kinds
of multihomed connections: single-address multihoming, where an
ISP has a single block of addresses but is connected to multiple
providers, multi-address multihoming, where an ISP has a sepa-
rate block of addresses corresponding to each multihomed con-
nection, and single-neighbor multihoming, where an ISP is con-
nected with a neighboring ISP via multiple links. Multi-address
multihoming is handled by joining each ID via a different provider,
and single-neighbor multihoming is handled by applying policy
to select which link to use to reach the neighbor. Single-address
multihoming is done by repeating the Canon join for each mem-
ber of the AS’s up-hierarchy. The up-hierarchy for an AS consists
of its providers, their providers, and so on up to the Tier-1 ISPs,
plus ASes reachable across peering links (although repeating the
join increases overhead, the up-hierarchy above a node is typically
small [41], and we can eliminate redundant lookups that terminate
at the same successor at multiple levels). Finally, backup relation-
ships are supported by directing join requests only over non-backup
links.

5. ADDITIONAL ROUTING ISSUES
We now describe preliminary extensions to the ROFL design to

(a) support more flexible routing policies and traffic engineering
(b) provide improved delivery models such as anycast, multicast (c)
deal with security concerns, specifically, denial-of-service attacks.
The last two concerns are meant to be illustrative examples that
suggest how the clean-slate design of ROFL may provide better-
than-IP routing and security properties.

5.1 Routing Control
BGP and OSPF, two commonly used routing protocols today,

allow the operator extremely flexible policy and traffic engineering
knobs. We discuss the flexibility of ROFL on these metrics.
Inter-domain routing control: ROFL’s policy extensions support
customer-provider, backup, and peering relationships. Although
these paths may suffice for most traffic, custom paths that satisfy
high-level policy goals, stronger QoS constraints, or multipath con-
nectivity may be desired. We propose to handle other policies and
route selection mechanisms via two complementary approaches.

We propose the use of endpoint-based negotiation where we al-
low the source and destination nodes to negotiate the path (or set of
paths) to be used. Here, we leverage a particular observation about
the Internet hierarchy: all paths that can be used to reach AS X

from AS Y traverse ASes in the intersection of X’s and Y ’s up-
hierarchies. Moreover, up-hierarchies are typically fairly small and
can be represented in just a few hundred bytes. Hence when send-
ing the first packet in a session, we allow the source and destination
to negotiate a subset of ASes in this set that can be used to forward
packets between the two. This is done by having the destination se-
lect a subset of ASes above it in the hierarchy and appending this
set to the response.

Next, when a hosting router in a multihomed AS performs a join,
it sends a join out on each of its AS’s p providers with IDs with

variable suffixes (G, xk) (1 ≤ k ≤ p). Hosts then route packets to
(G, r) where r is a randomly chosen suffix. Hosts or intermediate
routers may vary r and the suffixes xk to control the path selected
for forwarding packets.
Intra-domain routing control: We can leverage our interdomain
design to deal with certain intradomain policies. For example, a
transit AS that is spread over multiple countries can create sub-
rings corresponding to each of those regions. The isolation prop-
erty ensures that internal traffic will not transit costly inter-country
links. Further, our inter-domain traffic engineering mechanisms
may also be used in this context to perform traffic-engineering be-
tween these regions.

5.2 Enhanced Delivery Services
There are a vast number of both overlay and network-level pro-

posals for multicast and anycast, many of which can run directly
on top of the ROFL design. A few representative (but grossly
incomplete) list of examples includes IP Multicast [12], Over-
cast [21], PIAS [5], and i3 [33]. However, traditional overlay-based
approaches don’t exploit the network layer to improve efficiency,
and current network-level designs don’t directly scale to or exploit
the properties of flat-ID based routing. In this section, we describe
some simple extensions to previous approaches that enable anycast
and multicast.
Anycast: Anycast is an extension of ROFL’s multihoming design.
Servers belonging to group G join with ID (G, x). A host may then
route to (G, y), where y is set arbitrarily. Intermediate routers for-
ward the packet towards G, treating all suffixes equally. This results
in the packet reaching the first server in G for which the packet
encounters a route. This style of anycast can be extended to per-
form more advanced functions (e.g. load balancing) by modifying
X, Y and the size of G in a manner similar to the approach taken
in i3 [33]. This approach to anycast requires no additional state or
control message overhead beyond that of joining the network.
Multicast: A host wishing to join the multicast group G sends an
anycast request towards a nearby member of G. At each hop, the
message adds a pointer corresponding to the group pointing back
along the reverse path, in a manner similar to path-painting [20]. If
the message intersects a router that is already part of the group, the
packet does not traverse any further. The end result is a tree com-
posed of bidirectional links. A host wishing to multicast a packet
P forwards the packet along this tree. Routers forward a copy of
P out all outgoing links for which there are pointers, excluding the
link on which P was received. In the case of single-source multi-
cast, a more efficient tree can be constructed by having nodes route
towards the source.

5.3 Security
ROFL identifiers allow us to leverage existing filtering and capa-

bility mechanisms and provide stronger guarantees than possible in
the Internet today.
Default off: It has been proposed (for example, in [4, 19]) that in
the face of mounting security concerns, hosts should not by default
be reachable from other hosts. Our architecture eases this by en-
suring hosts are only reachable from their fingers. The host (or its
upstream router on its behalf) can control pointer construction to
limit which other hosts are allowed to reach it. In addition, we re-
quire that hosts explicitly register with their providers and traffic to
a host not registered with its provider be dropped. In the worst case
this traffic can be dropped at the provider of the destination AS,
however the use of flat identifiers can potentially allow this traffic
to be dropped even earlier. Filtering mechanisms can also be imple-

mented more securely by verifying that the request for installing a
filter dropping traffic to an identifier comes from the host owning
that identifier.
Capabilities: The use of flat identifiers allows more fine-grained
access control through the use of capabilities (similar to TVA [42]).
When a destination receives a route setup request, it grants access
according to its own policies. If permission is granted, the path in-
formation and capability are returned to the source, which it uses
to communicate further with the destination. This permission is
cryptographically secured by the self-certifying identifier of the re-
ceiver. A capability [42] is a cryptographic token designating that
a particular source (with its own unique identifier) is allowed to
contact the destination. Only with a proper capability will the data
plane forward the data packets. Capabilities are associated with a
lifetime to defend against sources that attempt to abuse the capa-
bility and commit a DoS attack against the destination. ROFL also
supports the use of path capabilities to further restrict communi-
cation along the AS-level path(s) to a destination. Path restriction
allows for fine grain pushback mechanisms and hinders the ability
to conduct DDoS attacks.

6. EVALUATION
6.1 Methodology

Realistically simulating the Internet is itself a highly challeng-
ing problem, both due to scaling issues and because certain as-
pects of the Internet (e.g. ISP policies) are difficult to infer. We
conducted some highly simplified simulations to make the evalua-
tion tractable, yet as much as possible attempted to use real-word
measurements for topologies and parameter settings.
Intradomain: The topologies we used were collected from Rock-
etfuel [32], over 4 large ISPs: AS 1221 (318 routers, 2.6 million
hosts), AS 1239 (604 routers, 10 million hosts), AS 3257 (240
routers, 0.5 million hosts), AS 3967 (201 routers, 2.1 million hosts).
The number of hosts in each of these ISPs were estimated using
CAIDA skitter [43] traces. We do this by correlating the IP ad-
dresses found in the traces with Routeviews [48] routing tables to
map IP addresses onto ASes. We then normalize by the number of
estimated hosts in the Internet, which we assume to be 600 million
hosts (one study [46] estimates 354 million as of July 2005) to es-
timate the number of hosts per AS. Each host is assigned a 128-bit
ID. Transit routers are presumed to have 9Mbits of fast memory
(e.g. TCAM) that can be devoted to intradomain forwarding state.
In these experiments we fill pointer caches only with contents avail-
able from control packets (we do not snoop on data packet headers
for filling caches). We occasionally point out the overheads associ-
ated with CMU-ETHERNET [27], an alternate approach to a sim-
ilar problem. We acknowledge the authors of [27] were attempting
to provide a simplified first-cut solution to this problem rather than
to achieve this level of scalability, so we reference their work only
as a baseline comparison point.
Interdomain: We use the complete inter-AS topology graph sam-
pled from Routeviews. The AS hierarchy inference tool developed
by Subramanian et al [35] was used to infer customer/provider re-
lationships and skitter traces were used to estimate the number of
hosts per ISP. Due to the limitations of our simulation approach and
our goals for preserving certain aspects of realism, our simulations
were not able to scale up to 600 million hosts. Instead, we ran sim-
ulations for smaller numbers of hosts (up to thirty thousand) and
present scaling trends from our evaluation. For simplicity and lack
of sufficiently fine-grained measurements, we model each AS as a
single node, and start nodes up one at a time (in random order). Un-

less otherwise mentioned, the results shown do not use the bloom
filter or finger caching optimizations.
Metrics: We evaluate the join overhead, which corresponds to the
number of network-level messages required to add a host to the
network, the stretch, or the ratio between the traversed path and the
shortest path. For Interdomain, we consider stretch to be the ratio
of the traversed path to the path BGP would select.

6.2 Intradomain
Host joins: Figure 5a shows the number of messages required to
join a given number of hosts, while Figure 5b shows a CDF of the
per-host join overhead. Like CMU-ETHERNET (not shown due to
lack of space), ROFL scales linearly in the number of hosts. How-
ever, CMU-ETHERNET requires between 37 and 181 times more
messages to build the network. ROFL’s join overhead is roughly
four messages times the diameter of the network since only succes-
sors need to be notified on join of a new host. Moreover, ROFL
gives the operator control over the number of messages gener-
ated for host joins. For example, ephemeral hosts can join with a
smaller number of successor pointers, and routers can keep succes-
sor groups active while host-sessions fluctuate. Figure 5c shows
a CDF of the amount of time required to complete a join. This
amount of time is typically on the order of the network diameter,
because several messages in the join are sent in parallel. In prac-
tice, join overhead may be reduced further by ephemeral joins and
having the router maintain the virtual node when the host fails or
moves temporarily to another AS. Finally, we note this join over-
head is a one-time cost in the absence of churn.
Stretch: Figure 6a plots stretch, measured by routing packets be-
tween random sources and destinations, as a function of the size
of the pointer cache. Although stretch with small pointer caches
can be high, with roughly 70,000 entries (corresponding to a 9Mbit
cache of 128-bit IDs) the stretch drops to roughly 2. By compar-
ison a DNS lookup suffers a round trip to the DNS server before
sending which could incur a stretch of up to 3. Figure 6b shows
the fraction of packets that traverse a particular router. The x-axis
corresponds to the rank of the router in a list sorted by the y-value
for OSPF. That is, for a particular x value, we plot the load at the
ith most congested router in an OSPF network, and the load under
ROFL for that same router. We can see that although load varies
across routers, the difference from OSPF is fairly slight, indicating
that ROFL does not introduce a significant increase in the number
of “hot-spots.”
Memory requirements: The intradomain pointer-cache mem-
ory requirements of ROFL is shown in Figure 6c. By comparison
CMU-ETHERNET requires from 34 to 1200 times more memory
than ROFL. ROFL’s memory requirements were reduced further
for routers near the network edge, potentially allowing non-core
routers (e.g. customer routers in access networks) to have smaller
TCAMs or to cache popular destinations and additional successors.
In addition, hosting routers must store state for resident IDs, which
requires between 1.3 Mbits for AS 3257 to 10.5 Mbits for AS 1239
assuming IDs are hosted at the Rocketfuel-visible transit routers.
Failure: Here we discuss the overhead and time to reconverge in
the presence of network level events. We found the overhead trig-
gered by host failure and mobility to be comparable to join over-
head, and link/router failures that do not trigger partitions to be
comparable to OSPF recovery times. However if a network-layer
partition occurs the ring needs to reconverge into two separate, con-
sistent namespaces. We believe partition events in ISPs are rare in
comparison to host failures given the high degree of engineering
and redundancy in these networks. Nevertheless, we investigate this

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 1 10 100 1000 10000

To
ta

l jo
in

 o
ve

rh
ea

d
[p

ac
ke

ts
]

IDs per AS

ROFL-AS1221
ROFL-AS1239
ROFL-AS3257
ROFL-AS3967

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

Cu
m

ul
at

ive
 fr

ac
tio

n

Join overhead [packets]

AS 1221
AS 1239
AS 3257
AS 3967

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

Cu
m

ul
at

ive
 fr

ac
tio

n

Join latency [ms]

AS 3257
AS 3967
AS 1239
AS 1221

(c)

Figure 5: Intradomain routing, joining: (a) Cumulative overhead to construct the network (b) CDF of overhead per node join (c) Join latency

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 10 100 1000 10000 100000 1e+06

St
re

tc
h

Finger cache size [entries]

AS1221
AS1239
AS3257
AS3967

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200Fr
ac

tio
n

of
 m

sg
s

tra
ve

rs
in

g
ro

ut
er

Router number

OSPF
ROFL

(b)

 1

 10

 100

 1000

 10000

 1 10 100 1000Av
g.

 ro
ut

er
 m

em
or

y
us

ag
e

[e
nt

rie
s]

IDs

ROFL-AS1221
ROFL-AS1239
ROFL-AS3257
ROFL-AS3967

(c)

Figure 6: Intradomain routing, data traffic performance: (a) Effect of pointer cache size on stretch (b) Load balance, compared with shortest-path
routing (OSPF) (c) Memory used per router

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000O
ve

rh
ea

d
pe

r p
ar

tit
io

n
[p

ac
ke

ts
]

IDs per PoP

AS 1221
AS 1239
AS 3257
AS 3967

Figure 7: Convergence overhead from Point of Presence (PoP)
failures

overhead to show performance under such extreme scenarios. Fig-
ure 7 shows the overhead to recover from a partition. We create
partitions by varying the number of IDs per PoP between 1 and
10000 (we collect PoP information from Rocketfuel [32] traces),
randomly selecting a PoP, and measuring the overhead to discon-
nect and reconnect it to the graph. We found that repair did not trig-
ger any massive spikes in overhead, which was roughly on the same
order of magnitude of rejoining all the hosts in the PoP. Finally, we
repeated this experiment for 10 million partitions and our approach
converged correctly in every case; we perform consistency checks
for misconverged rings in the simulator.

6.3 Interdomain
Join overhead: Figure 8a shows the overhead to join a single host.
On the x-axis we vary the number of IDs in the AS, and on the y-
axis we plot a moving average of the join overhead over the last 200

joins, averaged over 3 runs. We compare four joining strategies:
ephemeral, where the host joins only at its global successor, single-
homed, where the host joins only via a single path towards the core,
recursively multihomed, where the host joins via all ASes above it
in the topology, and recursively multihomed+peering (which we
call Peering), where the host also joins across all adjacent peer-
ing links. The last approach provides the strongest guarantees on
isolation, but comes at an increased join overhead. The join over-
head for peering can be reduced to that of multihoming with the
bloom filter optimization discussed in Section 4.2, at the expense
of larger per-router state requirements. Surprisingly however, the
cost of a multi-homed join is not significantly larger than that of a
single-homed join. This happens because although there are typi-
cally 75-100 ASes in an AS’s up-hierarchy, and the multi-homed
join must discover a successor through each, there are typically a
much smaller number of unique successors. We leveraged this ob-
servation to optimize the multi-homed join, by eliminating redun-
dant lookups that resolve to the same successor. Next, we roughly
extrapolated these results to an Internet-scale system with 600 mil-
lion IDs, and estimate that the ephemeral join requires around 14
messages, the single-homed join requires around 80 messages, and
the multi-homed join requires around 100 messages. Moreover, it
should be noted that these control messages are more lightweight
than traditional routing protocols, since intermediate routers do not
need to process these messages in their slow-paths. However, we
found that using the bloom filter optimization reduced the overhead
of the peering join to be equal to the overhead of the recursively
multihomed join. Finally, the state at hosting routers increases with
the number of hosts and the number of fingers hosts maintain. We
found that with 600 million IDs each maintaining 256 fingers, we
required on average 184 Mbits per AS to store hosting state.
Stretch: Figure 8b shows a CDF of data packet stretch for single-
homed joins. Stretch decreases with the number of proximity-based

 0
 50

 100
 150
 200
 250
 300
 350

 1 10 100 1000 10000

Jo
in

 o
ve

rh
ea

d
[p

ac
ke

ts
]

IDs

Ephemeral
Single-homed

Rec. multi-homed
Peering

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Cu
m

ul
at

ive
 fr

ac
tio

n

Stretch

ROFL 60 fingers
ROFL 160 fingers
ROFL 280 fingers

BGP-policy

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0.1 1 10 100 1000 10000 100000

St
re

tc
h

average finger cache size [Mbits per AS]
(c)

Figure 8: Interdomain routing: (a) Comparison of joining strategies (b) Stretch (c) Effect of pointer caching

fingers: with 60 fingers, ROFL’s average stretch is 2.8, while stretch
is 2.3 for 160 fingers. If hosts perform a join across peering links
as well, the stretch increases to 2.8 for 160 fingers. We found that
stretch decreased slightly (not shown here) as the number of IDs
in the system increased. This decrease happens because there is a
highly uneven distribution of hosts across ASes in the Internet, and
hence as we scale up the number of IDs the chances that the source
and destination are in the same AS increases. We roughly extrapo-
lated these results to an Internet-scale graph with 600 million IDs,
and estimated 128 fingers (peering join overhead of 200) gives a
stretch of around 2.9, and 340 fingers (peering join overhead of
445) gives a stretch of around 2.5. However, increasing the num-
ber of fingers also increases the size of the join messages that carry
proximity-fingers. For example, with 256 fingers the message size
increases to 1638 bytes. If we assume an MTU of 1500 bytes, a
256-finger single-homed join requires 258 IP packets.

Although a stretch of 2-3 seems high, it need only be suffered by
the first packet: stretch for remaining packets can be reduced to one
by exchanging the list of ASes above the destination in the hierar-
chy (Section 5.1), or by caching the destination’s AS. As a compar-
ison point we plot the stretch incurred today by BGP policies, mea-
sured using Routeviews traces (shown as BGP-policy in Figure 8b).
In addition, we found that the isolation property contributes signif-
icantly to reducing stretch (through consistency checks in our sim-
ulator, we verified there were no cases in any of our experiments
when the isolation property was broken). Next, Figure 8c shows
pointer caching (Section 4.1) reduces stretch further. In these ex-
periments, we model each AS with a pointer cache as a single node,
and make the size of this cache proportional to the number of hosts
in that AS. The x-axis shows the average amount of pointer caching
state per AS, extrapolated to an Internet-scale topology with 600
million hosts. An average pointer cache size of 20M entries per AS
reduces stretch from 2 to 1.33 (note that routers today can support
millions of entries). Finally, we found that using bloom filters for
peering as described in Section 4.2 results in a stretch of 3.29 with
size 18 Mbits/AS, though this stretch can be reduced to 2.5 with
more fingers or larger 74 Mbit bloom filters.
Failures: Stub ASes (ASes near the network edge) are believed
to be significantly more unstable than ISPs near the core [14]. In
this experiment we fail randomly selected stub ASes and measure
two metrics. First, we measure the number of paths affected by the
failure. We found on average 99.998% of Internet paths were un-
affected by the failure, indicating that the effects of failures were
well contained. Next, we found that ROFL required on average
4950 messages to repair successors after a stub AS failure, which
roughly corresponds to the number of identifiers hosted in the failed
stub AS.

6.4 Summary of results
Intradomain: Based on Rocketfuel traces, we simulated ROFL
over four ISPs, ranging in size from 201 to 604 internal routers.
ROFL is able to provide a routing stretch of 1.2 to 2 with 9Mbits of
pointer cache, with reasonable load balance across routers. Hosts
typically complete joining in less than 40ms, with less than 45
control messages generated per host. ROFL correctly heals from
partitions, host failures, and host mobility with control overhead
roughly that of rejoining the affected hosts.
Interdomain: We extrapolated our simulation results over the AS
graph to the Internet scale system with 600 million hosts, and esti-
mated that a ROFL host can join across all providers and peers and
acquire 340 fingers with ∼445 control messages. This overhead can
be reduced for unstable hosts by performing a single-homed join
(∼75 messages), or an ephemeral join (∼14 messages). The host
can route packets in a manner that respects several inter-AS poli-
cies, with an average stretch of 2.5. This stretch may be reduced
to 2.1 by roughly doubling the number of fingers. By maintaining
pointer caches at border routers, this stretch may be reduced fur-
ther (to 1.33 with on average 20 million entries of caching space
per AS). Finally, ASes may reduce join overhead by leveraging
bloom filters to eliminate joins across peering links. This reduces
join overhead to ∼100 messages, but requires 74 Mbits of bloom
filter state per AS.

7. RELATED WORK AND DISCUSSION
While we’ve drawn general insights from many sources, our de-

tailed mechanism owes much to two particular sources: VRR [7],
which was the basis for our intradomain design, and Canon [17],
which was the basis for our interdomain design. Given that
VRR was designed for a very different context, ad-hoc routing,
we build upon VRR by introducing a simplified path construc-
tion/maintenance protocol, a protocol to ensure correctness in the
presence of network partitions, and several approaches to improve
scalability and resilience to churn. We similarly extend Canon, by
modifying the design to support several Internet policies, and lever-
aging proximity-based fingers to reduce stretch.

The project that seems to have the most in common with our
design objectives is TRIAD [10], and its content routing design
in [18]. TRIAD routes on URLs by mapping URLs to next-hops.
In theory, every network router could do this but, because of load
concerns, TRIAD only performs content routing at gateways (fire-
walls/NATs) between realms and BGP-level routers between ASes.
Forwarding state is built up in intermediate content routers as pack-
ets are routed, and name suffix reachability is distributed among
address realms just like BGP distributes address prefixes among
ASes. It thus relies on aggregation to scale, and will fail if object

locations do not follow the DNS hierarchy closely. If, to counteract
this, name-level redirection mechanisms are used to handle hosts
whose names do not match network topology, then this becomes
essentially a resolution mechanism. This last comment also applies
to IPNL, which also does some routing on FQDNs.

These previous forays into the name-routing arena suggest not
only its difficulty but also its worth. Routing on names brings with
it several architectural benefits, as we alluded to in the Introduction,
but most of all it breaks out of a long-standing architectural mind-
set. The art of architecture is gracefully maneuvering within the
boundaries of the possible. Our goal here is to investigate whether
those boundaries can be expanded, not to seek grace.

Our design has a reasonable set of features; multiple delivery
models, a fair amount of policy control, and some, but not much,
traffic control. The remaining question, then, is about performance.
On that score, we view this work as the beginning, not the end. The
results are close enough to tempt, but not enough to satisfy.

8. REFERENCES
[1] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, S. Ron,

“Practical locality-awareness for large scale information sharing,”
IPTPS, February 2005.

[2] T. Anderson, T. Roscoe, D. Wetherall, “Preventing Internet
denial-of-service with capabilities,” SIGCOMM Comput. Commun.
Rev., 34(1):39–44, 2004.

[3] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I.
Stoica, M. Walfish, “A layered naming architecture for the Internet,”
ACM SIGCOMM, August 2004.

[4] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker,
“‘Off by Default!,” HotNets, 2005.

[5] H. Ballani, P. Francis. ”Towards a Global IP Anycast Service,” ACM
SIGCOMM, Aug 2005

[6] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, July 1970.

[7] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, A. Rowstron,
“Virtual ring routing: network routing inspired by DHTs,” ACM
SIGCOMM, September 2006.

[8] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach,
“Secure routing for structured peer-to-peer overlay networks” OSDI,
December 2002.

[9] M. Castro, P. Druschel, Y. Charlie Hu, A. Rowstron, “Exploiting
network proximity in peer-to-peer overlay networks,” Microsoft
Research technical report MSR-TR-2002-82, 2002.

[10] D. Cheriton, M. Gritter, “TRIAD: a scalable deployable NAT-based
Internet architecture,” Technical report, January 2000.

[11] D. Clark, R. Braden, A. Falk, V. Pingali, “FARA: reorganizing the
addressing architecture,” SIGCOMM FDNA Workshop, August 2003.

[12] S. Deering, D. Cheriton. ”Multicast Routing in Datagram
Internetworks and Extended LANs,” ACM TOCS, 1990.

[13] J. Douceur, “The Sybil Attack” IPTPS, March 2002.
[14] A. Feldmann, O. Maennel, Z. Mao, A. Berger, B. Maggs, “Locating

Internet routing instabilities,” ACM SIGCOMM, August 2004.
[15] B. Ford, “Unmanaged internet protocol: taming the edge network

management crisis,” HotNets, Cambridge, MA, Nov. 2003.
[16] P. Francis, R. Gummadi, “IPNL: a NAT-extended Internet

architecture,” ACM SIGCOMM, August 2002.
[17] P. Ganesan, K. Gummadi, H. Garcia-Molina, “Canon in G major:

designing DHTs with hierarchical structure,” ICDCS, March 2004.
[18] M. Gritter and D. Cheriton, “An Architecture for Content Routing

Support in the Internet,” In the USENIX Symposium on Internet
Technologies and Systems, March 2001.

[19] M. Handley and A. Greenhalgh, “Steps towards a DoS-resistant
internet architecture,” FDNA, 2004.

[20] J. Jannotti, “Network layer support for overlay networks,” PhD
thesis, MIT, August 2002.

[21] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, J. W.
O’Toole Jr, ”Overcast: Reliable Multicasting with an Overlay
Network,” OSDI, October 2000.

[22] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, J. Wall, “Host identity
protocol - extended abstract,” in Wireless World Research Forum,
February 2004.

[23] A. Jonsson, M. Folke, B. Ahlgren, “The split naming/forwarding
network architecture,” Proc. Swedish National Computer
Networking Workshop (SNCNW), September 2003.

[24] D. Krioukov, kc claffy, “Toward compact interdomain routing,”
Unpublished draft,
http://www.krioukov.net/∼dima/pub/cir.pdf

[25] D. Krioukov, K. Fall, X. Yang, “Compact routing on Internet-like
graphs,” IEEE Infocom , March 2004.

[26] D. Mazieres, “Self-certifying file system,” PhD thesis, MIT, May
2000.

[27] A. Myers, E. Ng, H. Zhang, “Rethinking the service model: scaling
ethernet to a million nodes,” HotNets, November 2004.

[28] M. O’Dell, “GSE - an alternate addressing architecture for IPv6,”
ftp://ds.internic.net/internet-drafts/draftietf-ipngwg-gseaddr-00.txt,
1997.

[29] L. Peterson, S. Shenker, J. Turner, “Overcoming the Internet impasse
through virtualization,” HotNets, November 2004.

[30] A. Rowstron, P. Druschel, “Pastry: scalable, distributed object
location and routing for large-scale peer-to-peer systems,”
IFIP/ACM Middleware, November 2001.

[31] J. Saltzer, “On the naming and binding of network destinations,”
RFC 1498, August 1993.

[32] N. Spring, R. Mahajan, D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” ACM SIGCOMM, August 2002.

[33] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, “Internet
indirection infrastructure,” ACM SIGCOMM, August 2002.

[34] I. Stoica, R. Morris, D. Lieben-Nowell, D. Karger, M. Kaashoek, F.
Dabek, H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for Internet applications,” IEEE Transactions on Networks,
11(1) 17-32, 2003.

[35] L. Subramanian, S. Agarwal, J. Rexford, R. Katz,“Characterizing the
Internet Hierarchy from Multiple Vantage Points,” in IEEE Infocom
2002, June 2002.

[36] L. Subramanian, M. Caesar, C. Ee, M. Handley, M. Mao, S. Shenker,
I. Stoica, “HLP: a next-generation interdomain routing protocol,”
ACM SIGCOMM, August 2005.

[37] M. Walfish, H. Balakrishnan, S. Shenker, “Untangling the web from
DNS,” NSDI March 2004.

[38] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, S.
Shenker, “Middleboxes no longer considered harmful,” OSDI,
December 2004.

[39] F. Wang, L. Gao, “Inferring and characterizing Internet routing
policies,” Proc. Internet Measurement Conference, October 2003.

[40] Abraham Yaar, Adrian Perrig, Dawn Song, “Pi: A Path Identification
Mechanism to Defend against DDoS Attacks,” IEEE Symposium on
Security and Privacy, 2003.

[41] X. Yang, “NIRA: a new Internet routing architecture,” SIGCOMM
Workshop on Future Directions in Network Architecture (FDNA),
August 2003.

[42] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting Network
Architecture,” ACM SIGCOMM 2005, August 2005.

[43] CAIDA, “Skitter,” http:
//www.caida.org/tools/measurement/skitter.

[44] “FIND: future Internet network design,”
http://find.isi.edu, December 2005.

[45] “GENI: global environment for network innovations,”
http://www.geni.net

[46] Internet Systems Consortium, “Domain survey host count,”
http://www.isc.org/index.pl?/ops/ds/, July 2005.

[47] ‘NewArch project: future-generation Internet architecture,‘’
http://www.isi.edu/newarch/

[48] “Route Views Project,” http://www.routeviews.org.

