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ABSTRACT
Stateful, in-depth, inline traffic analysis for intrusion detection and
prevention is growing increasingly more difficult as the data rates of
modern networks rise. Yet it remains the case that in many environ-
ments, much of the traffic comprising a high-volume stream can,
after some initial analysis, be qualified as of “likely uninteresting.”
We present a combined hardware/software architecture,Shunting,
that provides a lightweight mechanism for an intrusion prevention
system (IPS) to take advantage of the “heavy-tailed” natureof net-
work traffic to offload work from software to hardware.

The primary innovation of Shunting is the introduction of a sim-
ple in-line hardware element that caches rules for IP addresses and
connection 5-tuples, as well as fixed rules for IP/TCP flags. The
caches, using a highest-priority match, yield a per-packetdecision:
forward the packet;drop it; or divert it through the IPS. By manip-
ulating cache entries, the IPS can specify what traffic it no longer
wishes to examine, including directly blocking malicious sources
or cutting through portions of a single flow once the it has hadan
opportunity to “vet” them, all on a fine-grained basis.

We have implemented a prototype Shunt hardware design using
the NetFPGA 2 platform, capable of Gigabit Ethernet operation.
In addition, we have adapted the Bro intrusion detection system to
utilize the Shunt framework to offload less-interesting traffic. We
evaluate the effectiveness of the resulting system using traces from
three sites, finding that the IDS can use this mechanism to offload
55%–90% of the traffic, as well as gaining intrusion prevention
functionality.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

General Terms
Security
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1. INTRODUCTION
Stateful, in-depth, inline traffic analysis for intrusion detection

and prevention is growing increasingly more difficult as thedata
rates of modern networks rise. One point in the design space for
high-performance network analysis—pursued by a number of com-
mercial products—is the use of sophisticated custom hardware. For
very high-speed processing, such systems often cast the entire anal-
ysis process in ASICs.

In this work we pursue a different architectural approach,Shunt-
ing, which marries a conceptually quite simple hardware device
with an Intrusion Prevention System (IPS) running on commodity
PC hardware. Our goal is to keep the hardware both cheap and
readily scalable to future higher speeds; and also to retainthe un-
paralleled flexibility that running the main IPS analysis ina full
general-computing environment provides.

The Shunting architecture uses a simple in-line hardware ele-
ment that maintains several large state tables indexed by packet
header fields, including IP/TCP flags, source and destination IP
addresses, and connection tuples. The tables yield decision val-
ues the element makes on a packet-by-packet basis: forward the
packet, drop it, or divert (“shunt”) itthroughthe IPS (the default).
By manipulating table entries, the IPS can, on a fine-grainedbasis:
(i) specify the traffic it wishes to examine,(ii) directly block ma-
licious traffic, and(iii) “cut through” portions or complete traffic
streams once it has had an opportunity to “vet” them.

For the Shunting architecture to yield benefits, it needs to oper-
ate in an environment for which the monitored network traffichas
the property that—after proper vetting—much of it can be safely
skipped. This property doesnot universally hold. For example, if
a bank needs to examine all Web traffic involving its servers for
regulatory compliance, then a monitor in front of one of the bank’s
server farms cannot safely omit a subset of the traffic from analysis.
In this environment, Shunting cannot realize its main performance
benefits, and the monitoring task likely calls for using custom hard-
ware instead.

However, in many other environments we expect Shunting to po-
tentially deliver major performance gains. Our basis for this con-
jecture rests in the widely documented “heavy tail” nature of most
forms of network traffic [19, 21, 8, 29, 28, 7], which we might ex-
press as “a few of the connections carry just about all the bytes.”
The key additional insight is “... and very often for these few large



connections, the verybeginningof the connection contains nearly
all the information of interest from a security analysis perspective.”

We argue that this second claim holds because it is at the begin-
ning of connections that authentication exchanges occur, data or
file names and types are specified, request and reply status codes
conveyed, and encryption is negotiated. Once these occur, we have
seen most of the interesting facets of the dialog. Certainlythe re-
mainder of the connection might also yield some grist for analysis,
but this isgenerally less likely, and thus if we want to lower anal-
ysis load at as small a loss as possible of informationrelevant to
security analysis, we might best do so by skipping the bulk of large
connections. In a different context, the “Time Machine” work by
Kornexl and colleagues likewise shows that in some environments
we can realize major reductions in the volume of network traffic
processed, by limiting the processing to the first 10–20 KB ofeach
connection [14].

As a concrete example, consider an IPS that monitors SSH traf-
fic. When a new SSH connection arrives and the Shunt fails to find
an entry for it in either of its per-address and per-connection tables,
it executes the default action of diverting the connection through the
IPS. The IPS analyzes the beginning of the connection in thisfash-
ion. As long as it is satisfied with the dialog, it reinjects the packets
forwarded to it so that the connection can continue. If the con-
nection successfully negotiates encryption, the IPS can nolonger
profitably analyze it, so it downloads a per-connection table entry
to the Shunt specifying that the action for the connection inthe
future is “forward.”

For heavy-tailed connections, this means a very large majority
of the connection’s packets will now pass through the Shunt device
without burdening the IPS with any further analysis load. Onthe
other hand, if the IPS is dissatisfied with some element of theini-
tial dialog, or with one of the hosts involved, it downloads a“drop”
entry to terminate the connection. Note that by providing for rein-
jection, we can promote an intrusiondetectionsystem into an intru-
sionpreventionsystem, one that does not merely detect attacks but
can block them before they complete. Reinjection also allows the
IPS tonormalizetraffic [11] to remove ambiguities that attackers
can leverage to evade the IPS [22]. Finally, if the IPS is unable to
resolve whether the connection can progress without further analy-
sis, it simply leaves the Shunt’s tables unmodified and continues to
receive the connection’s packets due to the Shunt’s defaultaction.

Put more simply, we can frame Shunting as providing a form
of filtering that is particularly well suited to preserving as much
security-relevant information as possible given the need to discard
large volumes of traffic. In this paper we present evidence toback
up this assertion, and discuss numerous subtle points that arise
when realizing Shunting in practice. We present the Shunting ar-
chitecture, based on fixed-size table lookups and a shared-memory
interface to the IPS that greatly simplifies the hardware implemen-
tation because it allows the hardware to make imperfect decisions.
Since the Shunt requires only fixed table lookups on header fields,
we can implement it readily in a small amount of custom hardware.

We modified the Bro intrusion detection system [20] to take ad-
vantage of the Shunt, giving it more direct IPS capabilitiesthan
it has had in the past (which involved enabling it to update router
ACL entries by logging into the router), and implemented sample
modifications to its analysis scripts. Testing this system using full
packet traces from a Gbps-connected site with 1000s of hostsshows
that Bro can leverage a modest Shunt configuration to offload 55%–
90% of the traffic. This in turn suggests that the Shunt architecture
should enable Bro to process a Gbps stream with ease when using
a Shunting device coupled with a general-purpose, commodity PC
platform.

We have implemented the Shunt in hardware on the NF2 [17]
FPGA system. While our board does not yet support all of the
architecture’s features, we can use it to evaluate the main mecha-
nisms, and it includes sufficient functionality to ensure the feasi-
bility of processing data—including using a general purpose, com-
modity PC for rich IPS analysis—at Gbps rates for traffic streams
with realistic packet sizes.

We begin in Section 2 with a survey of related work. Section 3
gives an overview of the Shunting architecture and how it lends
itself to fast operation in hardware. We then describe in Section 4
a prototype hardware implementation that realizes this promise. In
Section 5 we discuss general issues with integrating Bro, and in 6
the decisions we made regarding how to enhance Bro’s analysis to
leverage the Shunt. We evaluate the effectiveness of Shunting, as
well as sensitivities to implementation parameters, in Section 7. In
Section 8 we discuss ongoing work, and we conclude in Section9.

2. RELATED WORK
Intrusion detection systems (IDSs) monitor host or networkac-

tivity to spot attempted or successful misuse of computers.Such
misuses might constitute attacks or simply violations of policy re-
strictions. While there is a vast literature on IDSs, we touch on it
here only in a limited fashion because our Shunting architecture for
the most part is indifferent to the particular mechanisms ofthe IDS
it supports. Indeed, we aim for Shunting to provide cheap hardware
assistance for a wide range of network-based IDSs.

That said, part of our discussion concerns implementing Shunt-
ing in conjunction with a particular IDS, the open-source Bro sys-
tem [20]. Bro provides an event-oriented framework that couples
generic (non-security-specific) analysis of network traffic at layers
3, 4 and 7, with an interpreted, domain-specific “policy script” lan-
guage used to express higher level analysis triggered by theoccur-
rence of particular events. The ability to script this latter analysis
makes it particularly easy to extend Bro to work in conjunction with
a shunting device.

When an IDS is capable of not only detecting an attack but also
blocking it to prevent it from succeeding, it is termed an intrusion
preventionsystem (IPS). Since Shunting directly enables IPS func-
tionality by diverting packetsthroughan intrusion analyzer rather
than simply giving it a passive copy of the traffic stream, in this
paper we will generally use the term IPS to describe the system
with which the Shunt interacts, and only use the term IDS when
the distinction between detection and prevention is significant.

The prior work most directly related to ours concerns other
approaches for using hardware to augment IPS capabilities.
Kruegel and colleagues developed an architecture for accelerating
signature-based systems using a 4-step process that provides mul-
tiple, parallel IPS analyzers each with a subset of the totaltraffic
that conforms to a small superset of the traffic it needs to detect
particular attacks [15]. Input traffic flows into a simple hardware
device (the “scatterer”) that divides the traffic in a round-robin fash-
ion among a group of classifiers (the “slicers”). Each slicerchecks
every packet to see whether it might match one or more signatures.
If so, it forwards the packet to the appropriate “reassembler,” which
reassembles the packet stream before forwarding the streams to the
appropriate IPS engine(s).

Another technique commonly proposed for high-speed
processing—generally oriented towards IDS rather than IPS
functionality—is “pushing processing into the NIC”: usinga
network interface to offload much of the processing requiredfor
passive packet capture and analysis. Shunting resembles this
concept, although our processing model is very different and
involves explicit inline/diversion decisions. Deri [9] proposes



using a router (Juniper M-series, which allows for traffic filtering
based on header fields [16]) as a smart Network Interface Card
(NIC), performing generic traffic accounting and simple packet
filtering and sampling, and sending the filtered/sampled stream to a
Linux host. The Intel IXP family of “network processors” provides
a framework to perform in-NIC packet-processing [13]. The IXP
series is composed of multiple miniature processors that operate in
parallel, along with a StrongARM control processor [16]. The IXP
has been proposed as a means to accelerate Snort signature match-
ing [2] by implementing portions of the signature matching and
other pieces on the Snort stack. Indeed, there is a large literature
on implementing signature-matching in custom hardware, but this
work is not applicable to accelerating IPSs in general, other than
for offloading the signature matching they perform.

Using Endace’s DAG 4 cards [3], Iannaconne and colleagues
present a network adapter that permits passive monitoring of OC-
192 links (10 Gbps) [12]. The authors use the DAG card’s FPGA
to compress packet headers into flow traces, and send only those
flow traces to the PC host. The authors use a hashed, limited-size
connection table to store the flow traces, arguing that, withthe help
of fast PCI buses (64 bits, 66 MHz), it is possible to monitor IP,
TCP, and UDP headers on 10 Gbps links, enabling header-only IDS
analysis. However, clearly such analysis cannot extend to inspec-
tion of application-level semantics, since the available information
does not include transport payloads.

The SCAMPI project also proposes using a smart network
adapter to limit the amount of traffic that reaches the host in
packet capture scenarios [4, 5]. SCAMPI runs on several differ-
ent architectures, including Intel IXP family of network proces-
sors, Endace’s DAG cards, and their own network adapter, called
“COMBO.” COMBO adapters perform systematic (deterministic)
and probabilistic 1-in-N sampling, address- and port-based sam-
pling, payload string searching, generic flow-state accounting and
reporting, and packet filtering using FPL-2 (an extended, BPF-like
language).

In contrast to previous approaches, Shunting is based on cou-
pling an IPS running in a general-purpose computing environment
with a separate hardware device, allowing the IPS to controlthe
processing load it sees at the granularity of individual streams. In
addition, Shunting achieves this with minimal assumptionsabout
the IPSs overall operation, allowing the specialized hardware to re-
main(i) broadly applicable, and(ii) simple and cheap.

3. THE SHUNT ARCHITECTURE
In this section we present the shunting architecture. We begin

with an overview of the general architecture and the motivation be-
hind it (§3.1), and then discuss in detail the structure of the Shunt
device’s tables (§3.2), which act as a cache for the IPS. We finish
in §3.4 with an important refinement to the architecture,forward-N.

3.1 Overview
Inline traffic processing is a particularly demanding activity, be-

cause the speed of the processing directly limits overall network
performance. If the inline element cannot keep up with the rate
at which new traffic arrives, it eventually will exhaust its buffering
capacity and drop some of the traffic, affecting the quality of un-
reliable connections and imposing a major impairment to reliable
traffic due to the transport protocol’s congestion response.

At high speeds (Gbps), using a commodity PC for inline packet
processing becomes very difficult. Simply monitoring the traffic
stream requires 1 Gbps of bandwidth across the I/O bus and 1 Gbps
bandwidth to memory. In addition, if the monitor operates atuser
level, unless we can exploit memory mapping we need an addi-

tional 1 Gbps of internal memory bandwidth. If we not only mon-
itor but also forward, then PC inline for a bidirectional Gbps link
requires 4 Gbps of I/O bandwidth and 4 Gbps of memory band-
width (with perhaps another 4 Gbps memory bandwidth if perform-
ing user-level analysis), leaving little additional resources for pro-
cessing. Furthermore, 10 Gbps Ethernet in early deployment, the
problem is growing worse.

Figure 1 shows the Shunting architecture we propose for en-
abling use of inexpensive, highly flexible commodity PCs forinline
packet processing. AShunt-based system consists of two elements,
a software packet processor (theAnalysis Engine) and a hardware
forwarding element (theShuntitself).

The Analysis Engine, such as an IPS, views the Shunt as a nor-
mal Ethernet device, except that the Shunt has a series of tables
that act as a cache for rules. The Shunt device treats these tables
as read-only; it is the responsibility of the Analysis Engine to both
manage the cache and to resolve cache misses by maintaining more
comprehensive state.

When a packet arrives, the device chooses from one of three pos-
sibilities: (a) forward the packet to the opposite interface (thick,
solid line), (b) drop it (thin, dashed line), or (c) divert (shunt) it
to the analyzer (thin, dotted line) by examining the packet header
and selecting the highest priority action. For packets diverted to the
Analysis Engine, the analyzer makes another decision regarding the
packet’s fate: (c.1) inject the packet back to the network interface,
or (c.2) drop it. It may optionally at this point also update the Shunt
device’s tables to offload similar decisions in the future.

In particular, the Analysis Engine must understand that theShunt
hardware is a cache: if a connection is offloaded to the Shunt,the
Analysis Engine must still maintain state for the connection, since
it may be necessary to flush the cache entry and return to diverting
the connection’s traffic through the Analysis Engine.

The Shunt architecture aims to achieve several goals. First, we
want separation of mechanism and policy, with the Shunt provid-
ing only the former. Along these lines, while our implementation
couples the system with Bro, we intend the architecture to directly
support other types of analyzers, too. Second, we want to keep
the Shunt very simple: only examining headers, and with deter-
ministic memory behavior, enables an easy and efficient hardware
implementation. Often, packet processing is limited by memory
accesses, so we imposed a budget of a limited number of accesses
per packet. Related to this, the architecture requires onlya minimal
amount of buffering, which it achieves by always making imme-
diate decisions regarding the next-hop destination for an arriving
packet.

Finally, for the Shunt to realize significant performance gains,
the policy used by the IPS must enable the Shunt to forward most
packets without involving the analyzer, and at high speed. Thus, for
traffic which policy has determined does not require furtheranaly-
sis, the Shunt must impose only a negligible forwarding delay.

3.2 The Shunt’s Tables
We accomplished these goals with a simple mechanism: header-

based table lookup, where the lookup is “incomplete” in thatwe
implement it quickly in hardware using a cache that may contain
only a subset of the table entries. The Shunt’s decision making
(Figure 1) is conceptually very simple. We use two tables, one
indexed by IP address and another indexed by the connection 5-
tuple, along with a fixed table (thestatic filter) applied to certain
header fields such as TCP SYN/FIN/RST control flags (Figure 3.2).

The device looks up each packet in the tables in parallel. If a
lookup finds an entry, the result includes an action (forward, drop,
or shunt) and a priority from 0 to 7. A priority encoder then selects
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Figure 1: Shunting Main Architecture. The shunt examines the headers of received packets to determine the associated action:
forward, drop, or shunt to the Analysis Engine. The Analysis Engine directly updates the Shunt’s caches to control future processing,
and either drops analyzed packets for immediate intrusion prevention or reinjects them once vetted for safety.

the highest priority entry1 and performs the corresponding action
on the packet. If the device does not find a match in any table, it
usesshuntas the implicit action.

The connection table has entries indexed with the usual 5-tuple
of source and destination IP addresses, source and destination ports,
and transport protocol (TCP or UDP). This is the most important
table for achieving high performance, as it enables fine-grained,
per-connection decision-making on the part of the analyzer. Addi-
tionally, the connection table includes an optional recordfield used
to implementforward-N, which we discuss later.

The IP address table has actions associated with it for both the
source and destination addresses. This table mainly servesto im-
plement static and dynamic firewall rules, such as blocking known
and newly detected attackers, or whitelisting high volume servers
or authorized vulnerability scanners.

Finally, we also have a fixed header-filter table, which includes
default rules (such as diverting fragments and TCP control pack-
ets). We compile these static rules into the hardware configuration,
with low priorities associated with them to make the entrieseasy to
override.

Other than the static filter, all table entries become populated
only upon request by the analyzer (including upon its startup). For
example, when the analyzer decides that it is safe to forwardthe
remainder of a connection without further inspection, it instructs
the Shunt to add a corresponding entry. This coupling between
the Shunt’s filtering and the analyzer’s decision-making allows the
analyzer to vet requests on a connection-by-connection or host-by-
host basis, and, once vetted, efficiently skip the subsequent traffic.
It similarly becomes easy for the analyzer to summarily block an
offending host, which not only blocks all traffic from the offender,
but prevents the offender from loading the analyzer with traffic,
enabling the IPS to protect itself against overload if it canidentify
the source of the load.

The default-shunt nature produces a fail-safe device. Onlyif the
IPS instructs the Shunt that it deems a given flow “safe” or “mali-
cious” will the Shunt process the flow in an unconditional manner.
In addition, if the IPS cannot keep up with the pace of traffic di-
verted through it, the traffic doesnot escape analysis, but instead is
throttled back to the rate at which the IPS can vet it. While this can

1Conflicting entries with equal priorities indicate a policyinconsis-
tency. Architecturally, the hardware could signal such conditions.
In our implementation, the Shunt uses a fixed set of internal pri-
orities to resolve ties, and it is the responsibility of the Analysis
Engine to not create such conflicts.

have a deleterious effect on network performance, it has thecorrect
safety properties in terms of “better safe than sorry.”

An important feature of the architecture is that the Shunt’stables
arecaches: an entry is not guaranteed to be persistent in the Shunt
if another entry is inserted. The shunt hashes2 each potential entry
to one or more locations in memory. When adding a new entry, this
may evict an old entry. This functionality allows the Shunt to per-
form a small, bounded number of memory accesses into a fixed-size
memory. It is the responsibility of the Analysis Engine to respect
that the Shunt device is a cache and not a complete data structure.
Thus, packets designated for forwarding or dropping can still be
diverted to the Analysis Engine, requiring the Analysis Engine to
reinsert the corresponding table entry. Such evictions canhowever
create subtle problems of priority inversion, which we discuss in
Section 3.3.

The cache-like nature of these tables enables fast operation.
Rather than having to search through a possibly unbounded data
structure (e.g., a chain of hash buckets), the packet headers directly
index all entries that the Shunt needs to examine.

The IP and connection tables are both directional. Each direction
can have a different action and priority associated with it.Thus, for
example, the analyzer can monitor the inbound side of a connec-
tion (by setting ashuntaction) while allowing the outbound half
unobstructed (with aforward action).

Finally, table entries also include asamplefield. If non-zero, this
field specifies an index into a table of probabilities. The device then
sends acopyof the packet to the analyzer with the given probability.
This functionality enables the analyzer to monitor a connection for
liveness and volume without having to receive all of its traffic.

3.3 Interfacing to the Shunt
In our design, the Shunt device acts as an Ethernet card to the

host, transferring to the kernel any packets directed to thehost and
processing the remainder according to the device’s tables.To con-
trol the Shunt, the Analysis Engine directly manipulates the cache
entries, which requires knowledge of the specific format andprop-
erties of the Shunt’s caches. Clearly, we could instead provide a
more abstract interface, managing cache deletions and insertions
based on higher-level requests. We have not done so yet because
so far we have only created a single hardware implementation(Sec-
tion 4), so in the subsequent discussion we assume that the Analysis
Engine manages the caches. Additionally, since we view the Shunt
as a device coupled to a stateful IDS system, having the Analysis
2Using a hash function chosen to resist attacker manipulation [6].
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Figure 2: A detailed diagram of the caches used in the decision making process and the bits required for each field. Separate actions
can be bound to each direction of a flow; the option field supports forward-N (Section 3.4) and destination routing (Section 4).

Engine directly manage the caches eliminates the need for a du-
plicate state-handling infrastructure to track a completeview of all
connections.

An important issue is that the Analysis Engine driver must man-
age conflicts in the tables to prevent priority inversion. Iftwo dy-
namic rules apply to the same packet (such as a connection table
entry allowing a connection to a blocked known offender) with dif-
ferent priorities and actions, and the higher priority itemneeds to
be evicted, then it is up to the Analysis Engine to ensure thatthe
eviction does not lead to the Shunt now taking an incorrectforward
or drop action. (An incorrectshuntaction is not a problem, since
this allows the Analysis Engine to correct the action.)

Thus, the Analysis Engine must either have direct control over
the Shunt’s caches (selecting which entry to evict when inserting a
new entry), or the Shunt must reliably notify the Analysis Engine of
the Shunt’s eviction decisions, allowing the Analysis Engine to then
also evict any lower priority entries as well. Finally, we note that we
can still apply the Shunting approach even if the Analysis Engine
does not have such control or notification, providing it constraints
itself to never insert lower priority entries that can lead to such
conflicts, instead emulating the entries in software.

3.4 Refining theforward Action
When we evaluated the architecture as described above, we

found a particularly important class of traffic for which thebasic
architecture lacks sufficient expressive power to effectively offload
the IPS. This occurs for protocols that send a series of transactions
over a single connection, for which the IPS would like to skipover
(potentially large) elements of each transaction, but cannot skip the
entire connection because doing so will entail missing control in-
formation associated with subsequent transactions.

This arises, for example, with persistent HTTP connections. If
the IPS determines that the URL in a given client request is allowed,
it would like to skip over having to process the item returnedfor it
by the server; but thenext client URL might be problematic, in
which case at that point the IPS needs to analyze the server’sreply.

To enable such offload, we need to extend the basic architecture
to offer finer-grained control than per-connection, yet we also need
to do so in a manner that remains highly efficient for the shuntde-
vice to process and economic in terms of the required table space.
Our extension,forward-N, is a refinement to theforward function-
ality. The notion behindforward-N is “skip the nextN bytes”
rather than “skip the rest of the connection.”

We need to take care, however, in specifyingN . If it is simply
a byte count, then(i) for each new packet we will need to write
to the table to update the count by decrementing the number of
bytes of payload the packet carries, and, more importantly,(ii) the
accounting will be incorrect for out-of-sequence packets.These
latter can happen due to packet loss or reordering, race conditions
in installing the table entry, or deliberate attacker manipulation.

We therefore implementforward-N in terms of a TCP connec-
tion’s sequence space, rather than using a byte count. We augment
the per-connection shunt table with 32 bits of sequence number. For
packets with shunting decisions offorward-N, the device checks
whether the upper sequence number of the packet is less than3 the
table entry. If so, itforward’s the packet; otherwise, itshunt’s it.
The Analysis Engine then removes the entry when it determines it
no longer serves any offload purpose; for example, when it sees an
acknowledgment for a sequence number higher than the cutoff.

To implementforward-N we include an additional (optional)
field in connection table entries that specifies the sequencenumber
limit. In our hardware implementation, we also use this optional
field to specify alternate destinations, enabling the Shuntto act as
a packet routing device, not just a packet forwarding device; see§4
below.

For non-TCP traffic, we lack an ordered sequence space to use
for a reliable cutoff, so for this functionality we would need to in-
stead use a countdown counter or develop an application protocol

3“Less than” in terms of using 32-bit sequence-space arithmetic,
i.e., a difference of≤ 2 GB.



specific rule for (forward-N), which would significantly complicate
the Shunt.

However, it is not clear that non-TCP protocols transfer suffi-
ciently large, skippable items to merit this addition, rather than
benefiting from complete skipping (forward) or full analysis. Addi-
tionally, a non-TCPforward-Nwould require that the Shunt update
its tables on a per-packet basis. In the current design, the Shunt
hardware only reads the tables, eliminating a large class ofrace
conditions and other issues that might otherwise arise if italso per-
forms updates.

4. THE SHUNT HARDWARE
We implemented a prototype hardware design for Shunting using

the NetFPGA 2 platform [17], using as a starting point the NetF-
PGA reference implementation for a quad-port Ethernet NIC.The
NetFPGA 2 consists of four Gbps Ethernets connected to a Virtex 2
Pro 30 FPGA. Access to the card is via a standard PCI (33 MHz/32-
bit) bus. In addition, the platform provides two 2 MB SRAMs, one
of which can be used for arbitrary data structures.

Figure 3 shows the block diagram for the NetFPGA-based Shunt.
Our design uses a 32K-entry, two-location associative permutation
cache for IP addresses, and a 64K-entry, two-location associative
cache for connection rules. In anN -location associative cache, the
entry can reside in one ofN different cache locations, in a manner
similar to Bloom filters [1], Bloom-filter based hash tables [25], or
skewed association caches [23].

For both the connection table and the address table, we use an8-
bit rule field to specify an action:forward, drop, shunt, or sample;
a 3-bit priority; and a 3-bit sampling rate. Additionally, we include
fixed, low-priority rules forshunt’ing TCP SYN/FIN/RST packets
as well as IP fragments. As previously discussed, the hardware
follows the highest priority match, or, if it does not find a match,
shunts the packet to the Analysis Engine for analysis. For the con-
nection table, we canonicalize the 5-tuple and provide a different
rule for each direction in the flow.

For connection table entries, our design provides for an addi-
tional, optional, record field. (The current hardware supports up to
32K such optional records.) This field can specify a rule thatis only
valid if the packet’s TCP sequence number is less than a prespeci-
fied limit, to support sequence skipping (forward-N). We can also
instead use it to specify an alternate Ethernet interface, MAC ad-
dress, and VLAN tag, in order to allow the Shunt to reroute packets
on a flow-by-flow basis.

Such dynamic rerouting allows the Shunt hardware to act as a
load-balancing front-end for a clusterized IDS [26] by dispatching
packets via an Ethernet switch to a designated IDS node on a per-
connection basis. The VLAN rewriting allows the Shunt hardware
to route flows between multiple connections on the same switch for
fine-grained isolation.

Apart from its rule caches, the Shunt behaves like another quad-
port Ethernet card. Our design provides for access to the caches
themselves by reading and writing the Shunt’s SRAM, as the
SRAM supports direct memory-mapped I/O operations.

For much more extensive discussion of the hardware implemen-
tation, including its use of “permutation” and location associative
caches, see [27]. Currently, a known bug in the FPGA board’s
firmware limits the hardware’s operation to 480 Mbps, but this
problem will be remedied with the next version of the board.

5. INTEGRATING THE SHUNT WITH
BRO

To test our architecture in practice, we selected the Bro intrusion
detection system [20] as our Analysis Engine, due to its high-level,
flexible, and expressive nature, as well as our strong familiarity
with its internals. To adapt it, we added an API at the Bro scripting
level to support the Shunt’s functionality, and modified itsanalysis
policies to then utilize this API. We emphasize, however, that noth-
ing in our Shunting implementation has any particular knowledge
of Bro’s workings.

By itself, Bro provides only limited intrusion prevention func-
tionality. Its scripts can execute arbitrary programs, which are used
operationally to(i) terminate misbehaving TCP connections using
forged RST packets, and(ii) install ACL blocks at a site’s border
router. However, both these actions occur post facto with respect to
the network traffic that led Bro to detect a problem, so for attacks
that proceed quickly, the reaction can come too late. In addition,
router ACL limitations restrict the use of blocking to 100s or per-
haps 1000s of addresses. This might seem like a plenty, but due
to the incessant presence of “background radiation” [18], as well
as the occasional outbreak of worms or large-scale botnet sweeps,
in fact operationally we desire the capacity to block 100,000s of
addresses.

With the Shunt, however, Bro can become a high-performance
IPS. By vetting each packet before it reaches its destination the
combined system can block attacks before they succeed, and proac-
tively block suspect hosts at much larger scale than otherwise.

5.1 Changes to Bro’s Internals
Bro’s stateful nature already requires that Bro track all active

connections and their associated protocol analyzers, as well as all
IP addresses of interest. We extended and annotated these data
structures to incorporate Shunt-related information.

Bro maintains an internal whitelist of IP addresses, the
PacketFilter class, which specifies a group of systems that
can be safely ignored. We extended this data structure to support
blacklisting as well: IP addresses which should always be blocked.
This whitelist now allows us to populate the IP table in the Shunt
and to update the table on cache misses.

Bro also maintains a record for every established connection.
Each connection has associated with it a tree of relevant analyz-
ers, ranging from the TCP stream reassembler and signature match-
ing engines to specific protocol parsers for HTTP, SSH, and other
protocols. Bro can apply multiple protocol analyzers to a single
connectionconcurrentlyin order to robustly determine the actual
application protocol without relying on the (increasinglyuntrust-
worthy) transport port number [10].

We added to this structure notions of “unessential” and “essen-
tial” analyzers, as follows. Unessential analyzers will process a
connection’s packets if present, but the presence of such unessen-
tial analysis does not suffice to require the Shunt to divert those
packets through the Analysis Engine. However, as long as a con-
nection has associated with it at least one essential analyzer, then it
and all other analyzers will receive the connection’s packets. The
decision regarding whether an analyzer is unessential or essential
is made on a per-connection basis, and can change (in particular,
essential analyzers becoming unessential) during the connection’s
lifetime. If every essential analyzer associated with a connection is
either removed or demoted to unessential, it is then safe to install a
forward rule for the connection.

By default, all but the TCP stream reassembler and similar utility
analyzers are considered essential. It is up to the analyzeror its as-
sociated policy script to either mark the analyzer as unessential (so
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that it may still receive traffic) or simply remove it from consider-
ation. Even when all analyzers are considered unessential,the for-
ward rule uses a lower priority than the defaultshuntrule for TCP
SYN/FIN/RST packets, soconnection finished and similar
end-of-session accounting still operates properly.

The API for forward-N functionality takes two parameters: the
number of bytes to skip (relative to the point in the stream pro-
cessed so far), and a smaller value indicating the initial number of
these bytesnot to skip. The function (part of the TCP stream re-
assembler) converts the byte count to a sequence number to specify
in a forward-N table entry. However, the stream reassembler does
not install this entry until having first processed the givennumber
of initial bytes. We chose this interface to support common func-
tionality in which an analyzer (such as that for HTTP) determines
that a large item will soon be transferred and wishes to inspect only
the beginning of the item. (If we instead left it up to the analyzer to
requestforward-N after it has received the beginning of the item,
often that is difficult for the analyzer to coordinate due to the layer-
ing by which it receives aggregated information. For example, one
of Bro’s natural interfaces for doing so delivers an entire item as a
unit to the higher-level analysis, rather than doing so piecemeal.)

Since Bro is not multithreaded, if it determines that a packet
should be dropped to block an attack, the drop directive willoc-
cur prior to Bro beginning to process the next packet. Thus, at
the point where Bro’s internal engine requests a new packet,if the
analysis of the current packet did not explicitly indicate it should
be dropped, we know we can safely go ahead and forward it. This
approach limits the latency introduced by the architectureto Bro’s
per-packet total analysis time, typically well under 1 msec.

6. SHUNT-AWARE POLICIES
In order to effectively leverage Shunting, we must adapt the

Analysis Engine system to best employ it for forwarding unin-
teresting traffic and blocking problematic traffic. In this section,
we discuss changes and extensions we introduced to the Bro IDS
in this regard. We note that we intend these modifications asex-
emplaryrather than complete; we present fairly modest additions
(with respect to Bro’s full suite of analysis) that nevertheless yield
significant performance gains.

When constructing these modified analyses, we have to ensure
that they are “safe”: that it is acceptable to ignore theforward’ed
traffic without impairing the security analysis.

6.1 SSH
For SSH analysis, we would like to produce a log of all SSH

sessions (including time and volume of data transferred), client
and server software versions, and detection of brute-forcepass-
word guessing. To this end, we modified Bro’s SSH analysis
script as follows. We first added an event handler for Bro’s
connection closed event to log the time, source, destination,
and volume of the session, where we compute the volume of the
session based on the difference in sequence numbers betweenthe
connection’s SYN and FIN packets. To check for SSH brute-force
attacks, we allocate a per-source counter. When a connection be-
gins, we increment the counter and initiate polling of the connec-
tion for the next 10 seconds, where every 100 msec we assess the
connection’s status. As soon as the connection transfers more than
10 KB of data, we assume that the user successfully authenticated,
and reset the count to zero. If instead the counter ever reaches
a predefined threshold (currently 10), indicating multipleshort-
lived SSH session, we generate a Bro “notice” reflecting a likely
password-guessing attack.

If the polling process determines that the connection appears le-
gitimate and/or inactive, the script demotes the SSH analyzer to
unessential(as discussed in the previous section). Now the Shunt
will forward all subsequent SSH traffic except for the final FIN or
RST (unless the user’s configuration has incorporated otheranalyz-
ers still deemed essential).

As a result, we can avoid processing nearly all SSH traffic, while
still retaining the ability to (1) detect password guessing, (2) de-
termine the approximate size of file transfers, (3) inspect SSH ver-
sion strings (present in each connection’s initial data exchange),
and (4) distinguish between file transfers and interactive sessions
in the log (as file transfers sustain much higher data rates that do
interactive sessions).

6.2 HTTP
For HTTP, far and away most of the bytes transferred come in

server replies. Although some files (e.g., HTML, Java, Javascript,
Flash) benefit significantly from IDS analysis, much of the data
comes instead in the form of images, video, audio, and binarytrans-
fers.

We modified Bro’s HTTP reply analysis script to capture the
MIME type and expected length of all responses. Then, for any
response over a given size (default 10 KB), we examine the MIME
type. If the type matches one in a configurable “presumed safe”



MIME Type Probably Percentage of Average
Safe payload data Size

application/safe Yes 33.7% 1.4 MB
video/* Yes 28.5% 8.9 MB
application/unsafe No 14.7% 60 KB
text/* No 8.8% 22 KB
image/* Yes 8.5% 7.8 KB
audio/* Yes 5.4% 2.6 MB
binary/* No 0.6% 218 KB
multipart/* Yes 0.3% 354 KB
other No <0.1% 10 KB

Table 1: The different MIME types, whether the type is consid-
ered “probably safe”, the percentage of the total HTTP replies
of each MIME type, and the average payload size for the UNI -
VERSITY I trace.

whitelist (default: images, video, audio, and some application
types), the script instructs the TCP stream reassembler to skip over
the payload usingforward-N. Otherwise, or if the size is unavail-
able (e.g., due to use of HTTP “chunking”), we perform the full
regular analysis.

In general, these “presumed safe” types represent the bulk of the
HTTP transfers. Table 1 lists the different MIME types observed in
the UNIVERSITY I trace (see Section 7 for trace details); whether
we consider items of the given type as likely safe; the fraction of
the HTTP responses they represent; and the average item sizefor all
such HTTP responses that specify a payload length. For application
data, we currently considerbinary, msword, octet-stream,
phdata,pdf,vnd.ms-powerpoint,x-xpinstall,x-sh,
x-pkcs7-crl, x-tar, x-zip-compressed, and zip as
“presumed safe”. For some of these, we might want to conduct
further analysis, but Bro presently lacks analyzers specific to these
item types. If it included these, we suspect that often the analyzer
would only need to inspect the beginning of the item transfer(per
the next paragraph) to determine whether the item was potentially
problematic; if not, then we could still skip the remainder of the
item.

Even when skipping the payload, however, we still examine the
beginning of each item, regardless of file type. This allows us,
for example, to perform signature analysis to verify whether the
item’s actual type corresponds with its stated type. The savings we
present in our evaluation assume we inspect (and thus cannotskip)
the default value of the first 5 KB of each item.

6.3 Dynamic Protocol Detection
Bro’s Dynamic Protocol Detection (DPD; [10]) initially analyzes

all traffic in order to determine the protocols (primarily at theappli-
cation layer) actually embedded in a data stream. Bro’s signature
engine [24] matches the initial (default 2 KB) data in each connec-
tion to findcandidateprotocols that might match the stream. Bro
then instantiates instances of these analyzers which concurrently
process the stream from the beginning. Whenever an analyzercon-
cludes the stream cannot belong to its protocol, it drops outof fur-
ther analysis. Otherwise, it continues to process future packets as
they are received.

We incorporate DPD into the Shunting framework by initially
marking the corresponding signature analyzers as essential. At the
2 KB limit, we demote the signature analyzers to unessential. If
no other essential analyzer remains active at that point, then Bro
installs aforwardentry to skip over the remainder of the connection

Trace Percentage forwarded
Bytes Packets

UNIVERSITY I 54.9% 43.8%
UNIVERSITY II 58.1% 47.0%

UNIVERSITY III 69.9% 52.5%
LAB I 84.5% 75.7%

LAB II 88.2% 79.2%
SC I 91.1% 88.0%

Table 2: Fraction of forwardable (non-analyzed) traffic

(except for its final FIN/RST control packets, which are matched by
the Shunt’s higher-priority static filter).

If DPD did identify the flow’s protocol, however, then Bro will
have classified the corresponding analyzer as essential, and it (and
other inessential analyzers) will continue receiving the flow’s traf-
fic. Thus, Shunting does not affect DPD’s ability to detect the pro-
tocol present in a traffic flow.

7. EVALUATING THE SHUNT
To evaluate the efficacy of the Shunting architecture, we mod-

ified Bro’s interface for reading trace files to preprocess packets
read from traces using the Shunting decision tables. Doing so al-
lowed us to evaluate the tradeoffs for different analysis/forwarding
schemes, as developed in the previous section.

We used six traces: three from a large university with several 10s
of thousands of users (University I, II and III), two from a research
laboratory with 8,000 hosts (Lab I and II), and one trace froma su-
percomputing center with thousands of users (SC I). We developed
our modifications to Bro’s processing using only UNIVERSITY I,
using the other traces solely for evaluation.

UNIVERSITY I spans one hour and captured 50% of the traffic
crossing the border of the university, which employs per-flow load-
balancing across two heavily-loaded Gigabit Ethernet links. The
trace (captured mid-afternoon on a workday), which includes all
packets and their payloads, was constructed from subtracescap-
tured with a cluster of six machines, and totals 222 GB. UNIVER-
SITY II consists of one hour of traffic, totaling 196 GB, recorded
at 4PM on a Friday. We collected UNIVERSITY III at 2–3AM
on a Saturday morning, to reflect an off-hours workload. It totals
109 GB.

Due to a node failure undetected during the capture process,
UNIVERSITY II and UNIVERSITY III only captured 41% of the
traffic rather than 50%. One subtrace on UNIVERSITY III reported
a .02% packet drop,4 while all other traces reported no drops.

LAB I consists of all traffic during an afternoon workday hour,
recorded at the Laboratory’s 10 Gbps access link, totaling 89 GB
of data. The packet recording process reported a measurement drop
rate of 0.4% of the packets. LAB II consists of two hours of TCP-
only traffic recorded two years earlier at the same facility,also dur-
ing the afternoon of a workday. The trace totals 117 GB; unfortu-
nately, no measurement drop information is available.

SC I consists of all traffic seen at the border (but inside the
firewall, unlike LAB I and LAB II) of the supercomputing center,
recorded for 69 minutes during the afternoon of a workday. Ittotals
73 GB, with a reported measurement drop rate of 0.07%.

For evaluating Shunting, our primary interest is in the proportion
of traffic that we can forward without needing further analysis. For
an IPS, this represents the fraction of the traffic processeddirectly

4Apparently due to a transient glitch on a collection node.
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Figure 4: Breakdown of types of traffic that require analysisvs. forwarding.

by the Shunt without involving bus-transfer overhead. Clearly, the
crucial question is to what degree we maintain a sound level of se-
curity analysis even in the presence of such offload; thus, westrive
to formulate algorithms for deciding which traffic to skip that gain
the largest offload for the least loss of detection opportunities. We
frame our decisions in this regard in the remainder of the section.
In addition, we evaluate the behavior of cache sizes using the UNI-
VERSITY I trace.

7.1 Evaluating the Fraction Forwarded
We processed each trace with Bro running a number of analyz-

ers, including: generic TCP connection analysis; SSH; HTTPre-
quests and replies; dynamic protocol detection; SMTP; IRC (in-
cluding bot detection); POP; DNS; and scan detection. We also
evaluated on a per-connection basis the amount of traffic analyzed
versus directly forwarded.

Table 2 summarizes the overall results. For the somewhat less
diverse laboratory and supercomputing environments, the offload
gain is very large, 75–91% of the packets and bytes. Even for the
university environment, we see significant gains along the lines of
50% of the packets and bytes.

Figure 4 breaks down the traffic by bytes analyzed vs. bytes for-
warded, for various types of traffic. The Shunt always diverts un-
classified traffic (not present in any decision table) to the Analysis
Engine, which we show at the lefthand edge of the figure. Follow-
ing this portion of the traffic we plot the makeup of analyzed traffic
(diverted to the Analysis Engine because an analyzer needs to see
it) for different application protocols, and then the makeup of for-
warded traffic that the Analysis Engine can skip processing due to
use of Shunting. (We mark the beginning of this last group with a
vertical line to help distinguish it from the preceding group.) Note
that the applications presented in the plot reflect not only traffic
seen on the application’s well-known port, but also traffic identi-
fied using dynamic protocol detection.

Indeed, for the university traces we find that the main benefits
from Shunting come from the dynamic protocol detection analysis,
which often can examine just the beginning of a flow and then for-
ward the remainder if it belongs to an application protocol that the
NIDS does not analyze. We also find both the University tracesand
SC I dominated by large-volume flows.

In contrast, in LAB I’s traffic mix, SSH dominates. Such an en-
vironment provides a near best-case for Shunting, sinceSSH gains
very large benefit by skipping over large, unanalyzable encrypted
transfers. SC I also has a traffic mix dominated bySSH and other
large, unanalyzable file transfers. (SC I is also the only environ-
ment where the FTP analyzer sees enough traffic to significantly
benefit from Shunting.)

The figure demonstrates the central role that traffic types play in
the effectiveness of Shunting:SSH can be almost completely for-
warded, while even with Shunting HTTP traffic requires significant
analysis.

We also see how, even at a single site, the mix of traffic over
the course of a day can present significantly different loadsto a
Shunt-based IDS: comparing UNIVERSITY I (captured during the
workday) with UNIVERSITY III (in the middle of the night) we
see significant differences, with UNIVERSITY III exhibiting a con-
siderably higher fraction of unanalyzable traffic, and thusderiving
greater benefit from Shunting.

Finally, we find that Shunting is somewhat less effective at of-
floading packets compared to bytes. Since Shunting’s benefits are
greatest for heavy-tailed flows, it is natural to expect thatwe can
forward a greater fraction of bytes than packets.

7.2 Sizing the Connection Cache
A critical design parameter for the Shunt is sizing the connection

cache: it must be large enough to minimize the miss rate, but small
enough to limit the hardware cost.

To assess this tradeoff, we analyzed the UNIVERSITY I trace to
identify all of the forwarded packets, each of which corresponds to
a potential connection table entry. We then fed the resulting access
patterns into a custom-written cache simulator to evaluatethe miss-
rate for different connection table cache sizes. (For this analysis,
we did not assume eviction of entries upon observing a TCP FINor
RST control packet, an optimization that could further reduce the
miss rate.)

Figure 5 plots the miss rate (Y-axis, log-scaled) as we vary the
cache size (X-axis, log scaled) for different cache organizations and
eviction policies. We see that the 64K-entry cache used by our
hardware implementation provides ample head-room. A direct-
mapped cache would experience a 0.41% miss rate, while for a
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2-way associative cache this drops to 0.11%. A 2-location associa-
tive cache, without any searching, further reduces the missrate to
0.092%. Finally, a 2-way associative cache with LRU replacement
provides a 0.059% miss rate.

Although the associative cache with LRU replacement provides
a better miss rate than the 2-location associative cache with random
replacement, we prefer the location-associative cache because it is
easier to implement. To implement an LRU cache, the Shunt would
need to update connection entries upon receipt of packets, as for-
warded packets are never sent to the Analysis Engine (so it could
not track which entries are least-recently used).

Also of particular note is the relative effectiveness of even small
caches. A 2-location associative cache with just 4K entriesprovides
a miss rate of only 1.9%. If entries require 16 bytes, this suggests
that a connection cache of just 64 KB would be effective. Thus, a
Shunt built as an ASIC or using a programmable-firmware Ethernet
card could readily use on-chip memory for its tables.

8. FUTURE WORK
Our primary plans involve porting the Shunt implementationto

the 2.1 version of the NetFPGA board and advancing the integra-
tion with Bro to a level appropriate (and tested for) 24x7 opera-
tional use. The 2.1 NetFPGA board both fixes the input FIFO
problem that causes lockup for high-data-rate flows and alsoin-
cludes 64 MB of SDRAM, a larger FPGA, and greater availability
in terms of number of units we can obtain.

With the new board we will complete final integration of the
Shunt into Bro and operationally deploy it in our network. Since the
designers of the NetFPGA 2.1 board plan to also make it commer-
cially available, we hope to deploy at third party sites to increase
our operational experience with Shunting, as well as provide en-
hancements to Bro for intra-enterprise operation.

In addition, since we have validated that small connection caches
suffice, we are now investigating whether firmware-programmable
Ethernet cards could directly implement a Shunt.

9. CONCLUSIONS
We have developed a new model for packet processing, Shunt-

ing, which provides significant benefits for network intrusion pre-
vention in an environments for which an IPS can dynamically des-
ignate portions of traffic stream as not requiring further analysis.
The architecture splits processing into a relatively simple, table-

driven hardware device that processes the entire traffic stream in-
line, and a flexible analyzer (the IPS proper) that can run separately,
communicating with the device either over a local bus or a dedi-
cated Gbps Ethernet link.

We argue that this architecture can realize a number of signif-
icant benefits: (1) enabling what previously was a passive intru-
sion detection system to operate inline, gaining the power of intru-
sion prevention, as well as the opportunity to “normalize” traffic
to remove ambiguities that attackers can exploit for evasion [11];
(2) significantly offloading the IPS by providing a mechanismfor
it to make fine-grained, dynamic decisions regarding which traf-
fic streams it analyzes, and (to a degree) which sub-elementsof
stream it sees; (3) enabling large-scale, fine-grained (per-address
or per-connection) blocking of hostile traffic sources; and(4) pro-
viding a mechanism for an IPS to protect itself from overloadif it
can identify sources that load in excessively.

We have already developed hardware capable of performing the
Shunting operations [27], demonstrating that we can keep the spe-
cialized cache within the Shunt hardware relatively small,with
64 KB caches producing viably low miss rates. In this work, aswell
as framing the broader Shunting architecture, we have adapted the
Bro intrusion detection system to work with Shunting. We findthat
with a modest set of additions to its analysis, it can offload 55–90%
of its traffic load, as well as gaining the major benefit of enabling
fine-grained intrusionprevention.
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