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Abstract

Network intrusion detection and prevention systems are
vulnerable to evasion by attackers who craft ambiguous
traffic to breach the defense of such systems. A normalizer
is an inline network element that thwarts evasion attempts
by removing ambiguities in network traffic. A particularly
challenging step in normalization is the sound detection
of inconsistent TCP retransmissions, wherein an attacker
sends TCP segments with different payloads for the same
sequence number space to present a network monitor with
ambiguous analysis. Normalizers that buffer all unacknowl-
edged data to verify the consistency of subsequent retrans-
missions consume inordinate amounts of memory on high-
speed links. On the other hand, normalizers that buffer only
the hashes of unacknowledged segments cannot verify the
consistency of 20–30% of retransmissions that, according
to our traces, do not align with the original transmissions.
This paper presents the design of RoboNorm, a normalizer
that buffers only the hashes of unacknowledged segments,
and yet can detect all inconsistent retransmissions in any
TCP byte stream. RoboNorm consumes 1–2 orders of mag-
nitude less memory than normalizers that buffers all unac-
knowledged data, and is amenable to a high-speed imple-
mentation. RoboNorm is also robust to attacks that attempt
to compromise its operation or exhaust its resources.

1. Introduction

Network intrusion detection and prevention systems
(IDS/IPS) are now widely used to improve the security
of networks run by providers, enterprises, and even home
users. Such monitors usually operate on the path between
the protected network and the rest of the Internet, observ-
ing all traffic coming in and out of the network and flag-
ging (IDS) or blocking (IPS) activity deemed likely mali-
cious. While historically some of these systems operated
in a stateless, per-packet fashion [1], modern systems em-
ploy detailed protocol parsing in order to analyze the traf-
fic at higher semantic levels [2] and require in-order re-
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Figure 1. Evading a network monitor using in-
consistent TCP retransmissions.

construction of TCP byte streams as the receivers would
see them. However, these reconstructed byte streams have
inherent ambiguities largely because the monitor does not
know what traffic the receiver actually receives and accepts.
Starting with the work of Ptacek and Newsham [3], the pos-
sibility of a wily adversary exploiting these ambiguities to
mount an evasion attack and confound a monitor has been
recognized in the research literature [2–6]. Moreover, tools
that facilitate the automatic generation of evasive traffic are
readily available for use by attackers today [7–9], making
evasion attacks a real threat to intrusion detection systems.

One important class of evasion attacks is attacks that em-
ploy inconsistent TCP retransmissions (i.e., TCP segments
that contain different data for the same sequence number
space) to confuse a network monitor’s parsing. In such at-
tacks, attackers send inconsistent TCP segments that all
make it past the monitor, but which don’t all reach the re-
ceiver, say, by having insufficient TTL hop-counts in their
IP headers. Absent information about which segments the
receiver will eventually receive and accept, the monitor can-
not accurately infer if an attack is in progress. Figure 1
shows an example where the attacker sends two different
TCP segments starting at sequence number 4, one of which
completes a malicious string “exploit” at the receiver.
The monitor, however, cannot unambiguously reconstruct
the string that the receiver sees. The monitor cannot sim-
ply analyze all possible interpretations of such ambiguous
traffic, since the combinations grow exponentially large [5].
Note that in this example, the receiver never sees the seg-



ment carrying “junk” because it lacks sufficient hop-count
(TTL) to make it all the way to its purported address. Alter-
natively, the attacker can also rely on knowledge of whether
the receiver’s particular operating system accepts only the
first instance of a segment, or overwrites the contents of the
segment with any later transmission; network stacks differ
in their treatment of this corner case [3].

Previous work by Malan et al. [4] and Handley et al. [5]
developed the notion of traffic normalization, by which an
in-line network element removes such ambiguities from a
traffic stream prior to presenting it to a monitor for security
analysis, thus thwarting evasion attacks. Detecting inconsis-
tent retransmissions is one of the hardest steps in normal-
ization because it cannot be performed in a simple state-
less fashion, unlike most other steps [5]. In recent work,
Varghese and colleagues pursued a more restricted problem
of detecting inconsistent retransmissions in the context of
byte-level signature detection alone [6]. Our goal in this
work is to design an in-line network element that detects
and blocks inconsistent retransmissions in any TCP byte
stream, in a manner that is both memory-efficient and re-
sistant to attacker-induced stress.

The brute-force approach to detecting inconsistent re-
transmissions, used by some existing intrusion detection
systems (e.g., Bro [2]) and normalizers [4,5], is to buffer all
the unacknowledged bytes for each active connection and
to compare any retransmission against the stored bytes for
consistency. However, the brute-force (“full-content”) nor-
malizer needs to be provisioned with a significant amount
of memory—almost a bandwidth-delay product’s worth—
rendering such normalizers impractical and expensive on
high-speed links.

An alternative approach, potentially requiring signifi-
cantly less memory, is to instead store hashes over the con-
tent of unacknowledged segments rather than a full copy
of the contents, and compare the hashes of retransmissions
to stored hashes. Such an approach cannot verify the con-
sistency of retransmissions that are packetized differently
from the original segments. In practice, however, retrans-
missions not infrequently occur misaligned with the origi-
nal segment boundaries, overlapping in unexpected ways—
from our analysis of five real-world TCP packet traces, we
find that 20–30% of all retransmissions were not aligned
along original segment boundaries (§2). While we know
from discussions with implementors that some commercial
systems also use the approach of storing hashes, the liter-
ature does not provide any analysis of how well such an
approach actually works in practice.

Thus, existing normalizer designs fail to meet the full set
of goals important for a practical normalizer:

1. Memory-efficiency. The normalizer must use memory
frugally to store most of the data on fast (but scarce and
expensive) on-chip memory in order to process pack-

ets at line speed. Memory efficiency becomes increas-
ingly significant as link speeds improve and connec-
tions have greater amounts of data in-flight, and has
major implications for cost and power consumption.

2. Correctness. The normalizer must always identify and
block inconsistent TCP byte streams, irrespective of
how the bytes are packetized into segments by the
senders. Existing hash-based approaches do not pro-
vide actual protection from adversaries, since in prac-
tice such normalizers will fairly frequently encounter
retransmissions for which they cannot verify payload
consistency.

3. Adversarial-resistance. The normalizer must be ro-
bust to an adversary mounting attacks to degrade the
normalizer’s operation. Such attacks might seek to ex-
haust the memory or processing resources of the nor-
malizer, preventing it either from functioning correctly
or causing it to deny service to other, benign TCP con-
nections. For example, an adversary can easily exhaust
the memory of the full-content normalizer by having
large windows of unacknowledged data over multiple
connections.

In this paper we describe RoboNorm, a robust normal-
izer design that aims to meet all of these design goals.
RoboNorm maintains a content hash for every unacknowl-
edged segment of every connection, and (with careful de-
sign, per §3) verifies the consistency of all retransmissions
including those that are misaligned with original segment
boundaries. RoboNorm requires around 2.5 MB of memory
on a typical Gbps access link, 1–2 orders of magnitude less
than that required by the full-content approach (§4), making
it amenable to an inexpensive yet high-speed implementa-
tion (§5). In addition, RoboNorm thwarts a variety of state-
exhaustion attacks by using robust policies to evict connec-
tions when under stress; the policies require the adversary
to summon major resources to impair the system’s opera-
tion, and rarely inflict collateral damage on benign connec-
tions (§6). While sound and robust operation of RoboNorm
necessitates occasional alteration of traffic and end-to-end
semantics (e.g., ACK rewriting), we demonstrate that such
alteration occurs exceedingly rarely in practice.

2. Assumptions and Challenges

This section investigates the challenges to designing an
efficient and robust normalizer using a number of real-world
packet traces. We begin with the assumptions and terminol-
ogy used in this paper.

Assumptions. The normalizer is an in-line network ele-
ment deployed at the access link of a network one wishes to
protect, most likely in conjunction with an IDS/IPS. We as-
sume that the normalizer always sees packets in both direc-



# Trace Characteristics Univ1 Univ2 Lab1 Lab2 Super

1 Total # half-connections with data 648K 15.3M 1.21M 601K 32.5K
2 % of above with retransmits 5.6 5.16 4.07 4.83 2.39
3 Total # TCP packets 31M 435M 127M 40.5M 30.3M
4 % of above that are retransmits 0.58 0.32 0.06 0.19 0.04
5 % retransmits not aligned with originals 29.0 25.2 31.5 20.6 18.1

Table 1. Basic statistics of the traces used in the paper.

tions (i.e., data and acknowledgments) of any TCP connec-
tion it processes.1 We also assume that the normalizer can
actively alter the traffic passing through it, say by holding
onto some packets without forwarding or rewriting some
fields of the packet headers. It can terminate connections
that it suspects of conducting malicious activity. When un-
der stress, the normalizer fails on the safe side by terminat-
ing suspicious connections to relieve stress instead of letting
traffic through without inspection.

Terminology. TCP is a byte stream protocol for which a
TCP segment is the unit of transmission. In our discussions,
we represent segments by the sequence number ranges of
the bytes they contain.2 We term a TCP segment as new if
none of its sequence numbers have previously appeared at
the normalizer. Otherwise, we term the segment retransmit-
ted. New segments that we later compare retransmissions
against are at that point termed original segments. Note that
a retransmitted segment can contain both sequence numbers
previously seen and new sequence numbers. We also define
a hole as a range of sequence numbers for which the nor-
malizer has not seen the corresponding bytes.

Traces. We use five packet traces to understand the chal-
lenges in designing a normalizer, and to validate our de-
sign in the rest of the paper. These traces, referred to as
Univ1, Univ2, Lab1, Lab2, and Super, were collected at the
Gbps access links of four large sites: two large university
environments, with about 45,000 hosts (Univ1) and 30,000
hosts (Univ2), respectively; a research laboratory with about
6,000 hosts (Lab1 and Lab2); and a supercomputer center
with 3,000 hosts (Super). All traces were captured during
afternoon working hours. Although we cannot claim that
these traces are broadly representative, they do span a spec-
trum from many hosts making small connections (the pri-
mary flavor of university sites, Univ1 and Univ2) to a few

1If the normalizer can only see one side of a connection, then it cannot
safely reclaim state associated with acknowledged data, nor can it correctly
execute the mechanisms we develop to handle retransmissions that are not
aligned with original segment boundaries (§3).

2When not ambiguous, we will sometimes refer to “bytes” as a shorter
term for “sequence numbers.”

hosts making large, fast connections (the supercomputing
site, Super). Appendix A details the trace collection method.

Table 1 presents some aggregate statistics of the traces.
Row 1 gives the number of TCP data-transfer paths (“half-
connections”) we analyzed. Each TCP connection poten-
tially gives rise to two of these, one in each direction that
actually transfers data; we analyze each direction indepen-
dently. We see in row 2 that a significant fraction (2.4–
5.6%) of half-connections undergo retransmission at some
point, even though the next two rows show that a far lower
fraction (0.5%) of the total packets are themselves retrans-
mitted. The last row of the table shows that 20–30% of re-
transmitted segments are not aligned with the correspond-
ing original segments.

Challenges. The design of a TCP normalizer must over-
come three challenges, as mentioned in §1: memory-
efficiency, correctness in the face of complex TCP re-
transmission behavior, and attack-resilience. The normal-
izer must use memory sparingly: storing all unacknowl-
edged bytes consumes an excessive amount of memory,
especially on high link speeds. To reduce memory con-
sumption, some systems store content-hashes of TCP seg-
ments, simply comparing retransmissions against the stored
hashes. Unfortunately, as we noted above, a significant frac-
tion of normal TCP connections today do not retransmit
along the same segment boundaries as the original transmis-
sions. In response, such designs must either terminate the
connection, with significant collateral damage, or let mis-
aligned data through, which allows an attacker who crafts
such traffic to evade detection.

Thus, the second challenge is to guarantee correctness
in the face of TCP retransmission vagaries. TCP’s complex
retransmission behavior arises because the TCP specifica-
tion allows latitude in terms of how retransmitted segments
correspond to original segments—a sender can repacketize
the data during retransmission, with the result that the re-
transmitted segments may not match the original segments
in size or sequence range. Moreover, while the specification
states that a newly received segment that overlaps with an
existing segment should be trimmed to only the new data
(p. 53 of [10]), in reality different TCP implementations be-
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Figure 2. Architecture of RoboNorm.

have differently in this regard [3]. As a result, a network
monitor might not be able to tell whether a given segment
ultimately makes it all the way to the receiver—or, if it does,
whether the receiver will use its contents—and thus whether
the receiver will treat a subsequent retransmission as “new”
or “overlapping.”

The third challenge for a normalizer is to resist malicious
adversaries. In general, malicious nodes can send arbitrary
streams of packets to attempt to exhaust the computational
capacity and memory of the normalizer, or to undermine its
correct operation. Hosts inside the protected network can
collude with adversaries outside the network. Attackers not
on the path between communicating TCP hosts can spoof
source IP addresses to disrupt TCP connections. Irrespec-
tive of the attacker’s strategy, we must ensure that all incon-
sistent retransmissions are detected, and that no additional
vulnerabilities are introduced with respect to other attacks.

3. Design of RoboNorm

This section describes the design and packet processing
algorithms of RoboNorm. For ease of exposition, we as-
sume that only data entering a protected network is being
normalized; it is straight-forward to extend the scheme to
normalize data in both directions.

3.1. System Overview

Figure 2 shows the various components of RoboNorm.
For every TCP connection, RoboNorm maintains a segment
hash for each unacknowledged segment, computed by hash-
ing the segment’s contents.3 The segment hashes of each
connection are stored as a linked list, called the segment
hash list, that is sorted by the starting sequence number
of the corresponding segments. Segment hashes in the list
cover non-overlapping sequence number ranges. The col-
lection of all segment hash lists in RoboNorm is referred to
as its hash store.

3See §6.4 for a discussion on the choice of hash functions.

When a TCP segment (data or ACK) arrives, RoboNorm
locates the connection’s segment hash list by looking up
the connection tuple in a hash table called the connec-
tion table. The connection table maps connection tuples to
per-connection state that includes a pointer to the connec-
tion’s segment hash list. If the arriving segment is a new
data segment, RoboNorm creates a corresponding new seg-
ment hash and forwards the segment. If the segment is a
retransmission, RoboNorm tries to verify the consistency
of the segment by comparing its hash to existing segment
hashes over the segment’s sequence number range. Seg-
ments whose consistency cannot immediately be checked
(e.g., segments which do not exactly overlap with existing
segment hashes) are buffered without forwarding in the re-
transmission buffer of RoboNorm; handling them requires
additional mechanism as described in §3.2. Handling ACKs
involves clearing segment hashes over acknowledged data,
and some subtleties to handle special cases (§3.3).

RoboNorm initializes state in the connection table on
seeing the first data segment of the connection, not the
first SYN segment, to prevent an easy state exhaustion at-
tack caused by SYN flooding. Upon seeing a FIN or RST
segment, RoboNorm marks the corresponding entry in the
connection table for clearing, and completely clears the en-
try when all of the connection’s pending data has been ac-
knowledged. These simple state initialization and termina-
tion policies make RoboNorm vulnerable to a variety of at-
tacks that aim to exhaust space in its connection table; we
later describe the attacks and suitably augment RoboNorm’s
design to defend against them (§6.2).

3.2. TCP Data Segment Processing

When a TCP data segment arrives, RoboNorm retrieves
the connection’s segment hash list and checks if its se-
quence range has been seen before. If not, RoboNorm cre-
ates a new segment hash, inserts it into the segment hash list
at the sorted position, and forwards the segment. Otherwise,
it breaks up the segment’s sequence range into portions that
overlap exactly or partially with those already in the hash
list, and into maximal new ranges (filling in one or more
holes), with these latter treated as if they were new segments
by creating new segment hashes for them. Note that we do
not store segment hashes for sequence number ranges that
have already been acknowledged. Figure 3(i) illustrates the
process of splitting a retransmitted segment into new, ex-
actly overlapping and partially overlapping ranges, shown
as segments B, A, and C in the figure respectively.

For each range that exactly overlaps with a stored seg-
ment hash, RoboNorm computes the hash over the corre-
sponding contents and compares it with the stored segment
hash. If the hashes match, it forwards the segment. If the
hashes do not match, it has found an inconsistent retrans-



���������������������������
���������������������������

������
������

������
������

������
������

������
������

��
��

��
��

	
	
	








��
��

��
��

HoleSegment Hashes

Retransmission

BA C C D

Fitting SegmentsPartial overlapNew segmentExact overlap

(i) (ii)

Figure 3. Retransmission terminology.

mission. A natural action for it to take at this point is to re-
set the connection, since even if the inconsistency is due to
benign causes, the connection is in serious trouble in terms
of its proper semantics. The actual action taken, however, is
left to the policy of the network administrator.

Handling sequence number ranges that partially overlap
with stored segment hashes is the only tricky case. Since
partial overlaps can only occur at the beginning or end of
an arriving segment, there can be at most two such ranges
per retransmitted segment. For example, the retransmitted
segment in Figure 3(i) contains one partial overlap (segment
C) at its end. Table 2 shows that 12–20% of retransmitted
segments (row 1) and 0.1–0.5% of half-connections (row 2)
have partially overlapping ranges in our traces.

RoboNorm cannot verify the consistency of partially
overlapping ranges because the original content-hashes
were created over larger ranges. As a result, the system must
hold on to the partially overlapping portions in RoboNorm’s
retransmission buffer—without forwarding them—until one
or more partially overlapping segments that “fit together”
to span an entire segment hash arrive. We use the term fit-
ting segments to refer to partially overlapping segments that
form an exactly overlapping segment when concatenated
together. For example, segments C and D in Figure 3(ii)
are fitting segments. Once all the fitting segments arrive,
RoboNorm can then compute a hash over the concatenation
of those segments and compare it with the corresponding
segment hash value in the hash list for consistency, forward-
ing the segments upon a verified match.

One may wonder if holding on to each fitting segment
without forwarding it will guarantee forward progress, i.e.,
will this approach always ensure that the remaining fitting
segments eventually arrive, allowing the normalizer to de-
termine whether the retransmission is consistent or not? If
the partial overlap does not include the left edge of a stored
segment hash (see Figure 4(i)) then eventually the earlier
portion will have to arrive, perhaps after a TCP timeout
at the sender, since the receiver will not otherwise send an
ACK for it. On the other hand, if the fitting segment over-
laps with the left edge of a stored segment hash, but does
not extend all the way to the end of the stored segment,

then our holding back the partial overlap without forward-
ing may cause the scheme to stall, as shown in Figure 4(ii).
This is because the sender might continue retransmitting
the partially overlapping segment and never decide to send
any subsequent fitting segments. Coping with this possibil-
ity (which our traces indicate can indeed occur in practice)
requires an additional mechanism to manipulate TCP ACKs
in the opposite direction in order to elicit fitting segments.
We describe this technique in §3.3, where we also analyze
our traces to estimate how frequently this situation arises.

3.3. TCP ACK Processing

When a TCP ACK arrives, RoboNorm deletes segment
hashes acknowledged by the ACK. There are two kinds of
ACKs to consider: those that are aligned with an existing
segment hash boundary (i.e., the start or end sequence num-
ber of a segment hash), and those that acknowledge data in
the middle of an existing segment hash.4 RoboNorm for-
wards every ACK it inspects, but, as discussed below, some-
times it must first modify the information in the ACK.

ACK on existing segment hash boundary. Upon see-
ing an aligned ACK, RoboNorm deletes all segment hashes
in the connection’s hash list that lie at or below the ACK.
In addition, it also discards from the retransmission buffer
any buffered segments that the ACK covers. Row 3 of Ta-
ble 2 shows that 50–70% of all partially overlapping seg-
ments are acknowledged before the corresponding fitting
segments appear in our traces. This situation occurs because
the bytes corresponding to the remaining fitting segments
were actually already at the receiver, and the retransmis-
sion of a different segment enabled the receiver to acknowl-
edge the whole set. Thus, in this case it was unnecessary for
RoboNorm to buffer the misaligned data, but it also did no
harm.

4A third type, which acknowledges unsent data or a sequence number
inside a hole, clearly represents some sort of significant failure, either in
the end system or in the normalizer itself. The response in this case is a
policy decision.
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# Prevalence of partially overlapping segments Univ1 Univ2 Lab1 Lab2 Super
1 % of all retransmitted segments 17.8 18.3 21.0 12.3 12.4
2 % of all half-connections 0.4798 0.0954 0.1318 0.0891 0.0706

Partially overlapping segments cleared by ACKs

3 % ACKed before fitting segments arrive 51.19 54.2 67.7 74.9 55.6

Frequency of ACK promotion

4 % fitting segment pairs with ACK in between 22.1 20.1 45.7 14.2 9.6
5 % all half-conns with ACK between fitting segments 0.0976 0.0221 0.0181 0.0176 0.0092

Frequency of ACK demotion

6 Number of ACKs not on segment hash boundaries 278 2169 1020 18 13
7 % of all half-conns with such ACKs 0.024 0.0072 0.0134 0.0019 0.003

Table 2. Trace characteristics pertaining to partially overlapping segments.

When receiving an aligned ACK, RoboNorm also checks
to see if the connection has any partially overlapping seg-
ments in its retransmission buffer that start at the sequence
number of the ACK. If such a segment exists, RoboNorm
rewrites the sequence number of the ACK and shifts it up-
wards to the starting sequence number of the expected fit-
ting segment (i.e., the end of the partially overlapping seg-
ment), as shown in Figure 4(iii). We refer to this mechanism
as ACK promotion. As we can see from the figure, ACK pro-
motion enables RoboNorm to check the consistency of the
partially overlapping segment without stalling connections.

This situation might seem a bit precarious, as it requires
RoboNorm to generate an ACK for data that has not in fact
reached the receiver yet, playing fast-and-loose with TCP’s
end-to-end and fate-sharing semantics. However, given that
the connection may simply stall and keep retransmitting
the same segment (which will not be forwarded since each
time there still isn’t enough information to check for con-

sistency), this step is required. Although RoboNorm must
now “take responsibility” for the delivery of this segment
to the receiver, doing so does not require RoboNorm to
implement any portion of the TCP state machine or any
additional timers. As long as ACKs come in from the re-
ceiver, RoboNorm can promote them, and as long as ACKs
reach the TCP sender, the sender will transmit additional
segments (e.g., a segment starting at the first unacknowl-
edged byte) to make a set of fitting segments. Once the
fitting segments have all arrived, RoboNorm will forward
all of the held data, since it can now verify consistency
with the corresponding original segment. This approach al-
ways guarantees forward progress, and requires no addi-
tional mechanisms in RoboNorm other than the ability to
rewrite ACKs to promote them. Under the assumption that
RoboNorm sees all packets of both directions of a connec-
tion, the packet processing algorithms ensure that a connec-
tion never stalls indefinitely due to a pending consistency



procedure HANDLEDATA(dataSgmt)
tuple← GETCONNECTIONTUPLE(dataSgmt)
hashList← FETCHHASHLIST(tuple)
if (hashList = NULL)

hashList← INITHASHLIST(tuple)
SegList← SPLIT(dataSgmt)

// Split at boundaries of previous segments
for each sgmt ∈ SegList do
if (sgmt is new segment)

HANDLENEWSEGMENT(sgmt)
else if (sgmt completely overlaps some segHash)

HANDLEEXACTOVERLAP(sgmt, segHash)
else // sgmt partially overlaps some segHash

HANDLEPARTIALOVERLAP(sgmt, segHash)

procedure HANDLENEWSEGMENT(sgmt)
hashList← hashList ∪ SEGMENTHASH(sgmt)
FORWARD(sgmt)

procedure HANDLEEXACTOVERLAP(sgmt, segHash)
if (SEGMENTHASH(sgmt) = segHash)

FORWARD(sgmt)
else Flag inconsistent retransmission

procedure HANDLEPARTIALOVERLAP(sgmt, segHash)
BufSegs← {sgmt} ∪ BUFFEREDSEGMENTS(segHash)
if (FITTINGSEGMENTS(BufSegs) = True)
concat← CONCATENATE(BufSegs)
HANDLEEXACTOVERLAP(concat, segHash)
Keep segments for which ACK promoted
Clear rest of the fitting segments from buffer

procedure HANDLEACK(Ack)
if (Ack not a segment hash boundary)

DEMOTEACK()
TRIMHASHLIST(Ack)
if (Buffered segments starting at Ack)

Ack← Start of next fitting segment // Promote
Mark buffered segments as ACK promoted

FORWARD(Ack)

Figure 5. RoboNorm’s algorithms.

check of retransmitted segments.
From our traces we can estimate how often such ACK

promotion is required in practice. Because the traces were
collected without a normalizer in the forwarding path, it is
impossible to tell for sure what would have happened had
there been a normalizer that did not forward partial over-
laps. Instead, we use a heuristic: we compute the number of

times we observe the following sequence: an original seg-
ment S = [s, e); a partial overlap [s, e′), where e′ < e;
an ACK for e′; followed at some later point in time by a
segment starting with e′. That is, the retransmitted segment
[s, e′) and its successor that started at e′ were “split” in the
trace by an ACK e′. The intuition here is that the ACK e′

was in fact necessary to elicit the segment starting at e′. In
such a case, holding the segment [s, e′) in a buffer without
forwarding it could have prevented the ACK e′ from arriv-
ing at all; ergo, if we don’t promote ACKs, in this case the
connection could stall.

Table 2 shows that about 20–50% of fitting segment pairs
are split by an ACK between them (row 4), and that about
0.01% of all connections have such fitting segments (row
5), across all traces. These figures are low, but certainly not
negligible: for sites that see millions of connections per day
(as do all of the sites in our study), such a rate would result
in 100s to 1000s of broken connections each day without
the ACK promotion mechanism.

ACK not on segment hash boundary. While ACKs not
on an existing segment hash boundary might strike us as
highly peculiar (just what drove the receiver to select the
particular sequence number to acknowledge?), our traces
show that these do occur occasionally in real traffic (rows
6 and 7 of Table 2). In this case, RoboNorm first demotes
the ACK to the segment hash boundary closest to and be-
low its sequence number, after which it handles it like a
normal ACK on a segment hash boundary. To see why
we must demote such ACKs, observe that if we forwarded
such an ACK to the TCP sender without demotion, its ar-
rival may trigger a partially overlapping segment starting
at the sequence number of the ACK. Moreover, the fitting
segments of this triggered, partially overlapping segment
would belong to the sequence space that has already been
acknowledged by the forwarded ACK and hence will never
be retransmitted. Thus, demoting ACKs avoids accumulat-
ing partially overlapping segments whose consistency can
never be verified by RoboNorm.

The complete pseudocode of RoboNorm’s operations is
given in Figure 5.

4. Memory Savings With RoboNorm

In this section, we compute the amount of memory a
typical RoboNorm deployment would consume. Under the
assumption that RoboNorm stores an 8-byte hash of con-
tents for each unacknowledged TCP segment,5 each entry
of the segment hash list—composed of the hash itself, a se-
quence number range, and a 3-byte pointer to the next seg-

5We argue in §6.4 that an 8-byte hash provides acceptable security guar-
antees.



# Provisioning the connection table Univ1 Univ2 Lab1 Lab2 Super

1 Peak concurrent connections 10,647 33,932 4,010 1,927 295
2 Avg. concurrent connections 7,616 23,686 3,098 1,556 203

Provisioning the retransmission buffer

3 Avg. concurrent bytes per connection 639 579 665 594 566
4 Peak total concurrent bytes 13,213 116,937 87,118 12,411 2,256

Table 3. Measurements used to provision RoboNorm.

ment hash in the list—can all be made to fit in 15 bytes (Ap-
pendix B). Each connection table entry, consisting of a con-
nection tuple and pointers into the hash store and retrans-
mission buffer, consumes around 48 bytes (Appendix C).
With these estimates, we find that RoboNorm deployed on
a Gbps access link of a typical network needs to be provi-
sioned with as little as 2.5 MB of on-chip memory, while
a normalizer that buffers all unacknowledged data would
need 10 times as much (§4.1). Given the high cost of fast
on-chip memory, this memory gain is significant. More-
over, the actual memory that would have been consumed
(had RoboNorm been deployed at the sites we collected the
traces from) was found to be much smaller than the provi-
sioned amount in most cases, and up to two orders of magni-
tude smaller than the actual memory consumed by the full-
content normalizer (§4.2).

4.1. Savings in Provisioning

Hash Store. Each new segment hash in RoboNorm occu-
pies space in the hash store and remains there until cleared
by an ACK. Suppose segments arrive at a rate of λ per sec-
ond, and that the average time before clearing is δ seconds
across all connections. Then, by Little’s Law, on average
the system has to store λδ segment hashes in it. In general,
δ is roughly equal to the average connection round-trip time
(RTT),6 and λ is roughly equal to C/s, where C is the rate
of traffic entering the system in bytes per second, and s is
the average packet size in bytes. Thus, the number of seg-
ment hashes in the system at any time is roughly δC/s.

To estimate an upper bound on δ, we compute the largest
segment clearing time observed during the lifetime of a con-
nection for every connection in our traces, and compute
the mean of this value across all connections in all traces.
We found this value to be around 150 ms. We also found
that the average non-empty segment is at least 1 KB across
all traces. So, picking δ = 200 ms and s = 1 KB gives
us a bound of 25,000 hashes when provisioning for these

6Actually, δ is less than the average connection RTT, since what matters
is the time that elapses between the monitor seeing a data packet and then
seeing the corresponding ACK. In the absence of loss, this will be less than
RTT; possibly a great deal, if the monitor is near the receiver.

C = 1 Gbit/s links. This translates to 375 KB of memory,
assuming 15 bytes per segment hash. On the other hand,
the full-content normalizer would require δC = 25 MB of
memory to buffer all unacknowledged data.

Connection Table. We need to size the connection ta-
ble according to the maximum number of concurrent (es-
tablished) connections expected. Row 1 of Table 3 shows
that the maximum value we find in our traces is about
34,000 connections. The next row of the table also gives
the average value, which runs about 1/3 lower. Assuming
each connection table slot consumes 48 bytes, and we use
a hash table with 80% bucket utilization, we can accom-
modate 34,000 concurrent connections in about 2 MB. It is
reasonable to assume that the full-content normalizer would
also need comparable amounts of memory to store per-
connection state.

Retransmission Buffer. Table 3 (rows 3 and 4) gives
two different sets of statistics regarding the amount of
buffer needed to hold partially overlapping retransmitted
segments (cf. the “Hold” elements in Figure 4). Row 3 lists
the average buffer space required for each connection that
includes at least one such held retransmission. Row 4 lists
the aggregate peak buffer space required for such held re-
transmissions across all connections. We see that a few
10 KBs suffice across all of our datasets, a number small
enough that we ignore it for our subsequent comparisons.

In summary, we find that RoboNorm requires about
2.5 MB of memory on our 1 Gbit/s links, while the full-
content normalizer requires about 27 MB, giving us a sig-
nificant provisioning gain of a factor of 10 between the two
designs.

4.2. Savings in Observed Memory Consumption

The actual memory consumed by a normalizer in real de-
ployments will of course vary compared to the provisioned
amount. We now estimate the actual memory consumption
for each trace, as shown in Table 4. We consider both direc-
tions of every connection. Row 1 of the table gives the max-
imum number of concurrent hashes (that RoboNorm would



# Memory consumed in practice Univ1 Univ2 Lab1 Lab2 Super
1 Peak concurrent hashes 18,417 9,000 2,124 1,469 2,118
2 Peak concurrent bytes when holding full data 16,417 KB 5,236 KB 2,709 KB 1,836 KB 3,029 KB
3 Peak total memory by RoboNorm 787 KB 1,764 KB 224 KB 115 KB 46 KB
4 Peak total memory by full-content norm. 16,928 KB 6,865 KB 2,901 KB 1,928 KB 3,043 KB

Factor of memory savings in practice

5 Savings in total memory 21.5 3.9 13 16.8 66.3
6 Savings in unacknowledged data 59.4 38.8 85.0 83.3 95.3

Table 4. Memory savings of RoboNorm compared to the full-content normalizer.

have had to store if deployed) and row 2 gives the maxi-
mum number of concurrent bytes buffered by the system
(had we deployed a normalizer that buffered all unacknowl-
edged bytes) across all traces. We can then approximate the
actual peak memory consumption of the trace as the mem-
ory required to store the peak number of concurrent con-
nections and the peak number of concurrent bytes or hashes
in the trace, as the case may be. Rows 3 and 4 of the table
show the total maximum memory consumed by RoboNorm
and the full-content normalizer respectively.

Row 5 of the table computes the ratio of the total mem-
ory consumed by the full-content normalizer to that con-
sumed by RoboNorm. We find that the memory savings are
considerable in practice too, generally 1–2 orders of mag-
nitude. Note that these values include the connection table,
which for our scheme heavily dominates total memory con-
sumption (but not for the full-content normalizer). If we ex-
clude the connection table, the savings are about two orders
of magnitude (row 6). Thus any technique that compresses
the per-connection hash table (e.g., connection compres-
sors [11]) will improve the relative gain of RoboNorm over
the full-content normalizer.

5. Implementation Options

Realizing a prototype of RoboNorm that can process
packets at line speed on Gbps (or faster) links requires an
implementation that uses memory frugally, and performs
only a small amount of per-packet processing (in terms of
computation and memory accesses). We now argue that the
design of RoboNorm lends itself to such an implementation.

RoboNorm deployed on our Gbps links requires around
2.5 MB of memory (§4), an amount that can readily fit on-
chip. The common case packet-processing in RoboNorm in-
volves (a) looking up a hash table and (b) manipulating the
hash lists, either by adding new segment hashes at the end of
the list (when new data arrives) or clearing hashes from the
beginning of the list (on an ACK). Both these operations
can be performed efficiently in hardware: much work has
been done on how to perform hardware hash table lookups

efficiently [12], and we can make the common-case hash
list operations inexpensive by maintaining pointers to the
start and end of each hash list. Thus, per-packet process-
ing in RoboNorm would involve only a few accesses to
on-chip memory in the common case. Retransmitted seg-
ments, however, may require traversing the segment hash
list to compare hashes, or more complex operations involv-
ing partially overlapping segments. But because retransmis-
sions form around 0.5% of all packets (row 4 of Table 1),
we can handle such operations on a slow path or in software
without introducing perceptible delays in packet process-
ing.

6. Attacks on RoboNorm

This section discusses attacks an adversary can launch
to undermine RoboNorm’s correct operation, either by ex-
hausting its memory or by breaking the hash function used
to generate segment hashes, and the defenses we propose.
Memory Exhaustion. We observe that even a carefully pro-
visioned normalizer cannot handle workloads that consume
unreasonably large amounts of memory. For example, in
the worst case, workloads could consist of TCP segments
with 1-byte payloads and very large clearing times, or a
large number of connections with very little data outstand-
ing per connection. Provisioning the memory of RoboNorm
for such workloads is clearly impractical. This means that
RoboNorm has to deal with the possibility of the system
running out of space. In this section, we describe mecha-
nisms that enable RoboNorm to gracefully handle memory
exhaustion arising from either benign reasons (e.g., sud-
den spike in traffic volume due to a flash crowd), or state-
holding attacks on the normalizer by a malicious adversary.
We examine each component of RoboNorm in turn (§6.1,
§6.2, §6.3).
Breaking the hash function. If an attacker can success-
fully create collisions under the hash function used by
RoboNorm, he can evade detection by RoboNorm by gener-
ating inconsistent TCP segments with identical hashes. §6.4
describes appropriate choice of hash functions that makes



the success probability of such attacks negligible.
We argue that attacks that exhaust the computational ca-

pacity of RoboNorm are not a threat to the system. An
attacker can try to exhaust the computational capacity of
RoboNorm by sending packets that cause the normalizer to
do a lot of work (e.g., partially overlapping segments). But
because RoboNorm delegates the processing of such pack-
ets to a slow path (§5), such attacks will largely slow down
only the attacker’s traffic. Moreover, because very few con-
nections actually have packets on the slow path, the amount
of collateral damage the attacker can inflict on benign con-
nections is limited.

The defenses proposed in this section necessarily com-
plicate the design of RoboNorm, but are required for robust
operation. Indeed, when considering these added complica-
tions, we should keep in mind that normalizer designs that
buffer complete payloads suffer from greater vulnerability
to memory exhaustion attacks than does RoboNorm.

6.1. Hash store

Eviction policy. When the hash store is full, RoboNorm
must evict some old segment hash(es) to make room for
new ones. Evicting a hash must amount to resetting the TCP
connection, because RoboNorm will no longer be able to
check the consistency of a retransmission of that segment.
We use a simple cost-benefit analysis to pick TCP connec-
tions to evict hashes from. The benefit accrued from picking
a particular connection for eviction is equal to the amount
of memory the connection consumes—not simply the in-
stantaneous amount of memory it is currently using, but the
time-averaged amount it will use for as long as it is active.
We must balance the benefit against the cost of evicting the
connection. The metric we use for assessing the eviction
cost is the loss in network utilization because of the connec-
tion’s termination. Our eviction policy is then to evict the
connection with the highest benefit-to-cost ratio of eviction,
i.e., the connection with the highest ratio of the fraction of
memory used to the fraction of link bandwidth consumed.

If connection i has data arriving at rate λi segments per
second and has an average segment size si, then the frac-
tion of the link capacity C it uses is λisi/C. Regarding its
relative memory consumption, by Little’s Law the average
number of segment hashes connection i consumes is λiδi,
where δi is the observed average time for the connection’s
segments to clear. Let H be the total capacity of the hash
store, in units of segment hashes. Then we can compute the
benefit-cost ratio of eviction of connection i as:

λiδi

H

/

λisi

C
=

δiC

siH

Since H and C are constants, to find the connection with
the highest benefit-cost ratio we look for j that maximizes

δj/sj . Thus, our eviction policy boils down to picking con-
nections that either keep segment hashes in the system for
too long (large δj), or use too many hashes by sending very
small segments (small sj).

Implementing this scheme requires a bit of bookkeep-
ing to determine δi of a connection. We can approximate
this by averaging the following sample value for each of the
connection’s segments seen so far: for a cleared segment,
the sample is equal to the time it took for the segment to
be cleared. For a segment hash still in the system, the sam-
ple is equal to its age (the length of time since its creation).
Tracking segment age requires associating timestamps with
segment hashes.7 Note that si is easy to estimate by aver-
aging the lengths of all the segment hashes seen thus far.
Finally, we also need a way to quickly find which connec-
tions have the highest δi/si ratio. We observe that doing so
is directly analogous to the Deficit Round Robin computa-
tions that modern high-speed routers already implement.

Coalescing hashes. To avoid penalizing benign connec-
tions with a small average segment size, we introduce the
notion of coalescing segment hashes. Coalescing is the pro-
cess of replacing two (or more) contiguous segment hashes
of a connection with one segment hash covering the com-
bined sequence number space, thus reducing the number of
segment hashes that need to be stored. Not all hash func-
tions are amenable to segment hash coalescing; we discuss
suitable hash functions in §6.4.

When a connection has multiple segment hashes with a
small number of bytes in each, coalescing the hashes saves
the connection from eviction by increasing its average seg-
ment size si, while increasing δi by (only) the inter-arrival
time between the first and last coalesced segments. The only
downside of coalescing hashes is that an exactly overlap-
ping retransmission of a coalesced segment will now have
to be handled like a partially overlapping retransmission,
resulting in increased delays for the connection, and an in-
crease in the amount of memory consumed by the connec-
tion in the retransmission buffer. Thus, the combined size of
the segments used to form a coalesced segment hash must
be limited, say to the maximum TCP segment size. So, if
the connection with the largest value of δi/si either does
not have enough segment hashes to coalesce, or if the seg-
ment hashes have a large enough size already, then we will
still have to evict it to make room in the hash store.

Effect of adversary. The eviction policy of RoboNorm
also significantly increases the work-factor that adversaries
must apply to impair benign connections. In the absence of
such an eviction policy, adversaries can consume segment

7In fact, we can probably use a single per-connection timer instead,
similar to many implementations of TCP’s RTT estimation. However, we
have not yet developed the specifics of such an approach.
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Figure 6. CDF of the maximum duration of in-
activity between periods of activity for con-
nections with no outstanding data.
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Figure 7. CDF of the maximum duration of in-
activity between periods of activity for con-
nections with outstanding data.

hash memory “on the cheap” in one of two ways: (a) by
forcing their hashes to stay uncleared for a long time (e.g.,
by sending data above a sequence hole, which hence will
not be acked), or (b) by sending data in small segments, thus
consuming a large number of segment hashes. However, the
former case increases the δi of their connections, and the
latter reduces their si. Either makes their own connections
prone to eviction or coalescing.

6.2. Connection table

The connection table can easily become filled with ad-
versarial connections that have not been successfully estab-
lished, benign connections that stay idle for long periods
of time, or connections that failed to terminate cleanly. To
conserve space in the connection table, we augment the ta-

ble with two Bloom filters as described below.

Keeping track of connection establishment. Initializing
state on the first data packet and not on SYN packets makes
RoboNorm resilient to SYN floods without requiring any
additional mechanism (per §3.1). But not tracking connec-
tion establishment by way of the TCP 3-way handshake
also makes the system prone to attacks where an adver-
sary creates state in the connection table by sending data
packets on non-existent connections that go unanswered,
while preventing the receiver from sending RSTs by en-
suring the packets do not really reach the receiver (e.g., by
setting a low enough TTL or sending packets to unreach-
able hosts). RoboNorm overcomes this problem by keeping
track of connection establishment with very little state in the
following manner: upon seeing the SYN ACK segment for
a connection, RoboNorm hashes the connection tuple and
expected sequence number of the first segment into a SYN
ACK Bloom Filter (SABF). We then check this Bloom filter
for the presence of the connection tuple when the first data
packet arrives, as explained below.

Compressing state for connections with no outstanding
data. Some connections (e.g., interactive SSH) tend to
stay idle for long periods of time without having any data
in flight. Figure 6 shows the CDF of the duration of inac-
tivity (that was eventually followed by some activity) for
connections that had no outstanding data. We find from the
figure that a small number (1–2%) of connections remain
idle for hundreds of seconds before sending data again. Be-
cause RoboNorm does not need to store any per-connection
state for such connections other than the fact that they ex-
ist, we can hash the corresponding connection tuples into
an Inactive Connection Bloom Filter (ICBF) during the idle
periods. From our traces, we find that the peak number of
connections in the connection table is 35–50% lower if we
move connections to the ICBF after 5 minutes of inactivity.

Connection initialization and termination. Given the
mechanisms above, we slightly modify the algorithms in
§3.1 to initialize and terminate connection state as follows.
When a data packet with no entry in the connection table ar-
rives, RoboNorm installs a corresponding entry in the con-
nection table only if it finds the tuple in either the SABF or
ICBF. RoboNorm must periodically time out entries in the
Bloom filters to prevent them from filling up. We can time
out connections in the ICBF at a coarse granularity (e.g., af-
ter a few hours) in order to clean up connections that did not
terminate properly. Connections in the SABF can be timed
out more frequently (e.g., in 10 seconds). There are several
ways to efficiently time out connections by keeping track of
which Bloom filter bits were accessed in the previous time-
out period [12].



For a false positive rate under 0.01%, storing 100,000
connection tuples requires a Bloom filter of about 400,000
cells. Since we require 2 bits per cell of the Bloom filter (the
second tracks any access in the timeout period), the size of
each Bloom filter is only 100 KB.

Eviction policy. When RoboNorm runs out of space in
the connection table, it locates an inactive connection, i.e.,
one for which it has not seen any acknowledgments over
the past τ seconds. If the connection has no data pending,
we reclaim the connection’s slot and place it in the ICBF.
If the connection has data outstanding, we must terminate
it. From Figure 7, we see that the fraction of connections
with outstanding data that stay idle for more than a few sec-
onds is negligible. Thus a value of around 10 sec for τ will
result in very few connections being terminated; moreover,
terminating such connections is not a large loss because the
connection was having great difficulty making progress. If
all connections are currently active and have pending data,
then absent any other mechanism, either the new connection
must be dropped or an existing one reset to make space for
the new connection.

Effect of adversary. RoboNorm’s policy of evicting inac-
tive connections when running out of space resists adversar-
ial attempts to exhaust the connection table. For example, if
the adversary creates connections that do not clear data, or
send no data at all, they will be flagged as inactive and even-
tually evicted. Thus, the adversary can exhaust the connec-
tion table only by opening a large number of connections
and actively sending data on all of them. If the adversary
accomplishes the above by controlling many zombies, this
problem is identical to protecting a web server from a net-
work of bots seeking to exhaust its resources, and we can
employ one of the numerous defenses used in such situa-
tions (e.g., per-IP quotas, white-listing/blacklisting groups
of IP addresses, profiles over the IP space). However, it is
known that such defenses must be applied with care in order
not to penalize legitimate connections.

6.3. Retransmission Buffer

We now discuss how to respond to exhaustion of the
memory allocated to retransmission buffers. Recall that we
only employ such buffers in the face of connections with
partially overlapping retransmissions, which, as indicated
in Table 2 (row 2), are rare—less than 0.5% of all connec-
tions at any time—with the result that the adversary does
not have much leverage to cause collateral damage to be-
nign connections.

That said, a reasonable approach to take is that when
the retransmission buffer space is under stress, we limit the

amount of memory consumed by a connection in the re-
transmission buffer. This limit must be at least as large as
the maximum TCP segment size and the maximum size of
a coalesced segment hash (and this imposes a limit on how
much coalescing we can perform on the connection’s seg-
ment hashes, see §6.1). If a connection exceeds this limit,
we drop the excess partially overlapping segments without
buffering them; doing so will only increase the perceived
loss rate of the connection. Otherwise we can again use
δi/si (as in §6.1) to select another connection’s segments to
evict. Note that evicting the buffered segments of a connec-
tion does not require terminating the connection unless we
have promoted an ACK on its behalf (about 5 times more
rare, see row 4 of Table 2); it only slows down the connec-
tion by requiring additional retransmissions.

6.4. Hash Function

In order to be able to coalesce hashes and thwart memory
exhaustion attacks on the hash store (as per the discussion
in §6.1), the hash function used to construct segment hashes
must have the property that the hash of the concatenation of
two byte strings is derivable from the hashes of the two in-
dividual byte strings. In the rest of this section, we provide
an example of one hash function with this property, and dis-
cuss its security properties.

Consider the following universal hash function [13]: the
n-bit hash of a bitstring X is computed as Hn(X) = (an ·
X + bn) (mod pn), where X is the numeric value of the
bit-string, pn is an n-bit prime number that is kept secret and
an and bn are random numbers chosen from {1, . . . , p− 1}
and {0, . . . , p − 1} respectively. Notice that to obtain the
hash Hn(X.Y ) of the concatenation of two k-bit strings X
and Y , one simply calculates [Hn(Y )+2k · (Hn(X)− bn)]
(mod pn). The RoboNorm design uses 8-byte hashes (i.e.,
n = 64); we now defend this choice in the context of possi-
ble attacks on the hash function.

An attacker can compromise the correctness guarantees
of RoboNorm by producing collisions under RoboNorm’s
hash function, and subsequently generating inconsistent re-
transmissions without being detected. The attacker can test
whether he has successfully generated a collision by gen-
erating an inconsistent retransmission using two bit-strings
that the attacker believes hash to the same value, and check-
ing whether RoboNorm can detect the inconsistency. If the
connection does not get killed in spite of the inconsistent
retransmission, the attacker knows that he has created a col-
lision under RoboNorm’s hash function.

We argue that the attacker cannot break the hash func-
tion by guessing pn, an, and bn. Recall that the number
of prime numbers less than any number m is O( m

log m
).

Thus the number of n-bit prime numbers is approximately
O( 2n

n
) − O( 2n−1

n−1
) ≈ O( 2n−1

n−1
). To break the hash func-



tion by guessing pn, an, and bn, the attacker must search
through each of the possible O( 2n−1

n−1
) primes, and for each

prime the approximately 2n possible values of the random
numbers an and bn. We can see that guessing the hash func-
tion in this manner is computationally infeasible for n = 64
bit hashes that RoboNorm uses.

If the attacker does not know pn, an, or bn, then the only
way he can hope to generate colliding strings is by ran-
domly guessing pairs of strings. By the property of univer-
sal hash functions, the probability that the attacker guesses
a retransmission that hashes to the same value as any given
n-bit original segment hash is 1

2n
. This probability is van-

ishingly small for n = 64 bit hashes, even if the attacker
splits his search amongst a large number of (say, a billion)
parallel connections.

To summarize, coping with attacks on RoboNorm boils
down to developing strategies to handle memory exhaus-
tion gracefully and choosing appropriate secure hash func-
tions. We employ two principal ideas here: first, a simple
benefit-to-cost eviction scheme that we applied to both the
hash store and retransmission buffer; and second, additional
Bloom filters to augment the connection table.

7. Related Work

Section 1 briefly described the history of evasion attacks
and the normalization problem. Recent work [6] addresses
one type of evasions, namely an attacker attempting to pre-
vent a specific signature match against text they transmit.
The authors developed a scheme based on introducing a
modest change in end-system TCP behavior in order to al-
low a monitor to detect attempts to ambiguously transmit
byte sequences that match a given set of signatures. Their
scheme is appealing in that by exploiting the introduced
end-system change, they avoid needing to reassemble TCP
byte streams. However, their scheme is also significantly
limited in that it only applies to evasions that correspond
to directly manipulating a known byte-sequence signature.
As such, the scheme does not handle cases where the ambi-
guity does not constitute an actual attack in itself, but only
confuses the monitor’s protocol parsing and obscures the
occurrence of an attack later in the stream.

Sugawara et al. [14] describe an FPGA-based solution
to efficient TCP stream-level signature detection. Their sys-
tem detects inconsistent retransmissions by storing hashes
of transmitted packets. To handle retransmissions that do
not overlap with original segment boundaries, the authors
simply propose holding onto the partial overlaps till other
packets that “fill the gap” arrive. However, our trace eval-
uation shows that such an approach will result in a signifi-
cant number of connections stalling on pending consistency
checks (see Figure 4(ii)); RoboNorm addresses this prob-
lem with the ACK promotion mechanism (§3.3).

Normalization as a general feature has been incorporated
into secure operating systems [15] and commercial prod-
ucts [16]. Some of these latter include explicit options to
check for inconsistent retransmissions [17], but do not pro-
vide technical details as to how such detection works. From
informal discussions with other vendors, it appears that a
common approach is to use payload hashes, but without ad-
dressing the crucial problem of misaligned retransmissions
for which the hashes cannot be matched.

Shankar and Paxson explored a different approach to de-
fending against evasion attacks which they term “Active
Mapping” [18]. Here, the idea is for the network monitor
to proactively determine how specific end systems and net-
work paths will resolve potential ambiguities. While this ap-
proach is a valid point in the overall design space, we argue
that eliminating ambiguities, rather than attempting to cor-
rectly guess their outcome, provides a more robust founda-
tion for security monitoring technology.

Work by Levchenko et al. demonstrates in formal terms
that many security detection tasks (e.g., detecting SYN
flooding, port scans, connection hijacking and evasion at-
tacks) fundamentally require maintaining per-connection
state [19]. This finding highlights the importance of reduc-
ing the amount of per-connection state.

In work that is complementary to ours, Dharmapurikar
et al. explore how to robustly reassemble TCP byte streams
when faced with adversaries who attempt to overwhelm
the accompanying state management [20]. Reassembly in-
volves maintaining out-of-order data only until sequence
“holes” are filled, while normalization requires maintaining
data until it is acknowledged and hence requires a different
solution.

8. Conclusion

Defending networks against today’s attackers is
especially challenging for modern intrusion detec-
tion/prevention systems for two reasons: the sheer amount
of state they must maintain, and the possibility of resource-
exhaustion attacks on the defense system itself. Our work
shows how to cope with these challenges in the context of a
TCP stream normalizer called RoboNorm, whose job is to
detect all instances of inconsistent TCP retransmissions.

The two currently used methods to detect inconsistent
retransmissions—maintaining complete contents of unac-
knowledged data, or maintaining only the corresponding
hashes—suffer from a set of flaws each. Systems that main-
tain complete contents consume an amount of memory
problematic for high-speed operation. Systems that main-
tain hashes cannot verify the consistency of the 20–30%
of retransmissions that fail to preserve original segment
boundaries; as a result attackers can easily encode their eva-
sions in these unverified segments. RoboNorm stores hashes



of outstanding data and, with a careful design and occa-
sional alteration of end-to-end semantics, verifies the con-
sistency of all retransmissions. The resulting design is nec-
essarily somewhat complex, but still has a compact state
machine and is implementable at high speeds.

In considering resource exhaustion attacks, the obser-
vation that provisioning for a worst-case traffic pattern is
simply impractical led us to develop a simple benefit-to-
cost framework to evict connections when space is at a
premium. Another challenge is deciding when to initialize
state for new connections and when to reclaim state for ac-
tive connections with no outstanding data (of which there
are many); for both problems, we outline how we can use
Bloom filters effectively.

Evaluating RoboNorm on a set of traces collected from
different networks shows that it consumes 1–2 orders of
magnitude less memory than the approach of storing all
outstanding bytes, while guaranteeing that all inconsistent
retransmissions will be detected. Thus, our most impor-
tant conclusion is that high-speed TCP stream normal-
ization does not have to choose between correctness and
implementability—it can achieve both goals, while resist-
ing a range of resource exhaustion attacks.
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# Trace Characteristics Univ1 Univ2 Lab1 Lab2 Super

1 Date recorded 31Aug04 07Apr05 20Sep05 16Jan04 26Aug04
2 Trace duration (sec) 300∗ 7,221 6,167 4,345 3,606
3 Contents All hdrs All pkts All TCP All hdrs TCP hdrs
4 Reported capture losses 3.3 · 10−6 0 3.0 · 10−3 4.8 · 10−5 1.56%

Table 5. Summary of the collection method for the traces used in the paper.

A Trace Collection

Table 5 summarizes the collection methodology for the
traces used in the paper. The volume of traffic at most of the
sites is sufficiently high that it is difficult to capture packet
traces without loss. The exception to this is the Univ2 trace,
which was recorded using specialized hardware that is able
to keep up with the high volume. For the other sites, while
we incurred non-zero capture losses, the reported rates were
low, as shown in row 4 of the table, other than for Super,
which incurred 1.56% reported losses. For the most part,
losses introduce imprecision in our quantification of fre-
quencies of various packet transmission patterns, but should
not cause significant bias, since it is reasonable to assume
that packet capture loss does not particularly correlate with
packet transmission patterns.

We also note that Univ1 is unusual compared to the
other traces in that it represents a composite made out of
19 independently captured traces, each of which utilized
per-connection sampling to record approximately 1/19th of
the total TCP (and UDP) traffic (the only available way to
capture traffic in that environment without massive losses).
Each of these sub-traces spanned 300 seconds, and were
recorded one after another. To derive results from the com-
posite trace, we either add up per-subtrace figures (when
computing aggregates), or take maxima across them (when
assessing per-connection worst-case behavior).

B Sizing a Segment Hash

First, a segment hash must contain a 8-byte collision-
resistant hash of the contents of the corresponding TCP seg-
ment. Next, we need to associate a range of sequence num-
bers with each hash. We can do so by explicitly storing the
ending sequence number as a 2-byte offset from the start-
ing sequence number, and implicitly determining the start-
ing sequence number by assuming it comes 1 octet after
the ending sequence number of the previous segment hash
(or from the cumulative acknowledgment sequence number
in the connection record, for the first segment hash). With
such a scheme, we also need to introduce dummy segment
hashes for any “holes” in the sequence space for which we
have not received any data. The overhead of such dummy

segment hashes is expected to be low because connections
rarely have more than one such hole at a time [20]. Third,
we can track the age of a segment (required by the eviction
policies, see §6) with millisecond precision using a two-byte
timestamp. Finally, we need a pointer to the next segment
hash. We assume such pointers require 3 bytes, as our data
structures fit comfortably in the 16 MB range that we can
address using 24-bit pointers. Adding these numbers up, we
find that each segment hash consumes 15 bytes.

C Sizing the Connection Table

For each direction of a connection, we need to store a
3-byte pointer to the start of the segment hash list of the
connection, and a 3-byte pointer to the retransmission buffer
space for the connection (nil if the connection does not need
one). We also need 4 bytes to store the cumulative acknowl-
edgment sequence number for that direction, as this pro-
vides the basis for the relative sequence number used in the
first hash of the segment hash list. To append new hashes
to the hash list quickly without traversing the entire list, we
also maintain a 3-byte pointer to the end of the hash list and
a 4 byte sequence number of the last byte seen so far. Thus,
each direction consumes 17 bytes.

If the normalizer is working on both directions of data,
we need 34 bytes as described above, plus the 12-byte con-
nection tuple (source and destination IP addresses and port
numbers, 4+4+2+2 bytes), plus some space to hold book-
keeping information (average clearing time of hashes and
average segment size per connection; see §6), which we as-
sume that with careful choice of units and encoding requires
2 more bytes, a total of 48 bytes. Note that we store state
for both directions of the connection in the same connec-
tion record, even though our algorithms treat each direction
separately.


