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Abstract—Effective network security administration depends to a great
extent on having accurate, concise, high-quality information about mali-
cious activity in one’s network. Honeynets can potentiallyprovide such
detailed information, but the volume and diversity of this data can prove
overwhelming. In this paper we explore ways to integrate honeypot data
into daily network security monitoring with a goal of suffici ently classifying
and summarizing the data to provide ongoing “situational awareness.” We
present such a system, built using the Bro NIDS, and discuss experiences
drawn from six months operation.

One key aspect of this environment is its ability to provide insight into
large-scale events. We look at the problem of accurately classifying botnet
sweeps and worm outbreaks, which turns out to be difficult to grapple with
due to the high dimensionality of such incidents. Using datasets collected
during a number of these events, we explore the utility of several analysis
methods, finding that when used together they show promise for contribut-
ing towards effective situational awareness.

I. I NTRODUCTION

Effective network security administration depends to a great
extent on having accurate, concise, high-quality information
about malicious activity in one’s network. However, attaining
good information has become increasingly difficult becausethe
profile of malicious traffic evolves quickly and varies widely
from network to network [7], [2], and because security analysts
must discern the presence of new threats potentially hiddenin
an immense volume of “background radiation”.

In addition, much of the information available to security an-
alysts from sources such as intrusion detection systems comes
in the form of pinpoint descriptions of low-level activities, such
as “sourceA launched attackCVE-XXXagainst destinationB”.
Standard best practices rarely include automatically acting on
such information due to the prevalence of false and redun-
dant alarms. In addition, the information often lacks sufficient
breadth for forensic or root cause analysis.

The long-term objective of our work is to elevate the quality
and timeliness of information provided to network securityana-
lysts. We appeal to the notion of networksituational awareness
as a means for defining information quality. Situational aware-
ness is a military term referring to “the degree of consistency
between one’s perception of their situation and the reality” [5]
or to having “an accurate set of information about one’s envi-
ronment scaled to specific level of interest” [6].

We envision Network Situational Awareness (NetSA) as an-
alysts with accurate, terse summaries of attack traffic, orga-
nized to highlight the most prominent facets. NetSA should also
supplement these reports with drill-down analysis to facilitate
countermeasure deployment and forensic study. For example,
a NetSA environment should enable an analyst to quickly as-
sess high-level information such as the cause of an attack (e.g.,
a new worm, a botnet, or a misconfiguration), whether the at-
tacker specifically targeted the victim network, and if thisat-
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tacker matches one seen in the past.

This work represents our initial foray into developing a
NetSA environment. We pursue such an environment by cou-
pling the use ofhoneynetsfor capturing large-scale malicious
activity, unpolluted by benign traffic, with the application-level
analysis capabilities of the Bro intrusion detection system [8].
Our approach is geared towards developingbuilding blocksfor
a NetSA architecture that can provide SA ranging from real-
time event notification to forensic analysis of large scale events.
(A non-goal for this initial work is providing an “automatedBig
Picture” that achieves the flexibility and robustness that we ulti-
mately envision.)

Honeypots are Internet systems deployed for the sole pur-
pose of being compromised in order to assess adversaries. Net-
works of honeypots are termedhoneynets[4] and, like network
telescopes, are typically deployed on otherwise unused address
space. Systems such as Honeyd, iSink and the Internet Mo-
tion Sensor simulate honeynets by usingnetwork-levelactive
responders [9], [10], [1]. These systems offer the benefit offine-
grained attack analysis without the associated control issues of
high-interaction honeypots,i.e., no need to manage real systems
and deal with them being actually compromised. The ability
of honeynets to monitor large amounts of address space [10]
makes them an appealing source of timely information on new
outbreaks and scanning attacks.

Also related is our previous study describing the broad char-
acteristics of Internet “background radiation” using datacol-
lected from honeynets [7]. Effectively analyzing the potentially
vast quantity of data collected at these networks can prove chal-
lenging. Here, we focus on automating the process of honeynet
monitoring. To do so, we use Bro to organize and condense the
honeypot data into situational awareness summaries that can be
quickly scanned for large-scale events. Our system presently
highlights two classes of such events:new activity (i.e., an
application-level abstraction not previously seen) andspikesof
activity of a type previously seen, but now occurring with an
unusually large number of offending sources.

The initial goal towards which we work is to accurately at-
tribute such events as due to either (i) new worm outbreaks, or
(ii) “botnet” [3] sweeps. We pursued this objective by develop-
ing a set of statistical analyses that consider source-arrival and
scanning patterns to characterize different features of large-scale
events. We report experiences from operating a prototype ofour
NetSA environment over the past six months, from which we
have constructed a corpus of 22 large-scale events that include
well-known worm outbreaks, botnet sweeps, and misconfigura-
tion. Our work remains preliminary in that we do not yet have
the capability to consistently discriminate among these types,
but the combinations of our methods appear promising.
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Fig. 1. Comparison ofRadiation-analyvs. first-packet MD5 signature summa-
rization;Radiation-analyprovides a significant benefit.

II. SYSTEM STRUCTURE

In this section we describe the system components we built
for acquiring the necessary inputs to NetSA. These include ini-
tial filtering of the raw telescope feed; engaging the sources that
survive the filtering in dialog; abstracting the dialogs into their
semantic elements; identifying semantic elements previously
unseen; determining which recent activity merits the attention
of the operator; and extracting different features of large-scale
events to gain insight into their nature. Note that crucial to ef-
fectively identifying “previously unseen” semantic elements is
building up a longitudinal baseline against which to compare re-
cent observations. We discuss our experiences with operating
the system over time in order to do so in the next section.

Our NetSA system includes the following components:
• Tunnel filter sends traffic from the monitored address space

to the active responders using UDP encapsulation. The tunnel
employs a simpleone-source→ one-destinationfilter: we allow
each source to talk to only the first destination it contacts.This
filtering greatly reduces the amount of traffic seen by responders
without a substantial impact on the overall attack profiles [7].
Our analysis includes both filtered and prefiltered data.
• Active respondersare a collection of service emulators,

running in Honeyd or iSink. The responders enable fine-grained
attack analysis by engaging sources in packet exchanges forspe-
cific services. We presently run responders on a number of
commonly exploited services, including NetBIOS/SMB (ports
137/139/445), DCE/RPC (135/1025), HTTP (80), Mydoom
(3127), Beagle (2745), Dameware (6129), MS-SQL (1433), and
a generic “echo-responder” for other ports. Details on respon-
ders are provided in [7].
• Radiation-analy is a collection of Bro policy scripts we

constructed to analyze data from active honeypots. Our objec-
tive was to enable accurate high-level classification of attack
profiles. This is challenging due to the complexity of the dom-
inant protocols such as NetBIOS and MS-SQL. In developing
the scripts we aimed to strike a balance between specificity and
generality so as to group together activity that is semantically
equivalent from an attack perspective even if not identicalas
transmitted. We achieve this through two means: (i) consid-
ering protocol as well as “well-known” exploit semantics (ii)
aggregating activity at multiple granularities.

The Radiation-analyscripts generate summaries at several
granularities: (i) per-source scanning profiles, (ii) connection-
level summaries to distill into aggregate source counts of identi-
cal connection profiles, and (iii) aggregate summaries ofsession

profiles, where a session can be comprised of multiple types of
connections. We use the first two in our daily evaluations; ag-
gregating session profiles has proven more difficult due to the
diversity seen across groups of connections.

In Figure 1, we compare the effectiveness ofRadiation-analy
summaries with the simple first-packet-MD5 classification strat-
egy proposed in [1] (i.e., compute an MD5 signature of the
first payload seen to test if it matches a previous payload) over
one month. We see that theRadiation-analysummaries enable
the system to quickly learn about attack profiles, and after the
first couple of six-hour summaries we typically see fewer than
10 new profiles per six-hour interval, a time-scale suitablefor
manual supervision. In contrast, the first-packet-MD5 signature
caching produces hundreds of new profiles per interval and does
not “learn” well .
• Adaptation. A key aspect of our framework is

that it automatically updates its notions of types of activ-
ity over time. Specifically, when activity fails to match
an already-known profile, the system inserts a descrip-
tion of the new activity into a MySQL database so that
in the future it will be identified as something previ-
ously seen. We base these descriptions on semantic-level
“tags” derived from Bro’s application-level analysis. Two
examples are “445/tcp, binary-upload, CREATE FILE: "lsarpc"”
and “RPC bind: afa8bd80-7d8a-11c9-bef4-08002b102989 len=72;

RPC request (24 bytes)”.
Our operational deployment ofRadiation-analyproduces sit-

uational summaries in 6-hour batches. These update the Hon-
eynet database and feedSituational-analy, each described next.
• Situational-analy is a script that queries the Honeynet

database and generates periodic summaries organized to high-
light new events (those not previously in the MySQL database),
large-scale or unusual events, and endemic activity. To identify
large-scale and unusual events we compute the deviation of an
event’s source volume (i.e., the number of distinct source IP ad-
dresses) from that seen in the past for that type of event. We
compute the deviation as a ratio, denotedβ, as follows. Let
pi be the number of sources with connection profilep in time
interval i, andm the number of intervals prior toi where we
previously observed this profile. Thenβpi

= mpi/
∑i−1

j=0
pi,

i.e., the number of sources observed inti divided by the mean
number of sources observed for this activity, ignoring intervals
when it was not observed.

Situational-analygenerates situational summaries for high-
β events. From our experiences so far, we have found that a
threshold ofβpi

> 3.0 for minor escalations andβpi
> 10.0 for

high-β events works satisfactorily, in terms of us often finding
the corresponding events “somewhat” and “quite” interesting,
respectively. We discuss this further in the next section.
• Situational In-depth is a series of statistical analyses we

developed to classify large-scale events, described in§ IV.
These are presently off-line tools, though we aim to adapt for
real-time classification in the future.

III. E XPERIENCES

We have operated our NetSA system for six months on a
1,280-address honeynet. Its six hour summaries have alerted us
to a host of potential new exploits and botnet incidents overthis
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period. While the details of each incident are not always com-
pelling, the overall insight the NetSA system gives us in terms
of isolating and summarizing events has been quite clear. The
operation, not surprisingly, has required tuning and refinement
over time; in particular, we gained experience with examining
situational summary reports, we modified the format,β thresh-
olds, and the adaptive rule generator to better provide informa-
tion at an appropriate level of fidelity for daily use. The situa-
tional summaries currently generated have four parts, as follows:

1. New events: The report first summarizesnew events, i.e.,
those not matching an existing profile as abstracted by the Bro
Radiation-analyscript. This part of the report includes the tar-
get port, source count, and the newly generated Bro tag for this
event, which includes protocol and payload details. In our ex-
perience, the number of events in this category is typicallyless
than 5. The target ports can vary widely, while the number of
distinct sources identified for these events is usually only1.
We have identified many different types of events using this por-
tion of the summary, including a number of misconfigurations
and several suspected new virus strains and polymorphisms.
However, we initially expected that such previously unseenac-
tivity would very often prove highly interesting, reflecting sig-
nificant new forms of malware, once we had operated long
enough to fully populate our “known activity” database withthe
regular background radiation one sees. An importantnegative
result is that this has not turned out to be the case. The diffi-
culty is that the low levels of “new” activity we see also often
include minor variations of previously seen activity.The prob-
lem of perfectly generalizing activity to avoid flagging variants
as “new” has proven quite difficult, and remains a challenge for
future work.

2. High-β events: The next section summarizes high-β events
(β > 10.0). This component of the report aims to identify fast-
scanning worms and large-scale botnet attacks. The report lists
theRadiation-analytag for each event along with hourly and 5-
minute breakdowns of the number of unique sources observed,
overlap in sources between successive time intervals, number of
source /8-s and number of targets scanned. We see on the order
of one high beta event per day, though they are sometimes quite
bursty, and sometimes a single event spans multiple 6 hr reports.
Using the tools presented below, our best assessment is thatmost
of these have been either botnet scans or misconfigurations.

3. Minor escalations: The next section summarizes the “minor
escalations” in volume (β > 3.0). The report lists theβ value,
target port, source count, mean source count in the past, and
Radiation-analytag. While we hypothesize that slow-scanning
worms exploiting known vulnerabilities might initially become
visible here, no such worm outbreak took place during our study
(nor did any outbreak of a fast-scanning novel worm). Typically
this section includes on the order of 10 or fewer events.

4. Top profiles: The final section describes the top 10 activity
profiles (ranked by distinct source IP count) observed in the6 hr
period. The report includes the target port, source count, and
associatedRadiation-analytags. This section provides an ongo-
ing sense of endemic activity. It is most frequently dominated by
NetBIOS/SMB and DCE/RPC activity, but we see a significant

Attribute Misconfig Botnet Worm
Source Arrivals:

Temporal source counts sharp onset gradual sharp onset
Arrival window narrow narrow wide

Interarrival distribution exponential exponential∗ super-exp
Dst/Src Net Coverage:

Dest-net footprint hotspots binomial binomial
First-dest preference hotspots variable binomial
Source-net dispersion low-med low-med high

Source Macro-analysis:
Per-source profile hotspots variable variable

Target scope IPv4 <= /8 IPv4
Source lifetimes short short persistent

TABLE I SITUATIONAL AWARENESSATTRIBUTESSUMMARY

Incident Name Type Date No. Sources
BitTorrent NAT misconfig 2005-01-12 25 (1)
eDonkey1 P2P misconfig 2005-02-02 389
eDonkey2 P2P misconfig 2005-02-06 709
eDonkey3 P2P misconfig 2005-02-08 1,034

NB HiddenShare Botnet 2005-01-31 246
MS-SQL1 Botnet 2005-01-09 104
MS-SQL2 Botnet 2005-02-01 245
MS-SQL3 Botnet 2005-02-03 176
MS-SQL4 Botnet 2005-02-07 1,953

NB Incomplete Botnet 2005-01-10 6,561
DCERPCp1025 Botnet 2005-01-10 775
DCERPCp135 Botnet 2005-04-03 782

DCERPCp135-2 Botnet 2005-01-29 528
p6101-unknown Botnet 2005-01-20 30

NB Testfile Botnet 2005-01-15 96
NB Wkssvc Botnet 2005-01-11 26,010
CodeRed I Worm 2001-07-19 154,666

CodeRed I Re-emergence Worm 2001-08-01 126,311
CodeRed II Worm 2001-08-04 114,034

Nimda Worm 2001-08-18 139,351
Witty Worm 2004-03-20 5,553

Slammer Re-emergence Worm 2005-03-18 350

TABLE II SUMMARY OF HIGH-β INCIDENTS & WORM OUTBREAKS

diversity in terms of other forms of activity.

IV. SITUATIONAL AWARENESSIN-DEPTH

In this section we present a set of nine statistical analyses
we developed with the objective of effectively classifyinglarge-
scale events. We base each on a hypothesis about the expected
behavior of three major classes of large-scale events: wormout-
breaks, botnet sweeps, and misconfigurations. Table I summa-
rizes the expected behavior for each type of event from the per-
spective of a honeynet. In particular, we focus on source arrivals
(a probe from a distinct source IP), individual source character-
istics, and network coverage, as discussed in the followingsec-
tions. While we have yet to identify a single method that works
in all cases, taken together these analyses provide a broad per-
spective on large-scale events.

Two elements of the table merit clarification, both concerning
“Interarrival distribution”. For this row, “exponential”indicates
interarrivals consistent with a Poisson process,i.e., independent
arrivals that occur at a constant rate. The “exponential∗” entry
for Botnets indicates that initially we expected botnet probing
to arrive in animpulse, rather than as a Poisson process; but, for
reasons discussed below, the latter is often instead the case. The
“super-exp” entry for Worms reflects that while at a given instant
in time we might expect arrivals to appear Poisson (assumingthe
worm is random-scanning with a well-seeded random number
generator), we also expect the worm’s activity to grow over time
as it spreads, so we anticipate seeing a Poisson process whose
rate steadily increases until the worm attains saturation.

We collected traces for 22 large-scale events, detailed in Ta-
ble II, to evaluate the utility of each type of analysis. We
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Fig. 2. Temporal Source Counts in five minute intervals for (left to right) eDonkey3, Wkssvc Botnet and Code-Red 1

collected the traces for the misconfiguration and botnet events
from our honeynet deployment, while the worm outbreak traces
(other than the Slammer resurgence) came from various archival
sources. We now turn to a discussion of each type of analysis.

A. Source Arrivals

• Temporal source counts: We hypothesized that a botnet
sweep would be characterized by a sharp rise and sharp decay
in temporal source counts, as the botnet was first ordereden
masseto probe, and then completed its probing. In contrast, we
expected the growth of worms to reflect the size of the infected
population, so the scanning behavior would steadily increase un-
til the worm shut down (e.g., Code Red 1) or was cleaned up.

We evaluate this by considering the scanning activity in terms
of the number of distinct sources seen in successive time in-
tervals. Figure 2 shows the temporal source counts for three
different events: probing of a specific honeynet address that ap-
pears due to a misconfiguration in the eDonkey peer-to-peer file
sharing system (left); probing for the Windowswkssvc service
in an event we believe is most plausibly attributed to a botnet;
and historical data from the initial outbreak of Code Red 1 on
July 19, 2001. (This last plot exhibits a brief measurement out-
age at the sharp line towards the left.) While all three events
exhibit a relatively sharp onset, that for eDonkey is particularly
sharp, Wkssvc is concave down, and Code Red 1 is concave up.
These potentially reflect three different types of activityonset:
sudden propagation among the sources (eDonkey), propagation
that reaches most of the sources quickly but takes time to find
all of them (wkssvc), and the logistic growth characteristic of
a worm (Code Red 1). In addition, the probable botnet activity
is distinguished from the others by its gradual but steady decay.
• Arrival window: We next look at the nature by whichnew

sources arrive. We initially expected that botnets would exhibit
a sharp spike in new arrivals as the master of the botnet pushed
out probing commands to each bot. However, this turns out to
often not be the case. As we confirmed by analysis of source
code from a widely used botnet controller (phatbot), a common
way of structuring botnets is not to push commands to them but
rather to have the botspoll and pull. For the source code we
examined, bots wake up every 1000 seconds to check for new
commands. Given this behavior, rather than a sharp onset we
instead might expect a steady rate of arrival over an interval of
10–20 minutes.

Figure 3 shows the arrival rate for three events. The Wkssvc
event is clearly more regular than Nimda, but spread out over
10,000 sec. Perhaps this reflects a botnet with a polling interval
of 10,000 sec rather than 1000 sec; but, by itself, we cannot

really tell, so we find that the arrival window of new sources is
insufficient by itself to distinguish worms from botnets.
• Interarrival distribution: If bots indeed poll indepen-

dently for the instructions, then they will activate with auni-
form distributionover the polling interval. If in addition the
rate at which the bots then reach the honeynet with their prob-
ing is independent of when they receive their instructions,then
we would expect the arrival of the new sources to also be uni-
formly distributed over the polling interval;i.e., the arrivals will
appear to form a Poisson process, resulting in exponentially dis-
tributed interarrival times. On the other hand, the source interar-
rival times from worms should exhibit an increasing rate while
the worm initially propagates.

To evaluate source interarrival characteristics, we breakup
events into successive intervals, each with an equal number
of sources (e.g., we pick 10 intervals each with 10% of new
sources). We then plot the distribution of interarrival times and
compare against an exponential reference distribution fitted to
the mean. We are unable to show graphs due to space con-
straints, but for an evaluation over all the events in our set, we
find that botnet and misconfiguration events often show consis-
tency with exponential interarrivals; Worm outbreaks do so, as
well, but withdifferent rates for different intervals.

B. Destination/Source Net Coverage

• Destination-net scan footprint: Another set of salient fea-
tures for large-scale events concerns which destinations they
probe. We would expect misconfigurations to target only a few
addresses, while botnets and worms may or may not exhibit lo-
calized scanning, which might be structured (more likely for
botnets, we might think) or might be randomized (more likely
for worms).

We evaluate this behavior by considering the number of scans
per source and the number of sources that scanned particular
destination IP addresses. Figure 4 shows the destination network
scan footprint for three different events. The eDonkey miscon-
figuration event clearly shows hotspots, while the target selec-
tion for the worm and botnet scenarios visually appear random
and comprehensive.
• First destination preferenceNext, we test for a preference

in the first destination chosen by sources. This can reveal trends
such as botnet sources that always start sequentially scanning
from the top of subnet, or sources of bias in the random number
generators used by worms to select targets. To evaluate thisbe-
havior, we count the number of times each destination address
was chosen by a source as its first target. If the scanning process
is entirely random,i.e., there is no bias in the scanning order,
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Fig. 5. PDF of first destination preference (left) Wkssvc Botnet Incident: 2005-
01-11 (right) Nimda: 2001-09-18

then we would expect these counts to have a binomial distri-
bution in terms ofn trials (n = # sources) and a probability of
success (i.e., a given destination is visited first)p = 1/1280

(size of 5 /24 networks monitored).
Figure 5 plots the first-destination preference for two events,

along with the expected values from the corresponding binomial
distribution. The Wkssvc botnet fits the binomial quite well, in-
dicating it chooses its destinations fully at random, whileNimda
exhibits a local preference. Not surprisingly, an eDonkey mis-
configuration event (not shown) shows a complete lack of fit.
• Source-net dispersion:Next, we consider the distribution

of source hosts across the IPv4 address space. We hypothe-
size that hosts observed in worm outbreaks will be much more
broadly spread across the address space than botnets. Since
sources sending traffic to the honeynet interact with an active
responder (other than for single-packet UDP probes), we can
generally eliminate the possibility of spoofed source IPs.We
then compute a histogram of the count of sources seen from
each /8 address aggregate. Such plots (not shown) reveal that
the source dispersion of known worm outbreaks is much higher
than that for likely botnet sweeps or misconfigurations.

C. Source Macro-analysis

• Per-source scanning profile:Next, we investigate the de-
gree to which the scanning profiles of individual sources can
provide insight into a large-scale event’s aggregate behavior. To
do so, we randomly select up to 100 sources and plot the des-
tinations that each visit, sorting on the lowest destination ad-
dress visited (an alternative might be to sort by arrival time).
In addition, we construct phase-space plots of the consecutive
honeynet addresses a given source probes. These two plots are
complementary: one provides per-sourcecoverageinformation,
the other provides per-sourceorderinginformation.

Figure 6 shows examples of scan profiles and associated
phase-space plots for an MS-SQL event likely due to a botnet.
The left plot reveals two types of sources, those covering the
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Fig. 6. Left: Dest Scanning profiles of 100 random sources ordered by first
destination. Right: Phase plot of successive destination IPs scanned in local
network the MSSQL Botnet Incident: 2005-02-03

entire target space and those scanning a small number of IPs.
The phase-space plot on the right suggests that the former set
of sources scan the address space sequentially. We also see two
parallel lines on either side instead of a single diagonal line.
This artifact is consistent with a single source usingtwo inde-
pendent scanning threads, each of which traverses the address
space separately but at the same rate. We see similar plots for
other botnet incidents, suggesting that we need to account for
such concurrent scanning when testing for sequential scanners.
• Inferring target scope: A general situational awareness

question concerns how broadly a given event wasactually
scoped, as opposed to its prevalence seen within the honeynet.
It can matter a great deal whether a given event specifically tar-
geted the monitored network, or only incidentally probed itas
part of much broader probing activity.

Roughly, we would expect worms to tend to have global target
scope, with botnets and misconfigurations considerably more lo-
calized. The problem then becomes how to assess global scope
given only a single honeynet vantage point. To do so we try to
infer and then compare the global scanning rate of each source
versus its local (within the honeynet) scanning rate.

We base our method for doing this on the observation that
retransmitted TCP SYN packets will generally be sent within
3 seconds. We can often estimate how many packets a source
has sent between two observed packets by changes in the IP ID
counter (if the source implements the common policy of incre-
menting the ID by one for each packet sent). A 3-second inter-
val is sufficiently short such that it is highly unlikely the IP ID
field will have fully wrapped (i.e., the source sends> 65,535
packets). Thus, the IP ID spacing between retransmitted SYN
packets gives an estimate of the source’s global scan rate. We
can extend this trick (which admittedly will often not work for
sources that craft their own packets) to UDP sources by consid-
ering packets we observed that arrive≤ 3 sec apart.

In addition, we can construct an estimate of thelocal scanning
rate for each source by dividing the number of probes from it by
its lifetime. We can then estimate thebroader reachof a source
as the ratio of its estimated global rate versus its estimated local
rate, multiplied by the size (in addresses) of the honeynet.

Figure 7 shows log-log scatter plots of the estimated global
and local scanning rates of each source during four different
events, confining the plot to sources that contacted at least5 des-
tinations. For the eDonkey misconfiguration event, we estimate
a multiplier between10

3 and10
5, so we infer that the misconfig-

uration does not simply target our honeynet but includes thou-
sands of other targets. TheWkksvc botnet incident yields an es-
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Fig. 4. Destination Net Scan Footprint (left) eDonkey Misconfiguration: 2005-02-08 (middle) Wkssvc Botnet Incident: 2005-01-11 (right)Nimda: 2001-09-18
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timated multiplier of around10
4, indicates that the event likely

targeted the equivalent of a /8 network. This level of scoping
holds for all of the botnet incidents we have analyzed. On the
other hand, data from Nimda reveals two clusters of sources.
The multiplier here for the higher cluster is between10

6 and
10

7, consistent with the entire IPv4 address space. Finally, data
from the Witty worm outbreak yields an estimated multiplierof
around10

6. The target network used to collect that data had
≈ 8K addresses, so this scales up to a footprint on the order of
the entire IPv4 address space, the correct scope for Witty.
• Source lifetimes:The final attribute we consider is the life-

time of sources,i.e., for how long do we see them active in
the honeynet. We hypothesize that botnet sources will be short
lived, since they presumably are told to conduct a specific scan
and will stop when they have completed it, while worm sources
will be persistent unless they have mechanisms in them to stop
scanning after a certain point, which have not been seen to date
(other than Code Red 1’s die-off on the 20th of each month).

Figure 3 plots the CDF of source lifetimes for three events.
A lifetime of 0 corresponds to seeing the source very briefly or
perhaps only once. We see that our expectation largely holds:
botnets and misconfigurations have short lifetimes, while the
lifetimes of worm sources are distributed broadly. While this
analysis can be a useful discriminator between worms and bot-
nets, its utility is limited by the fact that we need to wait before
we can make the determination.

V. CONCLUSIONS ANDFUTURE WORK

Our quest in this study is to enrich the set of information
at a security analyst’s disposal by creating Internet Situational
Awareness. We base our study on the premise that honeypot data
can provide a source of timely, accurate and concise information
for situational awareness—but this data must be organized and
condensed to be useful. To that end, we developed a system
based on honeynets, analyzers that leverage the Bro NIDS, and
a MySQL backend database to facilitate analysis of honeynet
data. This system has captured and identified numerous inter-

esting events during our six-month preliminary deployment.
An important component in our NetSA environment is the

statistical analyses we developed to gain insight into large-scale
events. While we have not yet attained an integrated analy-
sis regimen that accurately and automatically classifies these
events, the individual analyses each provide useful perspectives.
As this study continues, we plan to explore real-time classifica-
tion as well as working towards such an integrated analysis.
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