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Abstract
The ever increasing demand of new applications has led
researchers to propose new network architectures that ad-
dress limitations of the current Internet. Given the rigid-
ity of the Internet today, overlay networks are used to im-
plement such architectures, in the hope of gaining a large
user base. Despite sustained efforts to test and deploy
new network architectures (on testbeds such as Planet-
lab), few of these efforts have attracted a significant num-
ber of users. We believe that chances of user acceptance
of overlays, and eventually new network architectures,
will be substantially improved by enabling users to lever-
age their functionality without any modifications to their
applications and operating systems.

In this paper, we present our design, implementation,
and experience with OCALA, an overlay convergence ar-
chitecture that achieves this goal. OCALA interposes an
overlay convergence layer below the transport layer, that
is composed of an overlay independent sub-layer that in-
terfaces with legacy applications, and an overlay depen-
dent sub-layer that delivers packets to the overlay. Unlike
previous efforts, this design enables: (a) simultaneous
access to multiple overlays (b) communication between
hosts in different overlays (c) communication between
overlay hosts and legacy hosts (d) extensibility, allowing
researchers to incorporate their overlays into OCALA.
We currently support three overlays, i3 [29], RON [1]
and HIP [17], on Linux and Windows XP/2000. We (and
a few other research groups and end-users) have used
OCALA for over a year with many legacy applications
ranging from web browsers to remote desktop applica-
tions.

1 Introduction
Over the past two decades, researchers have proposed a
plethora of solutions to extend the Internet’s functional-
ity, and to improve its resilience and security. After sus-
tained efforts to add new functions such as mobility [23]
and multicast [5] to IP, researchers have recently turned
their attention to developing new network architectures
( [1, 3, 4, 17, 27, 29, 32]) and using overlays to address
the Internet’s limitations.1 This trend has been fueled by

1In this paper, we focus on the interface provided by the net-
work substrate, and not on how this substrate is implemented.
Thus, we do not distinguish between the implementation of a

the difficulty of changing IP, on one hand, and by the ad-
vent of the PlanetLab [24] testbed and the recent NSF
GENI [21] initiative—which promises to create a world-
wide testbed for evaluating new network architectures—
on the other hand.

In order to evaluate the feasibility of these proposals
and to ultimately bring them closer to reality, it is im-
portant to experiment with real users running real ap-
plications. Ideally, users should be able to opt into new
experimental architectures without any changes to their
legacy applications2. Supporting legacy applications on
top of new network architectures is inherently a diffi-
cult proposition: legacy applications assume traditional
semantics of IP addresses and DNS names, while a new
network architecture may offer a substantially different
interface. Existing solutions are in general tailored to a
particular network architecture [1, 17, 31, 41], leading to
little reuse and duplication of effort across different im-
plementations.

In this paper, we describe the design and implementa-
tion of our solution, OCALA (Overlay Convergence Ar-
chitecture for Legacy Applications), that enables legacy
applications to take advantage of the functionality pro-
vided by new network architectures. OCALA differs
from existing solutions in that it enables (1) applications
running on the same machine to access different over-
lays simultaneously, (2) stitching of multiple overlays so
that users residing in different overlays can communi-
cate with each other, (3) hosts to communicate through
an overlay even if the other end-point understands only
IP, and (4) extensibility so that a new overlay can be in-
corporated into OCALA with minimal effort.

In a nutshell, the OCALA design re-factors the pro-
tocol stack by imposing an Overlay Convergence (OC)
layer. The OC layer is positioned below the transport
layer in the IP stack. It is decomposed into the overlay-
independent (OC-I) sub-layer, which interacts with the
legacy applications by presenting an IP-like interface,
and the overlay-dependent sublayer (OC-D) sub-layer,
which tunnels the traffic of applications over overlays.

The main contributions of this paper are an overlay

network architecture and an overlay; an overlay is one way to
implement a new network architecture on top of IP.

2We use the term legacy applications to refer to existing
applications like web browsers that assume IP semantics
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agnostic architecture for supporting legacy applications
and an extensible implementation of this architecture as
a proxy. Our implementation of OCALA as a proxy re-
quires no changes to applications or operating systems.

In realizing our design, we borrow many techniques
and protocols from the literature, such as address virtu-
alization [12, 17, 31, 33, 40, 41], DNS capture and rewrit-
ing [9, 20, 26, 40], and SSL [10]. We have implemented
the OC-D sub-layer for the i3 and RON architectures on
Linux and Windows XP/2000. In addition, a researcher
from the HIP (Host Identity Protocol) IRTF group [13]
has implemented an OC-D module for HIP using about
250 lines of code. To illustrate the utility of our de-
sign, we have used OCALA to provide services such
as intrusion-detection, secure wireless access, secure In-
tranet access, and Network Address Translation (NAT)
box traversal to legacy applications.

OCALA does not come without limitations. The fact
that OCALA is positioned below the transport layer
makes it hard, if not impossible, for legacy applications
to take advantage of network architectures that provide
transport or application layer functionalities (e.g., multi-
path congestion control, or data storage [16]).

The rest of the paper is organized as follows. We
present related work in Section 2. An overview of the
architecture is presented in Section 3 and a detailed goal-
driven design in Section 4. The overlay-specific modules
are presented in Section 5. We discuss some applications
of OCALA in Section 6. We present implementation de-
tails in Section 7 and evaluation in Section 8. We present
lessons from our initial deployment in Section 9, and
conclude in Section 10.

2 Related Work
Supporting legacy applications over non-IP or IP-
modified communication infrastructures has been ad-
dressed in a variety of contexts. Examples include
overlay networks and new network architectures (e.g.,
RON [1], i3 [29], HIP [17], DOA [36], WRAP [2], end-
host support for mobility [31, 33, 40]), and mechanisms
that enable end-hosts to use overlays without partici-
pating in them [19]. Whether implemented through OS
kernel modifications or through user-level proxies, these
proposals are specific to the particular context. In con-
trast, OCALA enables a user to simultaneously access
different overlays and to communicate with hosts resid-
ing in overlays the user is not directly connected to.

Our goal of stitching together multiple network archi-
tectures resembles the goal of AVES [20], TRIAD3 [3],
UIP [7], IPNL [8], Plutarch [4], and IPv4/IPv6 transi-
tion mechanisms like [11]. These proposals focus on pro-
viding universal connectivity. In contrast, our focus is

3The main goal of TRIAD is to provide content routing, but
this is out of the scope of this discussion.
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Figure 1: The overlay convergence (OC) layer.

on exposing to users, the functionality provided by new
network architectures–individually and when stitched to-
gether.

Layering is a widely used principle in networking.
Many architectures (e.g., HIP [17], WRAP [2]) hide the
details of underlying layers by interposing a shim layer
between the transport and network layers. OCALA’s OC
layer is similar to a shim layer. OCALA is different from
other architectures in that it explicitly splits the OC layer
into an overlay independent sublayer and an overlay de-
pendent sublayer, which respectively act as traditional
network and link layers. This division enables OCALA
to provide simultaneous access to and inter-operability
across different network architectures.

In implementing OCALA, we rely on techniques and
protocols previously proposed in different contexts. In-
tercepting DNS requests for interposing proxies on the
data path has been used in AVES [20], Coral [9], and for
improving web browsing performance over wireless net-
works [26]. Local-scope addresses have been utilized in
the context of supporting mobility [17, 31, 33, 40], redi-
rection [12], process migration [30, 31] and server avail-
ability [30]. Our address-negotiation protocol is similar
to that in Yalagandula et. al. [40], while the OC-I sub-
layer’s security protocol is a generalization of SSL [10].

3 Design Overview
In this paper, we focus on network architectures and
overlays that offer a service model of end-to-end packet
delivery similar to IP, as opposed to those that provide
transport or application layer functionalities, such as data
storage (e.g., Oceanstore [16]). Some examples are over-
lays that improve the Internet resilience (e.g., RON [1],
Detour [27], OverQoS [32]), overlays that provide new
functionalities such as mobility [40, 41], overlays that
bridge multiple IP address spaces [2, 20], as well as re-
cent architectures such as i3 [29], HIP [17], and Delega-
tion Oriented Architecture (DOA) [36].

Although not all network architectures are realized as
overlays, for convenience of exposition, in the reminder
of this paper we will use the term overlay to refer to both
overlay networks as well as network architectures that
are implemented as overlays.
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Each end-host E in an overlay has an overlay-specific
identifier (ID), which is used by other end-hosts to con-
tact E through the overlay. While in the simplest case
an overlay ID can be the host’s IP address (e.g., RON),
many overlays use other forms of identifiers (e.g., i3 and
DOA use flat IDs, HIP uses hashes of public keys). Since
overlay IDs may not be human-readable, end-hosts may
also be assigned human-readable names for convenience.

3.1 Goals
Our design is centered around four main goals:
Transparency: Legacy applications should not break de-
spite the fact that their traffic is relayed over an overlay
instead of over IP.
Inter-operability: Hosts in different overlays should be
able to communicate with one another, and users should
be able to form paths that span many overlays. Hosts that
do not participate in any overlay should be accessible.
Expose Overlay Functionality: Users should have con-
trol in choosing the overlay used to send their traffic, and
should be able to leverage the overlay functions despite
using overlay-unaware (legacy) applications.
Factor out common functionality: Instead of relying on
the security provided by overlays, the architecture should
provide basic security features such as host authentica-
tion and encryption.

3.2 Overlay Convergence Layer
Conceptually our solution interposes a layer, called the
overlay convergence (OC) layer, between the transport
layer and the network layer (see Figure 1). The OC layer
replaces the IP layer in the Internet’s stack, and consists
of two sublayers: an overlay independent (OC-I) sub-
layer, and an overlay dependent (OC-D) sublayer.

The main functions of the OC-I sublayer are to present
a consistent IP-like interface to legacy applications and
to multiplex/demultiplex traffic between applications and
various overlays. In addition, the OC-I layer provides
common functions that are of use across overlays. Exam-
ples of such functions are authentication and encryption.

The OC-D sublayer consists of modules for various
overlays, each of which is responsible for setting up
overlay-specific state and for sending/receiving packets
over the particular overlay. For example, the i3 OC-D
module inserts and maintains private triggers at both end-
points, while the OverQoS module may perform resource
reservation. Note that IP can be viewed as a “default”
overlay module.

Figure 2 shows an example in which three applica-
tions on host A open connections via IP and two over-
lays: a web browser (Firefox) uses IP to connect to a
CNN server, a chat client (IRC) uses i3 to preserve its
anonymity, and ssh uses RON for improved resilience.
The design also enables hosts in different overlays to
communicate with each other. Figure 3 shows how two
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Figure 2: Three applications on host (A) which establish con-
nections via IP and two overlays: RON and i3.

hosts on different overlays can communicate using a
gateway host (B) that is connected to both overlays.

We refer to the end-to-end communication channel be-
tween two end-hosts at the OC-I layer as a path, and to
the communication channel between two end-hosts at the
OC-D layer as a tunnel. In the example in Figure 3 the
path between the two end-hosts is (A, B, C), and consists
of two tunnels, (A, B) and (B, C), respectively.

3.3 Layering in OCALA: Discussion
At the abstract level, the services implemented by the
OC-D/OC-I sublayers on the data plane are analogous
to the services provided by the network/data-link layers
in the OSI protocol stack. Like the data-link layer which
provides communication between any two nodes in the
same link layer domain, OC-D provides communication
between any two nodes in the same overlay. Similarly,
while the network layer provides communication across
different link layer domains, OC-I layer provides com-
munication across different overlays.

However, OCALA does not enforce strict layering
within its sublayers. Unlike traditional layering, where
a layer uses only the service provided by the layer below,
OCALA allows legacy applications to access the services
provided by the OC-D sublayer, by passing overlay spe-
cific names or identifiers to OC-D through the OC-I sub-
layer. These names are resolved at the OC-D sublayer,
and their semantics is opaque to the OC-I sublayer. This
allows us to achieve the main goal of OCALA—enable
legacy applications to take advantage of the functions
provided by overlays—while keeping the OC-I sublayer
agnostic of the overlays.

4 Detailed Architecture
In this section, we present a goal-driven description of
OCALA, by showing how our design achieves the fol-
lowing four goals: (a) achieving transparency for legacy
applications (b) bridging multiple overlays (c) exposing
overlay functionality to users (d) factoring out common
functionality.

Achieving these design goals is challenging as they
have conflicting requirements. For instance, on one hand,
we want to expose the rich functionality provided by
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Figure 3: Bridging multiple overlays.

overlays to users, while on the other, we have to pre-
serve the narrow IP interface exposed to the legacy ap-
plications. This tension will be apparent in several design
decisions. In our design, we aim to find a sweet spot in
achieving these opposing goals.

4.1 Goal 1: Achieving Transparency
The basic goal in our system is to ensure that legacy ap-
plications are oblivious to the existence of overlays. Ide-
ally, such applications should work without any changes
or re-configuration when the IP layer is replaced by the
OC layer.

Our design is fundamentally constrained by how a
legacy application interacts with the external world.
Most legacy applications make a DNS request, and then
send/receive IP packets to/from the IP address returned
in the DNS reply. Thus, legacy applications identify In-
ternet hosts using names and IP addresses, where names
are resolved using DNS to IP addresses.

We now describe and justify the following design de-
cisions regarding names and IP addresses seen by the
legacy application:
• Overlay hosts are identified primarily using names.

These names are resolved using overlay specific res-
olution protocols. Thus, each overlay is free to im-
plement its own resolution protocol, which may dif-
fer from a DNS lookup.

• The IP address returned to the application by the
resolution protocol has only local meaning. This IP
address serves as a OC-I handle to retrieve state
corresponding to the remote host. Similarly, a tun-
nel descriptor is used by the OC-D layer to main-
tain hop-by-hop state. Finally, a path descriptor is
used at the OC-I layer to maintain end-to-end state.
The use of local-scope IP addresses is similar to the
address virtualization technique used in other solu-
tions [17, 31, 33, 40]

4.1.1 Overlay Names
Users can exercise control over the overlay used for de-
livering their traffic by: (a) using fields in the IP headers,
e.g., IP addresses, port numbers, or (b) DNS-like names.

In the first approach, a user can specify rules on how
packets should be processed using fields in the IP header.

Legacy App.

Transport Layer

OC-I LayerOC-I Layer

OC LayerOC Layer

1 DNSreq(foo.ov)

Name Res. Service 
(local addrbook, 

DNS, OpenDHT…)

Host A

Host B (foo.ov, IDB)

Overlay
(DTN, i3, RON)

i3 RON …

2 setup(foo.ov)

3 resolve(foo.ov)

4 IDB
5 overlay specific

setup protocol

DNSresp(oc_handle = IPAB)8

tunnel_d = tdAB6

OCI-Setup (pdAB)7

Figure 4: Path setup protocol.

For example, the user can specify that packets sent to ad-
dress 64.236.24.4 and port 80 should be forwarded
through RON, while packets sent to 207.188.7.x
should be forwarded through OverQoS.

In the second approach, users can encode the overlay
to be used for the application’s traffic inside the DNS re-
quests. We refer to the unique name associated with each
overlay host as its overlay name. An overlay name is of
the form foo.ov, where ov specifies the overlay, and foo
is a name unique to that overlay. On receiving a DNS re-
quest for an overlay name from the application, the OC
layer sets up state which allows it to intercept and for-
ward all the subsequent packets from the application to
host foo.ov through overlay ov.

The main advantage of relying solely on the infor-
mation in the IP headers is that it works with all In-
ternet applications, since at the very least, any applica-
tion sends and receives IP packets. On the other hand,
using overlay names has several advantages. First, over-
lay names can be used to identify hosts (for example,
NATed hosts) without routable IP addresses. This prop-
erty is fundamental to overlays that bridge multiple ad-
dress spaces [3, 20]. Second, names are human-readable
and hence easier to remember and use. Third, the user
does not need to know the IP address of the destination
in advance, which is not feasible in some cases. Indeed,
when an overlay provides support for content replication,
the IP address of the server that ultimately serves the con-
tent may not be known to the users before they actually
run the application.

Our implementation chooses DNS-like names as the
primary method for overlay selection. For supporting ap-
plications that do not make DNS requests, we also sup-
port the use of IP header fields for overlay selection.

4.1.2 Overlay Specific Resolution
Our second design decision is to resolve overlay names
using overlay-specific mechanisms. A name of the form
foo.ov, is resolved by the OC-D module for overlay ov.

This design choice has two main advantages over
DNS-based resolution. First, this allows multiple names-
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paces to co-exist with each other and with the DNS
namespace, thus enabling a fully extensible namespace.
Each overlay is allowed to implement name allocation
and resolution in any manner it chooses, without the re-
quirement for any global infrastructure. Second, this al-
lows OCALA to support network architectures that do
not assume a global IP address allocation. Examples in-
clude MetaNet [39] and IPNL [8] where names are the
only way to refer to hosts. Other examples include ar-
chitectures that leverage name resolution to implement
different functionality (e.g., DoA [36]).

In the remainder of the section, we describe how the
control plane and data plane operations of OCALA trans-
parently set up an end to end path and tunnel the legacy
applications’ data across the overlay.

4.1.3 Control Plane: End to End Path Setup
A new connection setup is triggered by the receipt of
a DNS request for a previously unseen overlay destina-
tion or the receipt of the first data packet of a connection
configured to use a particular overlay. The final result of
these operations is to establish an end-to-end path at the
OC-I layer and to set up the state required to handle the
application’s traffic. While in general a path consists of
several tunnels at the OC-D layer, in this section we con-
sider a single-tunnel path. We generalize the description
to multi-tunnel paths in Section 4.2.

Consider a legacy application on host A that wants to
communicate with a remote legacy application at host B,
called foo.ov (see Figure 4). The application first issues a
DNS request4 for foo.ov, which is intercepted by the OC-
I sublayer. On receiving such a request, the OC-I layer
associates a globally unique5 path descriptor, pdAB , and
remembers the mapping between the name and the de-
scriptor (foo.ov→pdAB) in order to service future re-
quests for foo.ov.

The OC-I sublayer then invokes the corresponding
module in the OC-D sublayer to setup a tunnel to foo.ov
through overlay ov. In turn, the OC-D sublayer invokes
a resolution service to obtain the overlay ID (IDB) of
foo.ov. Examples of resolution services are DNS (used
in RON), OpenDHT [15] (used in DOA), and implicit
name to identifier hashing (used in i3). After the OC-
D sublayer resolves the name, it instantiates the neces-
sary state for communicating with foo.ov, and returns a
pointer to this state, the tunnel descriptor, tdAB , to OC-I.
For example, in i3, the setup phase involves negotiating
a pair of private triggers with the remote end-host, and
instantiating the mapping state between foo.ov and the
private trigger IDs.

4The setup operations when the first data packet of a con-
nection is intercepted are similar and we do not describe it here.

5We minimize collisions by randomly choosing the path de-
scriptor from a 128 bit number space.

Overlay
(DTN, i3, RON)

pdAB
� IPAB

pdAB � tdAB

tdAB �IDB

Legacy App.

Transport Layer

IPA�IPAB data

pdAB dataIPA�IPAB
tdAB,

pdAB
� IPBA

tdBA�IDA

Legacy App.

Transport Layer

IPBA� IPB data

pdAB dataIPA�IPAB

Host A (IDA) Host B (foo.ov, IDB)

OC-I

OC-D OC-D

OC-I
“foo.ov” � pdAB

pdAB � tdBA

pdAB dataIPA�IPABIDB

Figure 5: Forwarding a data packet from host A (with IP ad-
dress IPA) to B (with IP address IPB). The mappings used to
modify the packet are in bold.

On receiving the tunnel descriptor tdAB from OC-D,
the OC-I sublayer at A then performs a OC-I layer setup
with its peer sublayer at B. The OC-I layer at host B al-
locates a descriptor for the tunnel at the OC-D sublayer
(tdBA), and an OC handle (IPBA). At the completion of
the OC-I layer setup protocol, the OC-I layer at host A
stores the mapping (pdAB→tdAB), and returns an OC
handle (oc handle) to the legacy application in the form
of a local scope IP address, IPAB . To maintain compat-
ibility with IP, IPAB belongs to an unallocated address
space (e.g., 1.x.x.x [14]). Figure 5 shows the state in-
stantiated at hosts A and B during the setup protocol.

4.1.4 Data Plane: Packet Forwarding
The legacy application at host A addresses packets des-
tined to foo.ov to IPAB , the OC handle returned by the
OC-I sublayer (see Figure 5). The OC-I sublayer re-
trieves the state associated with this handle, and appends
the path descriptor pdAB to the packet, before handing it
off to the OC-D layer to be sent over tunnel tdAB . The
OC-D sublayer, using its tunnel state, sends the packets
to foo.ov using the overlay identifier, IDB . At the desti-
nation, the packet is handed to the OC-I sublayer, which
uses the path descriptor in the header to demultiplex the
packet. Before sending the packet to the application, the
OC-I sublayer rewrites the source address of the packet
to IPBA, the local OC handle associated with the A to B
path at B. The destination address of the packet is rewrit-
ten to the local IP address at B.

As evident from this description, the constraint im-
posed by supporting unmodified legacy applications
leaves us with little choice but to overload the semantics
of application-level names and IP addresses. We discuss
the limitations of overloading names and addresses on
transparency in Section 4.5.

4.2 Goal 2: Bridging Multiple Overlays
When multiple overlays are deployed, a potential unde-
sirable side-effect is that hosts in different overlays may
not be able to reach one another. For example, i3 allows
NATed hosts to act as servers, but such servers will be
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unreachable through RON. Even in the Internet today,
hosts in different IP address spaces cannot communicate
with one another [20]. Moreover, it is likely that some
of the Internet hosts will not participate in overlays. For
instance, it might be very hard to convince CNN to join
some routing overlay or to deploy the OC-I layer on their
servers.

Our architecture addresses these problems by allowing
remote resolution of names. This principle is borrowed
from several architecural proposals such as DoA [36].
When a host belonging to overlay ov1 resolves an over-
lay name foo.ov2, the OC-I layer forwards the resolution
to a gateway which participates in the overlay ov2, and
can thus resolve the name. We provide inter-operability
between overlay and legacy hosts by designing special
OC-D modules that send and receive IP traffic from and
to legacy hosts.

When performing remote resolution, path descriptors
are used as state handlers across intermediate hops (such
as gateways). The tunnel descriptor is a handle passed
between the OC-I and the OC-D sub-layers at the same
host; the path descriptor is used as a handle between the
OC-I layers at different hosts. Thus, intermediate hops
can use the path descriptor to retrieve state required to re-
lay the packet further. Note that decoupling path and tun-
nel descriptors allows different paths to share the same
tunnel.

We now describe our mechanisms to bridge different
overlays in more detail.

4.2.1 Overlay Gateways
Consider a host A in the i3 overlay that wishes to contact
a host C in the RON overlay (See Figure 3). To enable
this communication, we deploy a host (gateway) B that
resides on both i3 and RON, and runs the OC-D modules
for both overlays. Host A then sets up a two-hop path
to C by using the gateway as an intermediate hop. For
a multi-hop path, the setup protocol creates tunnels be-
tween consecutive hops and sets up the routing state at
the OC-I layer of the intermediate hop to create an end
to end path. We now give the details of the protocol.

Assume that the overlay name of host C is foo.ron.
Configuration files at host A (described in Section 4.3)
indicate that connections to foo.ron should go through a
gateway B in i3 with the name bar.i3. To communicate
with host C, an application at host A issues a DNS re-
quest for foo.ron. The OC-I layer, upon intercepting this
request, instructs the i3 OC-D module to set up a tunnel
to bar.i3. This operation is identical to the tunnel setup
in Section 4.1.3. Once this tunnel is setup, the OC-I at
A asks its peer at B to set up the rest of the path to the
destination C recursively.

At the end of the setup protocol, an end-to-end path is
established from A to C with the unique path descriptor

OC-I
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Overlay (OV) Internet
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Legacy server
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Appl.
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Overlay (OV)Internet
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OV
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(a)

(b)

Figure 6: (a) An overlay client connecting to a legacy server.
(b) A legacy client connecting to an overlay server.

pd. A common path descriptor helps identify a path so
that any path breakages can be dynamically detected and
quickly repaired. Our gateway, as in the case of a NAT,
maintains per-path state.

4.2.2 Legacy Gateways
Legacy gateways are similar to overlay gateways except
that one of the tunnels is over IP to a legacy host that
does not participate in any overlay natively and does not
run the OC-I layer. Thus, overlay functionality, such as
improved routing, will be available only on the tunnel es-
tablished over the overlay (between an overlay host and
the gateway). There are two types of legacy gateways:

Legacy server gateway. The legacy server (LS) gate-
way allows an overlay-enabled client to contact a legacy
server (see Figure 6(a)). Functionally, the LS gateway
runs an OC-I layer over an OC-D module (say i3) and a
special OC-D module called LegacyServerIP (or LSIP).
The setup protocol is similar to that for an overlay gate-
way. Consider a overlay host connecting to cnn.com
through the LS gateway. The OC-I layer at the LS gate-
way forwards such setup requests to the LSIP module.
The LSIP module now behaves like a NAT box with re-
spect to the server. It first resolves the name cnn.com us-
ing DNS and allocates a local port for this tunnel. Pack-
ets sent to the server are rewritten by changing the source
address to that of the LS gateway, and altering the source
port to be the allocated local port. The local port is then
used to multiplex incoming packets, which are then sent
to the OC-I layer with the appropriate handle.

Legacy client gateway. The legacy client (LC) gate-
way enables overlay servers to offer their services to
legacy clients6 (see Figure 6(b)). Functionally, the LC
gateway runs an OC-I layer over an OC-D module (say
i3) and a special OC-D module called LegacyClientIP

6Legacy clients are not overlay enabled, nor do they run the
OC-I layer.
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<PathInfo>
<Match urlPattern="*.ron" />
<Match protocol="tcp" dstPort="22" />
<Hop

overlayId="PLron"
routingMetric="minLatency"

/>
</PathInfo>

Figure 7: Configuration snippet indicating that ssh traffic or
connections to all DNS names ending in .ron should go over
an instance of RON running on PlanetLab, using the minimum
latency metric.

(or LCIP). In addition, the client is configured to use the
LC gateway as its DNS server. The LCIP module inter-
cepts DNS queries from the client, and dispatches them
to the OC-I layer which initiates a tunnel over the over-
lay. The LCIP module then sends a DNS reply with an
Internet routable address to the client, captures packets
sent by the legacy client to that address, and sends them
over the overlay. Any client can now contact the machine
foo.i3 from any machine provided that its DNS server is
set to the address of the LC gateway. The design of our
LC gateway is similar to that of AVES [20]. In this case,
the fact that the addresses returned by the gateway should
be routable considerably limits the number of clients that
can connect simultaneously [20].7

4.3 Goal 3: Exposing Overlay Functionality
Different new architectures and overlays provide differ-
ent functionality. Users should be able to choose the
overlay or architecture best suited for a particular ap-
plication. The overlay selected may further allow cus-
tomization of the functionality it offers. For example,
RON allows users to choose the metric based on which
the paths are optimized, OverQoS allows users to specify
QoS parameters, and architectures like i3 and DOA al-
low users to explicitly interpose middleboxes on the path.
For greater flexibility, users should be able to customize
the preferences for each tunnel along a path. Preferences
of interest include both overlay-specific options (e.g., use
latency optimized paths for RON or use a specific mid-
dlebox) and overlay-independent options (e.g., identity
of gateways, end-to-end authentication).

Given the limited options available to a legacy ap-
plication for communicating its preferences to the OC
layer, our initial design was to encode the user pref-
erences in the DNS name. For example, a DNS name
foo.delay50ms.overqos was used to identify a connection
to the host with name foo using a path of less than 50 ms
delay in OverQoS. However, overloading DNS names to

7HTTP traffic does not suffer from this limitation since
gateways can use DNS names in the HTTP requests for de-
multiplexing.
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Figure 8: Interfacing a middlebox.

include preferences had multiple disadvantages—from
highly restrictive syntax to being plain cumbersome
to utilize. Although this approach was implemented in
OCALA, we soon stopped using it.

Instead, we opted for a more traditional approach in
which we express user preferences through XML config-
uration files. On receiving a setup request for an overlay
name, the OC-D sublayer reads the preferences associ-
ated with the name (if any) from the configuration file,
before proceeding with the setup operation.

A snippet from a configuration file is shown in Figure
7. Though directly manipulating the configuration files
offers great flexibility to the users, we expect users to
mainly rely on pre-written configuration files or use our
graphical user interface described in Section 7.

4.3.1 Support For Middleboxes
OCALA also allows users to customize their data path
by redirecting traffic through specific middleboxes using
the configuration files described earlier. Several new net-
work architectures [29,36] provide support for such mid-
dleboxes, by allowing both the sender and the receiver to
explicitly insert middleboxes on the data path.

OCALA facilitates middleboxes in a manner very sim-
ilar to its support for gateways. Consider the case of
a sender-imposed middlebox where a host A wishes to
contact a host B through a middlebox M (see Figure 8).
The only difference from the operation of a gateway is
that the middlebox module (say, a transcoder) running
at M should be allowed to perform arbitrary transforma-
tions on the data sent by one end-point before forwarding
it to the other. In our design, the middlebox module im-
plements a single function call that is used by the OC-I
layer to pass packets to it. A configuration file at M spec-
ifies the middlebox operations to be applied to connec-
tions traversing the middlebox. The protocol when the
middlebox is imposed by the receiver is similar.

4.4 Goal 4: Factoring Out Common Function-
ality

A second-order design goal for our OCALA architec-
ture, aimed at reducing the development effort of overlay
developers, is to leverage the OC-I layer to implement
general functionality for use by various overlays. Cer-
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tain features like security and data compression are often
common requirements for multiple overlays.

Security and authentication of data connections are
important requirements for many overlays, especially
in cases where flat names are employed. OCALA in-
corporates basic security mechanisms at the OC-I sub-
layer, rather than leaving each overlay to implement
these mechanisms in their OC-D module. In particular,
the OC-I sublayer offers encryption and authentication
, both of which operate agnostic of the overlay used for
the traffic. The OC-I layer’s authentication mechanism
is based on human-readable names and relies on the ex-
istence of a certification and name allocation authority
from which users can obtain certificates associating their
overlay name to their public key.8 OCALA’s protocol for
securely communicating with a host known by its name
alone is very similar to the Secure Sockets Layer proto-
col (SSL) [10] which relies on certificate authorities like
VeriSign. We designed our own custom protocol rather
than reusing SSL since in general middleboxes need to
operate on unencrypted data, which is not possible under
the existing end-to-end model of SSL.

Aggregation and compression of data packets sent
over the network can increase the connection through-
put. Compression/decompression of data packets is built
into the OC-I layer and is available for use by all OC-Ds.

4.5 Limitations
The primary goal of our design is to achieve transparency
for legacy applications while providing complete access
to overlay functions. We review how well our design
meets this goal.

4.5.1 Access to Overlay Functions
While the OC layer enables legacy applications to take
advantage of most overlay functions such as mobil-
ity, anycast, QoS, route optimizations and middleboxes,
there are two important limitations.

First, the fact that OCALA is positioned below the
transport layer makes it hard, if not impossible, for
legacy applications to take advantage of overlay net-
works that provide transport or application layer func-
tionalities (e.g., multipath congestion control, or data
storage [16]).

Second, the current instantiations of OCALA support
only unicast legacy applications; it provides no support
for legacy applications using IP multicast. This is an ar-
tifact of the current implementation, rather than a funda-
mental limitation. We are currently designing a multicast
abstraction at the OC-I layer.

8Note that such a centralized authority is necessary for any
human-readable and secure naming scheme [38]. It is easy to
extend our model to hierarchical name allocation schemes.

4.5.2 Transparency
The OC-I layer overloads IP addresses in ways that may
break assumptions made by some legacy applications. In
contrast to current IP, the scope of IP addresses returned
by the OC-I layer to applications is local. Firstly, the use
of local scope addresses implies that addresses returned
to legacy applications may not be valid at other hosts.
In our experience, this does not break several common
applications like ssh, iexplore, remote desktop, and ftp
servers. However, peer-to-peer applications and SIP may
not work under OCALA (unless all hosts run OCALA).
Secondly, applications like ftp that encode addresses in
data packets will potentially not work since the OC-
I layer performs IP header rewriting before delivering
packets to the application. Our implementation avoids
address rewriting to some extent by negotiating the lo-
cal addresses at the OC-I layer, a technique borrowed
from [40]. However, for legacy gateways, address rewrit-
ing cannot be avoided.

Local-scope addresses have been used before in sev-
eral contexts and their limitations and workarounds are
well-known [40]. In supporting overlays where end-hosts
may not even have routable IP addresses, we are left with
little choice but to work around the limitations of local-
scope addresses.

5 The Overlay Dependent Layer
The overlay dependent layer implements the functional-
ity offered by a specific overlay. In this section, we first
present the interface that is exported by an OC-D mod-
ule to the OC-I sublayer. We then describe the working of
the i3 [29] and RON [1] OC-D modules, which we devel-
oped in-house for two overlays. This description serves
not only as a validation of our architecture but also as
a blueprint for implementing OC-D modules for other
overlays.

5.1 OC-D Module API
Table 1 shows the basic API functions that every OC-
D module needs to implement and expose to the OC-I
sublayer. For simplicity of exposition, we omit error and
overlay name related functions here.

Function calls: OC-I → OC-D
setup(name,pref, path d) setup path to host name

using preferences pref
close(tunnel d) close tunnel
send(tunnel d, IP pkt) send IP packet via tunnel

Callbacks: OC-D → OC-I
setup done(path d, callback invoked when tunnel

tunnel d) (tunnel d) was established
recv(path d, IP pkt) receive IP packet from tunnel

Table 1: OC-D Module API.

The basic API consists of three functions and two call-

8



backs. The setup function sets up a tunnel between
the local host and a remote host according to the user’s
preferences. The user preferences pref and the overlay
name of the remote host name are passed in the setup
call. The path d field represents the path descriptor at
the OC-I sublayer and is used by the OC-D sub-layer
in the setup done callback. Once the OC-D sublayer cre-
ates the tunnel it returns the tunnel descriptor (tunnel d)
to the OC-I layer using callback setup done. The close
function call is invoked by the OC-I sublayer to close the
specified tunnel. This function is usually called when a
path’s state at the OC-I sublayer expires. We discuss the
timeout values for this state in the context of our imple-
mentation in Section 7.1.

The send function call, invoked by the OC-I sublayer,
includes a handle to the OC-D’s state for that tunnel (i.e.
the tunnel descriptor) and the packet itself. The recv
call, is invoked by an OC-D module to the OC-I sublayer,
upon receiving a packet from the overlay.

5.2 The RON Module
RON aims to improve the resilience of the Internet by
using alternate routes in the overlay [1]. RON offers an
interface similar to IP, and not surprisingly, it requires lit-
tle effort to implement the OC-D module for RON. RON
uses IP addresses and DNS names as overlay IDs and
overlay names, respectively.

When the OC-I sublayer asks the RON module to
setup a connection to a RON host (identified by a name
such as foo.com.ron), this name is resolved using the
DNS infrastructure to obtain an IP address. The RON
module then sets up state associating the preferences and
the destination IP address with the tunnel and passes its
handle to the OC-I sublayer. Data plane operations in-
volve simple encapsulation and decapsulation.

5.3 The i3 Module
i3 [29] is a new network architecture that uses a
rendezvous-based communication abstraction to support
services like mobility, multicast, anycast and service
composition through middleboxes. We now describe how
the i3 module works when host A contacts host B over
i3.

On receiving the setup request for B.i3 from the OC-
I sublayer, the i3 OC-D module at A first resolves the
name to a 256−bit i3 identifier by using implicit map-
ping: the identifier of a host is derived by simply hashing
its name. The identifier obtained by hashing B.i3 corre-
sponds to B’s public trigger identifier idB . Thus, i3 does
not require any resolution infrastructure.

After the name is resolved, the i3 module at A initiates
private trigger negotiation by contacting host B through
its public trigger [idB |B]. Both hosts exchange a pair of
private triggers [idAB |A] and [idBA|B], respectively, af-
ter which they communicate exclusively through these

triggers: host A sends packets to host B using ID idBA,
and host B sends packets to A using ID idAB . Once the
control protocol sets up the required state, the i3 module
sends packets captured by the OC-I layer by encapsulat-
ing the payload with i3 headers that include the private
triggers identifying the flow.

The i3 OC-D module allows receiver-imposed mid-
dleboxes by using i3’s stack of IDs. An i3 host B that
wishes to impose the middlebox M on all hosts contact-
ing it, inserts a public trigger of the form [idB |(idM , B)].
When a client A sends a trigger negotiation request via
this public trigger idB , the i3 overlay delivers it to M
along with the stack (idM , B). The i3 OC-D module
thus obtains the identity of the next hop and automati-
cally proceeds to setup the tunnel to B through its OC-I
sublayer.

6 Applications
Legacy applications benefit from OCALA in two differ-
ent ways. Firstly, OCALA enables applications to lever-
age the new functionality offered by overlays. Secondly,
the OC-I layer of OCALA allows a path to traverse mul-
tiple overlays thus composing their functionalities. We
now describe some applications that demonstrate these
two types of benefits.

6.1 Functionality Enabled by Overlays
i3 offers functionality such as NAT traversal and receiver
imposed middleboxes, while HIP offers secure mobility.
The following applications leverage these through the i3
and HIP OC-D modules.

NAT Traversal : i3 enables access to machines be-
hind NATs. By using the i3 OC-D module in conjunc-
tion with the OC-I layer, a user can run legacy servers
behind NATs. In addition to allowing external users to
contact these servers, it also enables home users to se-
curely access their machines from anywhere by simply
remembering the human-readable name of their home
machine. When persuading users to deploy our software,
we found NAT traversal to be a very attractive feature
from the users’ point of view.

Receiver Imposed Middleboxes : i3 enables hosts
to redirect all incoming traffic to go through a middle-
box which may be located anywhere in the network. We
leveraged this functionality of i3 to force all incoming
traffic to a legacy server to pass through an intrusion de-
tection middlebox 9, which was not located on the physi-
cal path to the server. We used the popular Bro [22] intru-
sion detection program in our implementation by writing
a 200 line middlebox shim layer through which the OC-I
layer relays packets that are to be analyzed by Bro. Fig-

9For instance, the legacy server may run on a user’s home
machine while the middlebox may be operated by a profes-
sional firm or by the user’s company
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Server Proxy on machine running FTP server contacted by Client Proxy

1085568092.160498 #1 10.1.244.127/33042 > 10.2.51.9/ftp start
1085568092.292806 #1 response (220 ProFTPD 1.2.7 Server (ProFTPD Default Installation) [Gaia])
1085568092.316731 #1 AUTH GSSAPI (syntax error)
1085568092.356634 #1 AUTH KERBEROS_V4 (syntax error)
1085568117.009735 #1 USER badguy (logged in)
1085568123.326314 #1 TYPE I (ok)
1085568123.370194 #1 PASV (227 10.2.51.9/33044)
1085568123.402519 #1 STOR eggdrop (complete)                                              POSSIBLE ATTACK! 
1085568126.272537 #1 QUIT (closed)
1085568126.320406 #1 finish

Figure 9: Bro’s FTP traffic analyzer detects an attempt
by badguy to upload a file called eggdrop, a well-known
backdoor.

ure 9 shows an example of the analysis performed by
Bro.

Note that Bro is itself a legacy application, and thus
packets sent to it should have valid IP headers. For this
reason, the shim layer assigns virtual addresses to both
end points, rewrites the packet IP headers appropriately,
and then sends them to Bro. Thus, to Bro, communica-
tion between the remote hosts looks like a conversation
between two virtual hosts, and it can perform stateful
analysis (e.g., TCP analysis by matching the data packets
of a TCP connection with the corresponding acknowl-
edgments). Since Bro sees only virtual addresses, it is
unable to perform certain analysis like address-scan de-
tection that looks for several unsuccessful connection at-
tempts to hosts within the same network.

Secure Mobility : HIP enables hosts to securely com-
municate with each other even when the hosts are mo-
bile. We leverage this functionality of HIP to support ssh
connections that remain alive even when one of the hosts
changes its IP address.

6.2 Functionality Enabled by the OC-I Layer
The OC-I layer’s ability to provide simultaneous access
to multiple overlays and to bridge together different over-
lays enabled us to easily implement the following appli-
cations:

Secure Intranet Access: We implemented a more
flexible and secure version of Virtual Private Networks
(VPNs) [34] by using the OC-I layer to contact legacy
hosts over a overlay. A legacy server gateway runs in-
side the organization and hence has unrestricted access to
all intranet hosts. To access Intranet machines, external
end-hosts relay packets through the legacy gateway. Au-
thentication and encryption are important requirements
in this scenario, and we simply leverage the OC-I layer’s
security mechanisms for this purpose. Any routing over-
lay, including vanilla IP, can be used for communicating
between the user’s machine and the legacy gateway. The
main advantage of our system over VPN-based systems
is that a client can access multiple Intranets at the same
time even if both Intranets use the same address range.
Users specify their preference through the configuratio
file – for example, all connections to *.company1.com
should go through the gateway1 of company 1 while con-

nections to *.company2.com should use the gateway of
company 2. Another distinguishing feature of our system
is that, unlike in traditional VPNs, a client is not assigned
an IP address from the Intranet address space. This im-
proves the security of our system by making it difficult
for a client infected by a scanning worm to directly attack
other hosts within the Intranet.

Overlay Composition : Overlay composition allows
an application to explicitly stitch together different net-
work overlays. Apart from allowing inter-operability,
this allows a user to merge the functionalities of mul-
tiple overlays in interesting ways. For example, a user
who connects to the Internet through a wireless hop, may
use i3 for uninterrupted communication while switch-
ing between various wireless networks. In addition, the
user may also wish to optimize wide-area performance
using RON. We achieve this by using i3 to connect to a
close-by i3-to-RON gateway, which will then relay pack-
ets over a RON-optimized path.

7 Implementation
We have implemented the OC-I layer as a user-level
proxy. Although OCALA inserts a new layer into the net-
work protocol stack, our implementation avoids modifi-
cations to the operating system by using the tun [35,37]
packet capture device.10. The OC-I layer reads from the
tun device to capture packets sent by legacy applica-
tions and writes to it to send back replies.

The OCALA proxy and the configuration GUI consist
of approximately 30000 source lines of code (SLOC) in
C++ and 6000 SLOC in Java. The software, which cur-
rently works on Linux and Windows XP/200011, is avail-
able at http://www.ocalaproxy.net.

We have implemented OC-D modules for RON and i3
using source code available from their project websites.
The HIP OC-D module was independently implemented
by a researcher from the HIP IRTF [13] group. An OC-
D module is a C++ class implementing the API of the
OC-D base class, compiled into a .so shared object file
(Linux) or into a .dll dynamic link library (Windows).
OC-D modules are dynamically loaded and plugged into
the proxy based on user configuration. In its simplest
form, an OC-D module does little more than translating
between OC-I API calls and overlay specific functions.
Thus, in our experience, implementing an OC-D module
is a simple task requiring less than 300 lines of code. We
only count the code used to interface the OC-D to the
OC-I, and not the code used to implement overlay spe-
cific functionality.

Users control the proxy and express their preferences
(for example, all ssh traffic should go over RON while

10A future implementation may modify the protocol stack
for higher efficiency

11A Mac OS X port is near completion
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Internet Relay Chat should use i3) through a set of
XML configuration files. We have implemented a graph-
ical user interface that enables users to set their prefer-
ences without manually editing XML files. The GUI has
a modular design which enables developers to plug in
components which expose overlay specific configuration
options to users.

Our current implementation requires administrative
privileges for using the tun device and forces all users
on the same machine to share the same configuration.
These limitations can be avoided by a future dynamic li-
brary based implementation.

In the remainder of the section, we describe the imple-
mentation of the control plane, data plane and gateway
operations in detail.

7.1 Control Plane: State Maintenance
Control plane setup begins when the OC-I layer inter-
cepts a DNS request for a previously unseen destination.
The OC-I layer initializes state, such as path descriptors,
and communicates with its peer OC-I layer(s) to set up
the end to end path requested by the application. If the
application desires, the same local-scope address is ne-
gotiated at both end points. If security is enabled, our
protocol authenticates the nodes on the path and estab-
lishes 256-bit symmetric keys for each tunnel. These pro-
tocols are piggybacked on top of path setup in order to
reduce latency. After setup completion, the OC-I layer
sends the DNS reply containing the local-scope address
to the application. The local-scope addresses are allo-
cated from the unused address range 1.0.0.0/8. To pre-
vent caching, the Time To Live (TTL) of the DNS reply
is set to zero. The state associated with a path times out
and is removed if no data packets are sent or received on
that path for 7200s. This large timeout period was chosen
to deal with applications like Internet Explorer which we
found to cache DNS replies beyond their specified TTL.
While the path is alive, periodic keep-alive messages are
exchanged between the sender and the receiver in order
to quickly detect and repair any breaks in the end to end
path.

7.2 Data Plane: Packet Forwarding
Packets sent by the application are addressed to the local-
scope addresses returned by the OC-I layer after path
setup. The OC-I layer only intercepts packets sent to
local-scope addresses. Data packets of applications wish-
ing to use standard IP thus completely bypass OCALA.
Depending on user preference, the OC-I layer may com-
press or encrypt the packet before dispatching to the OC-
D layer. The headers added by the OC-I and OC-D layers
may lead to packet fragmentation. This can be avoided
if the application performs end-to-end MTU discovery.
At the receiving end, the OC-I layer rewrites the source
and destination IP addresses before delivering the pack-

ets to the application. Rewriting of addresses occurs only
if local-scope address negotiation between the end points
had failed during path setup.

7.3 Legacy Gateways
Our LSIP implementation includes packet-rewriting sup-
port for several applications such as FTP, H.323, PPTP
and SNMP. The legacy server gateway does not support
ICMP since there is no information in an ICMP packet
(such as port numbers) to permit multiplexing of a single
IP address among multiple hosts. The LCIP implemen-
tation is very similar to AVES [20], and a legacy client
can connect to a name of the form foo.i3.ocalaproxy.net
in order to communicate to the webserver at foo.i3.

8 Evaluation
The purpose of our evaluation is to demonstrate that the
overheads of packet capturing and tunneling in our im-
plementation are not large. The real benefit of our archi-
tecture and implementation should be evaluated by the
applications it enables, and eventually, the user accep-
tance it gains. We first micro-benchmark the data and
control paths of the proxy, and then present local-area
and wide-area experiments.

8.1 Micro-benchmarks
Micro-benchmarks were conducted on a 2.4 GHz Pen-
tium IV PC with 512 MB RAM running Linux 2.6.9 12.
An in-house tool that sends packets at a specified rate
played the role of a legacy client. Both the proxy and the
tool were instrumented to record the timestamps at rele-
vant checkpoints. Each timing statistic reported here is a
median of 100 runs.

Data Path Overhead. In comparison to a legacy ap-
plication running over the host IP stack, the proxy adds
two memory copies : from kernel to user space and back,
both while sending and receiving packets. Table 2 re-
ports the send and receive times of a single packet of
size 1200 bytes13 for i3 and RON 14. The total send and
receive times are split into three phases: (a) time to move
a packet between the application and the proxy (using
tun), (b) overhead at OC-I layer, and (c) overhead at OC-
D layer.

As expected, the processing time of the OC-I layer is
independent of whether we use i3 or RON. The percent-
age of time spent in the OC-I layer is not large – 25%
for send and 11% for receive (On enabling OC-I features
like encryption, the overhead rises to more than 67%).

12Due to space constraints, we do not benchmark the Win-
dows version of the proxy.

13We used this packet size in order to avoid fragmentation
due to addition of headers.

14We do not benchmark HIP as it was implemented external
to our research group.
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Send Receive
(µs) i3 RON i3 RON
OC-I 19 18 8 6

OC-D 20 28 44 36

tun 24 24 16 15

Table 2: Split-up of per-packet overhead during send and re-
ceive.

The remainder of the overhead is almost equally split be-
tween OC-D processing and transferring the packet from
the application to the proxy. Although the i3 and RON
OC-D modules function very differently, the processing
times associated with them are similar. A dynamic li-
brary implementation can reduce the overhead of packet
transfer between the application and proxy, by avoiding
extra packet copying. The total processing time indicates
that the proxy can sustain a throughput of about 15000
packets per second (for 1200-byte packets).

Control Path Overhead. Path setup is triggered when
a DNS request made by an application is captured. If a
path for the requested name was previously set up, the
proxy immediately answers the DNS query with a small
processing overhead of 15µs . Otherwise, it performs ad-
ditional operations to set up the path and hence takes
longer (169µs) to respond to the application.

8.2 LAN Experiments
In order to study the effect of the proxy overhead on
end-to-end behavior, we measured (Table 3) the latency
and TCP throughput between two clients communicat-
ing over i3, i3-shortcut15, RON and normal IP, within
the same LAN. In a LAN environment, the overhead of
the proxy can be localized without wide-area artifacts af-
fecting the measurements.

i3 i3-shortcut RON IP
Latency (ms) 1.42 0.788 0.762 0.488

Throughput (kbps) 9589 10504 10022 11749

Table 3: LAN experiments for latency and throughput.

Latencies under i3-shortcut and RON are a few hun-
dred microseconds larger than IP latency. Since LAN la-
tencies are themselves very small, even a single interme-
diate server on the data path causes significant relative in-
crease in latency for i3. The throughput results (average
over 10 measurements) indicate that the performance hit
due to proxy and overlay overheads is only about 10%.
The throughput and latency of RON is not better than IP
since in this simple experimental setup, all RON and IP
packets traverse the same LAN. Since the i3 servers were
also located on the same LAN, relaying packets through
i3 did not cause significant throughput degradation.

15Shortcut is an i3 optimization that eliminates the ineffi-
ciency of relaying packets through intermediate i3 servers
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Figure 10: Wide-area experiments: (a) latency (b) throughput.

8.3 Wide-area Experiments
We measured OCALA’s performance over i3, i3-
shortcut, RON and plain IP in the wide area. We also
measured the performance when traffic traversed i3-
RON, i3-IP and RON-IP gateways. Difficulty in obtain-
ing root permissions required to run the proxy limited our
experiments to just three machines at Berkeley, Stanford
and Boston (further referred to as A, B and C respec-
tively). Latency was measured using ping. Throughput
was measured using ttcp. i3 and RON networks were
deployed on PlanetLab. The i3 OC-D module on the end-
host used the closest i3 server, while the end-host itself
joined the RON network using its RON OC-D module.

We first consider the latency and throughput results for
the single network scenario. Figure 10(a) shows that la-
tencies for i3-shortcut and IP are nearly equal. This is
not surprising, as in both cases, packets follow the di-
rect IP path between the end-points. Although we con-
figured RON to choose latency-optimized paths, we ob-
served no significant improvements in latency compared
to the direct IP path. Due to the limited size of our ex-
periment, the path with the best latency was always the
direct IP path. Plain i3 incurs larger latency as packets
are forwarded via an intermediate i3 server. In a few
experiments, IP incurred a higher latency than i3 and
RON. We attribute this to UDP packets getting preferen-
tial treatment over ICMP ping packets (Note that pack-
ets are encapsulated in UDP when i3 or RON are used).
We confirmed this by measuring latencies using the UDP
Echo [25] protocol, wherever permitted by firewalls.

Throughput measurements in Figure 10(b) indicate
that i3 performs much worse than the direct IP path.
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Throughput over i3 and RON vary between 62% and
95% of the direct IP throughput. We attribute this per-
formance degradation to the extra headers added to each
packet and the proxy processing overheads. We further
suspect that TCP packets are getting preferential treat-
ment over UDP in the wide area.

i3-RON bridge. We measured throughput and latency
between each pair of machines, with one of the machines
in the pair connected to i3 only while the other was con-
nected only to RON. A second machine (D) at Berkeley
acted as an i3-RON gateway. As shown by Figure 10(a),
the increase in latency for the bridged path over the di-
rect IP path is small. However, the presence of the i3-
RON gateway on the path resulted in lower throughput.
The adverse effect of bridging is dominant when nodes
are very close to each other. For example, throughput be-
tween the Berkeley and Stanford nodes under bridging is
approximately one-third of the direct IP path, while for
distant nodes (Berkeley-Boston, Stanford-Boston), the
throughput drop is less than 20%.

Legacy Server Proxy. We ran i3-IP and RON-IP
legacy server proxies on machine D. The proxies at A,
B and C were configured to relay connections to mozilla
mirrors (http://www.mozilla.org) through the
server proxies, with the first hop using i3 or RON. The
server proxies connect to the mozilla mirror on behalf
of A, B or C. To measure throughput, we downloaded
10 different files from 10 different mozilla mirrors. The
average throughput while using the i3-IP and RON-IP
gateways was within 85% of the throughput obtained
while directly downloading the same set of files.

The main reasons for reduced throughput in both wide
area and LAN experiments are the overheads due to ex-
tra headers and relaying through intermediate hops (for
bridging). These are inherent limitations of tunneling.
We are currently optimizing other aspects of our imple-
mentation in order to decrease the throughput drop.

9 Discussion
In this section, we summarize our experiences with the
OCALA deployment. We (and other groups) have used
various versions of the proxy since March 2004. Over
this time interval, the OCALA proxy has attracted inter-
est from both overlay developers and end-users. Devel-
opers of various routing overlays and network architec-
tures, such as Delay Tolerant Networks [6], Host Identity
Protocol [17], OverQoS [32], Tetherless Computing [28],
QoS Middleware project [18], have expressed interest in
leveraging the OCALA proxy for their own overlays.

The proxy has been used for supporting a variety of
applications including ssh, ftp, web browsing, and virtual
network computing (VNC) applications. Most end-users
have typically used the proxy for accessing their home

machines to get around NAT boxes and dynamic IP ad-
dress allocation by their ISPs.

Based on our own experience and the feedback from
other end-users and developers, we have learned a few
lessons, some of which are obvious in retrospect. These
lessons emphasize what is arguably the main benefit of
OCALA: the ability to “open” the overlays to real users
and real applications. The feedback received from such
users has been invaluable in improving the OCALA de-
sign, and in some cases, the overlay design.

Efficiency matters. When using legacy applications,
the users expect this applications to perform the same
“way” no matter whether they run directly on top of IP or
on top of an overlay. In particular, more often than not,
we found the users unwilling to trade the performance
for more functionality. This feedback lead not only to
proxy optimizations, but also to overlay optimizations.
For example, the developers of i3 have added shortcuts
to improve the end-to-end latency, and added the ability
to share a private trigger among multiple tunnels to de-
crease the setup cost.

Security matters. Security was not part of our origi-
nal design agenda. However, we found that the users ex-
pected at least the same level of security from the OC-
D name resolution mechanism as they get from today’s
DNS (where impersonation while possible, is not trivial).
In the area of mobility, the users and developers argued
for even much stronger security guarantees such as au-
thentication and encryption. In the end, this feedback led
us to make the security a first order goal of our design.

Usage is unexpected. Initially, we expected mobility to
be the most popular application. However, this was not
the case. Instead the users were more interested in using
OCALA for such “mundane” tasks as accessing home
machines behind NATs or firewalls, and getting around
various connectivity constraints. In one instance, users
leveraged the fact that the proxy communicates with i3
via UDP to browse the web through an access point
that was configured to block TCP web traffic! The unex-
pected usage lead us to provide better support for appli-
cations over NATs. In particular, we have implemented
an OC-I handle negotiation mechanism that preserves the
addresses in the IP headers. This allows us to support
some applications that otherwise do not work over NATs
(e.g., ftp).

10 Conclusion
Overlay networks have been the focus of much research
in recent years due to their promise of introducing new
functionality without changing the Internet infrastruc-
ture. Surprisingly little attention has been devoted to
achieving the same desirable property at the end-host:
provide access to new network architectures without any
changes to legacy software such as operating systems,
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network applications, and middlebox applications.
Our work is a preliminary step in this direction and

aims to improve the inter-operability between legacy ap-
plications and new network architectures, and between
different network architectures. Currently, we (and oth-
ers) are in the process of extending the OC-D sub-layer
to support other overlay networks. Ultimately, we plan
to enlarge our user base and gather more feedback to im-
prove the proxy. As our experience showed, users often
find unexpected uses to the system, which can push the
design in new directions.
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