
ns-3 Project Goals
Thomas R. Henderson and Sumit Roy

Department of Electrical Engineering
University of Washington

Seattle, Washington 98195–2500
Email: thenders, roy@ee.washington.edu

Sally Floyd
ICSI Center for Internet Research

1947 Center Street, Suite 600
Berkeley, CA 94704
Email: floyd@icir.org

George F. Riley
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250
Email: riley@ece.gatech.edu

Abstract— This paper reports on the project plan to develop a
new major version of the popular ns-2 networking simulator. The
authors have organized an NSF-funded, four-year community
infrastructure project to develop the next version of ns. The
project will also be oriented towards community development and
open source software practices to encourage participationfrom
the broader research and educational community. The purpose
of this paper is to expand on the goals and initial design concepts
for this new software development effort.

I. I NTRODUCTION

Discrete-event network simulation is a powerful research
tool for investigating protocol design, protocol interactions,
and large-scale performance issues. While simulation is not
the only tool used for data networking research, it is ex-
tremely useful because it often allows research questions
and prototypes to be explored at many orders-of-magnitude
less cost and time than that required to experiment with
real implementations and networks. Simulation is also quite
effective in education, for the same reasons as above but also
because key concepts can be studied and highlighted more
clearly in isolation from other system elements.

One simulation tool in particular, theNetwork Simulator
(ns) version 2, has seen heavy use in data networking research
over the past decade.ns-2 is the second major iteration of
a discrete-event network simulation platform programmed in
C++ . ns-2was first released in 1996, and derives from earlier
work on S. Keshav’s REAL simulator [1] and the original
ns (ns-1) simulator released by Lawrence Berkeley National
Laboratory in 1995.ns-2 is a major architectural change from
ns-1– the simulator became entirely based on the blend of MIT
Object Tcl (OTcl) andC++ . The development ofns-2has been
funded by the DARPA VINT (Virtual InterNetwork Testbed)
project from 1997-2000, and by DARPA SAMAN (Simulation
Augmented by Measurement and Analysis for Networks) and
NSF CONSER (Collaborative Simulation for Education and
Research) from 2000-2004. Presently, development is not
funded but is performed by volunteers, and the project is
hosted at USC ISI and Sourceforge.

The core ofns-2is written inC++ , but theC++ simulation
objects are also linked to shadow objects in OTcl. Simulation
scripts are written in the OTcl language (an extension of the
Tcl scripting language). This structure permits simulations to
be written and modified in an interpreted environment without
having to resort to recompiling the simulator each time a

structural change is made. In the timeframe thatns-2 was
introduced (mid-1990s), this provided both a significant conve-
nience in avoiding many time-consuming recompilations, and
also allowing potentially easier scripting syntax for describing
simulations.ns-2 has a companion animation object known
as the Network Animator (nam), used for visualization of the
simulation output and for (limited) graphical configuration of
simulation scenarios. Presently,ns-2consists of over 300,000
lines of source code, with probably a comparable amount of
contributed code that is not integrated directly into the main
distribution.

ns-2 is a research community resource, and counts several
thousand downloads per month from its source code mirrors.
While ns-2has been funded by a number of previous research
projects, no funding has been in place since 2004, and none
directly as an infrastructure project since 2000. The authors
of this paper and their respective institutions (University of
Washington, Georgia Institute of Technology, and the ICSI
Center for Internet Research), with collaborative supportfrom
the Planete research group at INRIA Sophia-Antipolis, have
developed a four-year, NSF-funded program about to comm-
mence. While a portion of the new project will be devoted to
maintaining the existingns-2codebase, the bulk of the funding
will go towards the design and development of a new major
version of the simulator, callednsversion 3 (ns-3). This paper
describes the initialns-3 project plan; this plan is subject to
future revision based on community input once the project is
announced.

II. FUNCTIONAL GOALS OF NS-3

This section lists some of the goals ofns-3from a functional
standpoint. While the project plans to reuse many of the
models fromns-2, strict backward compatibility (being able
to run unmodifiedns-2scripts inns-3) is not a project goal.

A. Overview

The main goal of thens-3project is to produce a discrete-
event network simulator for Internet systems, with an emphasis
on layers 2-4 of the network stack, targeted primarily for
research and educational use.

The following goals are also important:

• The project should adopt community-oriented open
source development practices.

Applications

Transport layer

Existing core ns-2 capability Planned additions for ns-3

TCP (many variants), UDP, SCTP, XCP, TFRC,
RAP, RTP
Multicast: PGM, SRM, RLM, PLM

TCP stack emulation (Linux, BSD), DCCP,
additional high-speed TCP variants

Network layer

Link layer

Physical layer

Sockets-like API (to allow
porting of existing applications
to ns environment), peer-to-peer (e.g. BitTorrent)

Unicast: IP, Mobile IP, generic dist. vector and
 link state, IPinIP, source routing, Nixvector
Multicast: SRM, generic centralized
MANET: AODV, DSR, DSDV, TORA, IMEP

ping, vat, telnet, FTP, multicast FTP, HTTP,
probabilistic and trace-driven traffic generators,
webcache

ARP, HDLC, GAF, MPLS, LDP, Diffserv
Queueing: DropTail, RED, RIO, WFQ, SRR,
 Semantic Packet Queue, REM, Priority, VQ
MACs: CSMA, 802.11b, 802.15.4 (WPAN),
 satellite Aloha

TwoWay, Shadowing, OmniAntennas,
EnergyModel, Satellite Repeater

full IPv4 support, full IPv6 support, NAT
XORP/Click Routing support: BGP, OSPF, RIP,
 IS-IS, PIM-SM, IGMP/MLD

new 802.11 model, 802.11 variants (mesh,
QoS), 802.16 (WiMax), TDMA, CDMA, GPRS

IEEE 802 physical layers, Rayleigh and Rician
fading channels, GSM

Fig. 1. Models planned forns-3project.

• The simulator should be distributed as free and open
source software, and should leverage and permit inclusion
of other free and open source networking software.

• The simulator should be architected for scalability, ex-
tensibility, modularity, emulation, and clarity (of design),
and should be well documented.

• Core models should be well tested and validated.
• The project should develop a set of canonical simulation-

based experiments for use in networking courseware.

B. Architectural goals

While striving to maintain as much model reuse as possible
(including a backward compatibility capability), we plan to
rearchitect the simulator for better ease of use, scalabil-
ity (principally by class redesign, natively supporting multi-
processor and distributed simulations, and support for 64-
bit machines), and support for integration of other software.
The simulator should easily, with realistic models at different
levels of abstraction, allow for simulations of IPv4 and IPv6
networks, as well as novel, research-oriented network archi-
tectures.

We describe in more detail the current plan for refactoring
the core of the simulator below in Section III.

C. User experience

ns-3 should be installable from source or package formats
on popular desktop and server platforms, such asi386,
x86_64, andppc, and the Linux, OS X (Darwin), Windows
(Cygwin emulation), and FreeBSD operating systems.

ns-3should continue to offer a text/script-based (non-GUI)
configuration. It should be possible to create GUI-based con-
figurators, but such configurators are outside the scope of the
project. The simulator should output trace (includingpcap),
log, statistics, and animation files; trace and log files should
be convertible to the existingnam format, via some external
scripting technique, for backward compatibility.

A key question is what type of scripting interface to provide.
There seems to be unanimous consent that OTcl should be
replaced, but whether a scripting front-end is used or whether
scenarios are to be written directly in the compiled (C++)
language is an open issue. An area of interest is providing
hooks for the Simplified Wrapper and Interface Generator
(swig), so that users may use whatever scripting language
they prefer.

D. Integration

We see a tremendous opportunity to leverage the networking
software developed under other open source software projects,
and believe that this can be a key goal for a new simulator.
We have three specific goals in mind:

1) Extension of the simulation capability via integration
with open source tools;

2) Abstraction layers and interfaces for porting implemen-
tation code into thens environment; and

3) Interfaces to allow users to easily migrate between
simulation and network emulation environments.

In Section IV, we describe in more detail our plans for
achieving better integration.

E. Models

The simulator needs updating to account for the rapid
growth in wireless networking, including the many variantsof
IEEE 802.11 networking, emerging IEEE standards such as
WiMax (802.16), and cellular data services (GPRS, CDMA).
Additional models beyond wireless are also needed; Figure 1
summarizes the models used in the currentns-2, as well as
models planned forns-3. Many of the planned models may
already exist in some form as contributed code; for a new
model to be incorporated into the main branch ofns-3, it will
need to be validated, conform as appropriate to the coding
style, be licensed in a compatible way, and be maintained
going forward.

III. C ORE REFACTORING

In this section, we outline a set of design objectives for the
core of thens-3simulator. We see these as basic requirements
for the design, implementation, and overall success of this
tool. First, thens-3design and implementation should leverage
large parts of the code base of existing tools, such asns-
2, the Georgia Tech Network Simulator (GTNetS) [12], and
others. These existing tools have hundreds of thousands of
lines of code, and hundreds of existing network models.
While we fully expect some modifications to these code
bases will be necessary to fit within our overall design, we
will strive to avoid complete re–design or re–implementation
of existing modules as much as possible. We expect to be
able to reuse large sections of the existingns-2 and GTNetS
code. A key consideration in the design is in preserving as
much backward compatibility as possible, most likely through
providing a backward compatibility mode for existing scripts,
and syntactic migration of legacy scripts to the new core, with
re-verification of the output.

A. Scalability

One of the major concerns aboutns-2 cited by its users
is scalability.ns-2 is a sequential execution simulator with a
single event processing loop running on a single processor.Al-
though such a simulator can scale to hundreds of nodes when
underlying communications models are heavily abstracted,the
memory and processing resources of a single machine become
a bottleneck when more sophisticated channel models (e.g.,
wireless) or higher-rate links (e.g., 10 Gbps) are included.
Researchers have taken various approaches to improvens-2
scalability, including the caching of redundant computations
and function calls (the “Staged NS (SNS)” project at Cornell),
use of on-demand route computation [2], and partitioning
the simulation into wireless clusters (thens-2 gridkeeperand
similar structures developed by Naoumov and Gross in [3]).

There are a number of factors contributing to the scalability
limitation, including overall software architecture, butthe
fundamental bottleneck is the execution on a single processor.
We believe that thens-3 simulator should be designed from
the outset to support parallel and distributed simulation.The
COMPASS, PADS, and MASCOTS research groups at Geor-
gia Tech have developed aFederated Simulation Developers

Kit (FDK) and aghost–nodeapproach, used inGTNetS[6],
which we plan to investigate forns-3. This approach creates
a federated network simulation consisting of a number of
instances of the simulator tied together using a Runtime Infras-
tructure (RTI) middleware software layer (Figure 2(a)), with
the RTI-interconnected nodes communicating over Myrinet or
Ethernet. With this approach, a small memory overhead is
incurred at each of the distributed simulation processes, which
obviates the need for complicated inter–simulator routing
decisions and a simulated routing protocol.

PDNS uses a conservative (blocking based) approach to
synchronization. No federate in the parallel simulation will
ever process an event that would later have to be undone due to
receiving messages in the simulated past. This avoids the need
to implement state saving in the existingns code. The PADS
research group at Georgia Tech has previously developed an
extensive library of support software for implementing parallel
and distributed simulations. The sofware has support for global
virtual time management, group data communications, and
message buffer management. It has support for a variety
of communication interconnects, including shared memory,
Myrinet and TCP/IP networks, and runs on a variety of
platforms. By using this synchronization software for the
parallelization ofns, we were able to rapidly modify the main
event processing loop ofns to support the distributed time
management functions needed to insure that no unsafe event
is ever processed by any federate.

The functionality to enable distributed simulations can be
broadly classified in two major categories: modifications to
the ns event processing infrastructure, and extensions to the
nsOTcl script syntax for describing simulations. In particular,

1) Any reference to a remote endpoint of a connection
must be by network elements such as IP address and
port number, rather than memory address pointers to the
remote object. In a distributed simulation, there is no
guarantee that a remote protocol object has a memory
address or a representation on any given simulator
instance.

2) Packet routing decisions may need topology information
not present on a simulator instance, and thus some
method must be designed to properly route packets in
the presence of incomplete topology information. The
obvious solution to this issue is the use of arouting
protocol, such asOSPF, to compute routes. However,
this approach reduces scalability due to the need for po-
tentially large routing tables at each simulated node.ns-2
already provides a choice between centralized routing,
the use of simple models of distributed routing (distance
vector and link state) and NixVector routing– a form of
source routing that can retain and use a complete routing
path from a source to a destination in a very compact
form.

3) Some method of packet serialization and reassembly
must be provided, to allow for the flow of packets from
one simulator instance to another.

4) The distributed simulation features of the simulator

(a) Conceptual overview of PDNS (from [4]) (b) Scalability of PDNS (from [5])

Fig. 2. Parallel distributedns (PDNS)

should not hinder in any way a simple sequential simu-
lation.

5) It should be no more difficult to construct a distributed
simulation than to construct a sequential simulation.

Figure 2(b) illustrates scalability results from running PDNS
on a large Linux cluster consisting of 16 SMP machines
with eight 550MHz Pentium III XEON processors. The eight
CPUs of each machine share 4 GB of RAM, and each
processor contains 32KB of non-blocking L1 cache and 2MB
of full-speed, non-blocking unified L2 cache. The 16 SMP
machines were interconnected via a dual Gigabit Etherent
switch with EtherChannel aggregation. Our RTI software used
shared memory for communications within an SMP, and
TCP/IP for communications across SMPs. We were able to
scale the sample “campus network topology” simulations to
over 450000 nodes across 128 processors. PDNS achieved a
speedup of a factor of 80 and a simulation speed of 6 million
packet hops per second, on 128 processors [5]). The capacity
was ultimately limited by memory to 8*4500 nodes/4GB.

B. Other Design Considerations

Our ns-3design will also consider the following:
1) Object-design.A network simulation tool designed for

use by the networking research community must be
easily extended to include new protocols, modifications
to existing protocols, or new types of routing (just
to name a few). To achieve these goals, we carry
forward the core object-orientedC++ design of ns-
2 with a large number of base classes that describe
basic functionality, and subclasses implementing this
functionality. For example, we have a baseQueue
class which describes the methods needed by all spe-
cific queue implementations. Then, subclasses of this
Queue object implement various queuing methods, such
as DropTail and RED. Similarly, a baseTCP object
describes and implements much of the functionality of
the TCP protocol, but subclasses provide the specific
functionality of the TCP variants, such as Reno, New
Reno, and SACK. Further, extensibility can be achieved

by the use ofcallbacksat various points in the simulation
execution. For example, a callback between layers 2 and
3 could implement the functionality of a firewall or other
network filtering devices without requiring modification
of the implementation of layer 2 or layer 3.
However, the overall software architecture ofns-2needs
revision. Specifically, the current OTcl/C++ split-object
paradigm ofns-2, while providing scripting flexibility
at the user interface, introduces a number of problems.
First, it is frequently cited as a barrier to learning and
debugging the tool, because students are not familiar
with object-oriented Tcl, the OTcl/C++ glue is poorly
documented, and disparate debugging tools are required.
Second, the code introduces restrictions on how theC++
objects can be combined, in ways that are not immedi-
ately obvious. For example, to use a particular Channel
object with a MobileNode, the Channel must support the
add-node OTcl method, although it is not specified
by the C++ interface and one must carefully read the
MobileNode OTcl code to figure this out. Because the
C++ top-level interfaces are not very typed, a lot of
C++ objects perform downcasting, introducing hidden
dependencies betweenC++ objects. Since a primary
complaint of thens-2user community is the inability to
build novel combinations of simulator objects, we plan
to clean up these interfaces and explore the revision or
elimination of the split-object framework, in favor of a
purely C++ design or one controlled only in limited
fashion through scripting interfaces.

2) Realism. The basic design of the simulator should
closely match the design of real networks and real net-
work elements. When questions arise about the design
of an object, function, or interface, deference should
be given to how things will be implemented in real-
life, unless there are strong performance or efficiency
considerations. This design principle should greatly help
in code portability and educational use. One key to
achieving this goal is the support of important interfaces
used in practice, such as the user-to-kernel interface

(sockets API) and the kernel-to-device-driver interface
(i.e., IP to sub-IP). Further, there should be clear distinc-
tion between protocol layers in the software design, with
well defined intra–layer exchange points. A protocol
graph should be designed to facilitate multiplexing and
demultiplexing decisions as packets flow up and down
the stack. Simulator objects representingpacketsshould
consist of one or moreprotocol data units(PDUs)
with sub–classed objects for each distinct protocol type.
Simulation objects representing applications should in-
terface with layer 4 protocols in a fashion familiar
to Internet application developers, including calls for
establishing connections, sending and receiving data,
accepting or refusing incoming connection requests, and
closing connections.

3) Memory-efficiency.The simulator should continue to
support bothdata–lessand data–full flows. In other
words, an application model might specify to send
100,000 bytes of data to a remote endpoint, but the
actual data contents are not meaningful and can be
abstracted away. Currentns-2 is optimized for data–
less operation. In other applications, such as a simu-
lated application modeling theGnutella peer–to–peer
protocol, applications must be able to specify search
requests, replies, and ultra–peer information in the data
contents. This capability is also needed for directly
ported application code, whose data is meaningful and
must be supported by the simulation. There should be
no difference between data–less and data–full packets
below the transport layer, and we plan on straightforward
support of both inns-3.

4) Tracing. To facilitate large–scale simulations, the
amount of data logged and traced as part of the sim-
ulation statistics should be highly configurable by the
simulator user. For example, when studying end–to–
end behavior of TCP, the tracing of packet data at
layers 2 and 3 at all hops along the TCP path may
not be of interest. Thus, a user must be able to specify
that only a particular layer’s information is logged, and
additionally can limit the logging to specific nodes,
links, or applications. Some capabilities along these lines
already exist inns-2; e.g. the ability to trace only packets
on an individual link. Further, the type of data recorded
at each layer should be defined by the user. For example,
when studying TCP performance, the contents of the
source port and destination portfields may or may
not be of interest, depending on the number of flows
defined at each node. In this case, the user should specify
whether or not these fields should be logged as part of
the simulator output. We plan to add support to directly
trace packet flows in standard trace file formats, so that
tools such astcpdump can process them.

5) Statistics.For ease of use, the simulation must provide
a number of support objects to facilitate data collection
during the simulation execution.ns-2 already includes
support for integration and averaging of random sam-

ples. We will extend this include objects for histograms,
minimum and maximum tracking, probability distribu-
tion functions, cumulative distribution functions, and
sequence versus time plots. We plan to add support
for better statistics generation from similar objects in
GTNetS.

6) Topology.For ease of use, a number of stock topology
objects should be predefined. These stock objects can be
instantiated by a single line ofC++ code constructing
the object, with configurable arguments. For example,
theDumbbell object would naturally create a dumbbell
topology with a specified number of leaf nodes at each
end, and with a specified bandwidth constriction factor
at the bottleneck link. Other stock objects should include
trees, meshes, stars, and random topologies of arbitrary
size. We will incorporate such topology objects from
GTNetS.

7) VisualizationThe simulator must support some form of
visual animation of all or part of a simulation. This is
useful for debugging and demonstrating the simulation
to others. The network animatornam has been part of
the simulator from the beginning, but outside of wireless
extensions developed under NSF CONSER, has not been
the subject of development for several years.

IV. I NTEGRATION

A key step forward of our proposedns-3 project will be
the level of integration that we will obtain, leveraging thevast
amount of free, open source software and research projects
available on the web. We have three specific goals in mind:

1) Extension of the simulation capability via integration
with open source software (e.g., Ethereal packet anal-
ysis, Click/XORP routing);

2) Abstraction layers and interfaces for porting implemen-
tation code into thens environment; and

3) Interfaces to allow users to easily migrate between
simulation and network emulation environments.

An opportunity that most every simulation environment has
missed is the opportunity to leverage the extensive amount of
free, open source networking code within operating systems
and applications. Typically, simulators re-implement protocols
from scratch, leading to a costly software effort and divergence
from actual implementation code. There are limited exceptions
(the TCP code in QualNet [9], for example, is ported from
BSD, and NCTUns [11] uses a kernel-reentrant programming
paradigm to use actual Linux stack code), but predominantly,
protocols are reimplemented for the simulation environment.

Furthermore, simulation code often does not interact well
with real implementations. Most commonly, simulation imple-
mentations of protocols are rewritten for use as implementa-
tion code, often because the simulation code makes use of
abstractions and simplifications not present in real systems.
We are aware of a number of cases in which companies or
organizations have written an abstraction library for an existing
simulator such as OPNET [8] orns-2, and also support the
same library in an operating system, allowing software to be

written once and used in both implementation and simulation
environments; the Naval Research Laboratory’sprotolib
toolkit is an example of a publicly-available library of this
type. This approach works well if a protocol implementation
is written from scratch; however, it generally does not work
so well whenexistingsoftware, often written in a lower-level,
non-object-oriented language such asC, is used.

In the ns-3project, we intend to focus on simulator design
that facilitates the reuse of existing software and applications.
Although there are dangers in relying exclusively on open
source networking code (such as inheriting bugs and design
peculiarities of, e.g., Linux TCP), there simply is no cost-
effective substitute for reusing software packages that others
have spent years developing and maintaining. Such an ap-
proach helps to meet our educational goals as well, since
the simulation models mimic how the software is run in real
implementations. Our team has experience in porting actual
implementation code into theGTNetSand ns-2 simulation
environments, including BGP and OSPF software from the
quagga open source routing suite, and application-level code
that uses the sockets API. Insights from these past efforts
will guide our development of more general support for such
integration.

Specifically, we see the following key opportunities for
software integration and reuse: i) portedapplication codeusing
sockets API, ii)routing protocolssuch as XORP,quagga,
and OpenBGP, iii)network stack codesuch as the Network
Simulation Cradle [7], and iv)tools to parse output data
such as tools that work onlibpcap format traces such as
tcpdump and Ethereal.

Finally, we recognize the significant research infrastruc-
ture advances of the past few years, with such projects as
PlanetLab, Emulab, and WHYNET. These testbeds provide
opportunities to explore protocol interactions in less con-
trolled environments (such as cluster-based, remotely executed
testbeds including Utah’s Emulab) and to deploy long-running
experimental services and overlays on the existing Internet
(PlanetLab). Presently, Emulab usesns scripting syntax to
describe its experiments, and offers a version of thens
emulation environment to experimenters. There is presently
no ns interface to PlanetLab. Our view is thatns should be
flexible enough to run as simulations but be easily convertible
(such as building with different flags) to run in an emulation
environment. To achieve this, thens emulation environment
must be further developed (it is based on an older version
of FreeBSD, does not fully support allns protocol models,
and has not undergone development for several years) and
tested with Emulab and PlanetLab. Specifically, we envision
that ns could run as an application within a PlanetLab slice,
with the emulation interface tying into the PlanetLab Safe Raw
Sockets API, and thatnscould run on top of an Emulab virtual
interface. Our project will coordinate with testbed projects to
ensure thatns can successfully execute in those environments
and is well documented enough for ease of use.

V. PROJECTPROCESSES

A vital component to a successful open source project is the
establishment of good project development processes that en-
courage participation from the broad community. Our visionis
thatns-3transitions to a self-sustaining research infrastructure
project once this phase of NSF funding concludes.

A. Licensing and copyright

Although this subject is for further discussion, the project
is leaning towards the use of the GNU Lesser General Public
License (LGPL) as the license on the simulator core. There are
two main reasons for this. First, there is a strong preference
among some participants to ensure that derivative works of the
simulator itself are contributed back to the project. Often, the
GNU General Public License (GPLv2) is used in such circum-
stances. However, since composition of outside software isan
explicit goal of the project, the LGPL is believed to provide
more flexibility for bundling non-GPLed software with the
core ofns-3.

The project is likely to continue the practice of allowing
each individual software contributor to hold copyright and
license his or her software to thens-3project under acceptable
terms for the project.

B. Development processes

We plan to adapt processes established at other successful
open source projects (such as the Apache Foundation). This
includes the following:

• adherence to clear coding standards;
• well-defined roles and responsibilities (management and

technical tasks);
• processes for obtaining commit privileges and responsi-

bilities;
• regular software releases;
• detailed patch review; and
• requirements for testing, documentation, and example

scripts.

VI. RELATED WORK

Besidesns-2, there are a number of other discrete-event net-
work simulators. Prominent commercial tools include OPNET
[8], QualNet [9], and MATLAB Simulink. A larger number of
open source tools have been developed, including GloMoSim
[10], NCTUns [11], GTNetS[12], OMNET++ [13], SSFNet
[14], and JiST [15]. A recently developed prototype of interest
is the yans simulator [16]. Of the open source tools,ns-
2 appears to have the most users and contributed protocol
models, and the least restrictive licensing conditions foruse.

We also observe the growing trend of the research com-
munity towards virtual machines (VNUML [17], IMUNES
[18], Netkit [19], Xen [20], VMware [21], Bochs [22]) and
cluster-based or distributed network testbeds (PlanetLab[23],
Emulab [24], and WHYNET [25]). We do not suggest that
ns-3 replaces any of these techniques– such infrastructure-
based testing is essential as part of the technology evaluation
process, and the controlled environment of simulation is not

appropriate for all experiments. However, there remains a need
for robust simulation tools, particularly to explore issues of
scale and large protocol design spaces that are infeasible to
accomplish on real testbeds. The challenge, we believe, is
to develop simulation tools that integrate well with virtual
machines, network testbeds, and actual implementation code,
and we place a priority on this topic in our program. Other
related projects which we plan to leverage have involved
moving network kernel code to user-space, including Alpine
[26], the BSD Network Stack Virtualization project [27], and
the Network Simulation Cradle forns-2 [7].

VII. C ONCLUSION

Despite ns-2’s popularity, there is a critical need for a
new project to perform core refactoring, integration, soft-
ware maintenance, and extension of the simulator. Experience
has strongly shown that issues like software maintenance
(e.g., tracking compiler and operating system evolution),doc-
umentation, educational development, and code integration
are lesser priorities for individual contributors focusing their
limited time primarily on producing research output for pub-
lications. As a result, we have formed an NSF-funded com-
munity infrastructure project to develop a new major version
of the simulator. We welcome the research and educational
community’s input as we define and perform this project;
please contact us atns-developers@isi.edu..

ACKNOWLEDGEMENTS

The authors thank Mathieu Lacage, John Heidemann, and
Steven McCanne for discussions on the future ofns and
recommendations for project organization.

REFERENCES

[1] S. Keshav, “REAL: A Network Simulator,” University of California at
Berkeley, Berkeley, CA, USA, Tech. Rep., 1988.

[2] G. F. Riley, E. W. Zegura, and M. H. Ammar, “Efficient routing using
nix-vectors (long version),” Mar 2000, technical Report GIT-CC-00-27.

[3] V. Naoumov and A. Gross, “Simulation of Large Ad Hoc Networks,” in
In Proceedings of the 6th ACM Workshop on Modeling, Analysis, and
Simulation of Wireless and Mobile Systems, 2003.

[4] G. F. Riley, R. M. Fujimoto, and M. H. Ammar, “A Generic Framework
for Parallelization of Network Simulations,” inProceedings of Seventh
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS’99), October
1999.

[5] K. Perumalla, R. Fujimoto, A. Park, and G. Riley, “Scalable rti–based
parallel simulation of networks,” in17th Workshop on Parallel and
Distributed Simulation, June 2003, pp. 97–104.

[6] G. F. Riley and T. Jaafar, “Space–parallel network simulations using
ghosts,” in18th Workshop on Parallel and Distributed Simulation, May
2004.

[7] S. Jansen, “Network simulation cradle report,” The University
of Waikato, Tech. Rep., November 2003. [Online]. Available:
http://www.wand.net.nz/pubDetail.php?id=199

[8] “OPNET Technologies, Inc.” http://www.opnet.com.
[9] “Scalable Network Technologies, Inc.” http://www.scalable-

networks.com.
[10] “Global Mobile Information Systems Simulation Library,”

http://pcl.cs.ucla.edu/projects/glomosim/.
[11] “NCTUns Network Simulator and Emulator,”

http://nsl.csie.nctu.edu.tw/nctuns.html.

[12] G. F. Riley, “The georgia tech network simulator,” inMoMeTools ’03:
Proceedings of the ACM SIGCOMM workshop on Models, methods and
tools for reproducible network research. New York, NY, USA: ACM
Press, 2003, pp. 5–12.

[13] A. Varga, “The OMNeT++ distrete event simulation system,” Software
on-line: http://whale.hit.bme.hu/omnetpp/, 1999.

[14] J. Cowie, A. Ogielski, and D. Nicol, “The SSFNet networksimulator,”
Software on-line: http://www.ssfnet.org/homePage.html, 2002, renesys
Corporation.

[15] “Java in Simulation Time (JiST),” http://jist.ece.cornell.edu.
[16] M. Lacage and T. Henderson, “Yet Another Network Simulator,” in

submitted to Workshop on ns-2 (WNS2), Oct. 2006.
[17] “Virtual Network User Mode Linux,” http://jungla.dit.upm.es/ vnuml/.
[18] “Integrated Network Topology Emulator/Simulator,”

http://www.tel.fer.hr/imunes/.
[19] “NetKit,” http://www.netkit.org.
[20] “The Xen virtual machine monitor,”

http://www.cl.cam.ac.uk/Research/SRG/netos/xen/.
[21] “VMware,” http://www.vmware.com/.
[22] “bochs: The Open Source IA-32 Emulation Project,”

http://bochs.sourceforge.net.
[23] L. Peterson, D. Culler, T. Anderson, and T. Roscoe, “A

blueprint for introducing disruptive technology into the Internet,”
in In Proceedings of the 1st Workshop on Hot Topics in
Networks (HotNets-I), Oct. 2002, planetLab. [Online]. Available:
http://citeseer.ist.psu.edu/peterson02blueprint.html

[24] “Network Emulation Testbed,” http://www.emulab.net.
[25] “Wireless Hybrid Network Testbed (WHYNET),”

http://chenyen.cs.ucla.edu/projects/whynet/index.php.
[26] D. Ely, S. Savage, and D. Wetherall, “Alpine: A User-Level infrastructure

for network protocol development,” inIn Proceedings of the 3rd USENIX
Symposium on Internet Technologies and Systems, 2001, pp. 171–184.

[27] J. Elischer, “Implementing a Clonable Network Stack inthe FreeBSD
Kernel,” in In Proceedings of the 2003 USENIX Annual Technical
Conference, June 2003.

