
A Situation-centric Approach to Meteorological Services
in the SITUMET Platform

Stefan Pfennigschmidt
Fraunhofer Institute for Software and Systems

Engineering
10178 Mollstraße 1

Berlin, Germany
stefan.pfennigschmidt@isst.fraunhofer.de

Agnès Voisard
Fraunhofer Institute for Software and Systems

Engineering and FU Berlin
10178 Mollstraße 1

Berlin, Germany
agnes.voisard@isst.fraunhofer.de

ABSTRACT
In applications that need meteorological forecast data, for
instance for planning purposes (such as construction or envi-
ronmental applications), each weather service is currently an
effort-intensive result of domain-dependent programming.
Instead, such applications need weather information plat-
forms that would combine new forecast technologies and
new information and communication technologies in a flex-
ible manner. In this context, we introduced SITUMET, a
platform for situation-based meteorological services. The
core of the platform is based on (i) open sensor integration,
(ii) a flexible forecast module, and (iii) situation-based ser-
vice generation. In this paper we focus on the later, which is
based on the notion of users’ context that remains constant
during a time interval. We introduce a situation-centric ap-
proach to dynamic weather service provision in push and
pull mode. It is based on a common model for current
and planned activity sequences and for weather information.
We illustrate our approach with a particular up-and-running
mobile application defined in the SITUMET framework.

Categories and Subject Descriptors
H.1 [Models and Systems]: Miscellaneous; H.4 [Infor-
mation Systems Applications]: Miscellaneous

General Terms
Design, Experimentation

Keywords
Mobile Application, Context, Situation

1. INTRODUCTION
Many applications use meteorological forecast data, for

instance for planning purposes. We can cite for instance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS 2008, November 5-7th, 2008, Irvine, Ca, USA.
Copyright 2008 ACM ISBN 978-1-60558-323-5/08/11 ...$5.00.

agricultural, construction, transportation, or tourism appli-
cations. In such applications, each weather service is cur-
rently an effort-intensive result of domain-dependent pro-
gramming. Meteorological data needs to be collected, in-
terpreted, and incorporated in a program and this is usually
carried out in an ad-hoc manner. SITUMET aims at a more
general approach to service provisioning in various domains.
We focus on applications where planned activities play a
central role. Two cases are of interest: (1) given a planned
schedule, notify the user about possible disturbances, and
(2) help the user to build a schedule based on anticipated
weather information (which might be a consequence of case
(1) as well in case there is a need for rescheduling).

Our work relies on the concept of situation which is a
(multi-dimensional) context valid during a time interval. It
can then include planned activities. While some applications
are concerned with mobile users and user situations, others
are concerned with the situation of an other type of entity at
a given time (e.g., a mobile device, a freight container, or a
road portion). This leads to the concept of entity situation.

A schedule is defined as a succession of planned situations.
However, such situations are affected due to external, non
anticipated events. This can be detected in advance (e.g.,
we know that it will probably rain at the Brandenburg Gate
between 4 pm and 6 pm but also “on the spot”). Detecting
situation changes means monitoring spatio-temporal entities
for being affected by certain weather conditions.

This poster shows the overall architecture of the SITUMET
platform with emphasis on its situation component. A run-
ning application example is given by the WIND system.

2. BACKGROUND

2.1 Weather data
Weather and forecast data that considered here are de-

fined in a raster mode. The parameters of interest are 2 m
temperature, cloud coverage, 10 m wind, precipitation, rela-
tive humidity, dew, soil moisture, and others such as special
weather hazards (e.g., thunderstorm, hail). The temporal
and spatial granularity of the raster can vary for different pa-
rameters, and available sensor and forecast technology: e.g.,
10 m wind is available in 3 hour intervals and a geographi-
cal scale down to 4 · 4 km for the next 72 hours (based on a
regional forecast model), or thunderstorm/hail in 5 minute
intervals and a geographical scale of 1 · 1 km with a forecast
horizon varying from 5 to 50 minutes (based on nowcasting
technologies). From the cells of the raster data, points and

regions of interest are extracted, corresponding to the situ-
ational demand, in terms of parameter, location, and time.
Each extracted weather parameter, location, and time inter-
val triple is associated with an event/occurrence probability.
Yet, we do not incorporate these probabilities in our alert-
ing and planning services. Instead we introduced a seed that
takes only triples with an event probability over 80% into
account.

We use taxonomies for meteorology. Attributes include
the weather type (e.g., cloudy, fair), the wind speed (com-
ing from instance from the Beaufort scale), the precipita-
tion, the temperature, the humidity-level, and the baromet-
ric pressure level. The mapping from physical parameters
into the taxonomies is done by mapping rules. In most cases,
the mapping is defined by meteorologists (e.g., the Beaufort
scale). In addition, we consider user mapping rules in a
knowledge base that can override this default mapping tak-
ing a user’s preferences as well as activities or other situa-
tional parameters into account. Specifying the mapping for
an attribute temperature-level is a good example.

2.2 Situation modeling
We take as a reference the situation model of [3] whose

main features are given below.
Definition 2.1. A situation pattern is a collection of

attributes (or characteristics), each defined defined along a
hierarchy of concepts (ontology). SP = {Ci}

In the case of a mobile users, characteristics are for in-
stance location, type-of-connectivity, or activity. The loca-
tion characteristics in turn can be defined at many levels of
abstraction.

Definition 2.2. A duration-based situation pattern
(DSP) is a collection of characteristics with which is asso-
ciated a duration. DSP = ({C}, d)

Definition 2.3. A situation is a set of characteristics
Ci that hold during a time interval. S = ({Ci}, t1, t2) where
t1 resp. t2 are the beginning resp. end of the interval. A
situation is then similar to a context that is valid during a
time period. This context has a dynamic part, such as loca-
tion in a mobile application, but also a more static part to
encompass user profiles (with a long interval). A situation
is considered at a given level of abstraction for each char-
acteristics. If it is defined at level l and if changes concern
siblings in the hierarchy, the situation will not change. For
instance, if a situation is defined at the city level and if the
mobile user changes district in this city (which implies a sit-
uation change at level l−1) then the upper situation will not
change.

Definition 2.4. A situation sequence is a collection of
ordered situations that do not overlap.

2.2.1 Situation operators
Operations on situation sequences are of three types: (i)

relational operators, (ii) set-based operators, and (iii) tem-
poral operations.

Relational operators include select and project. The
select operator extracts situations from a situation sequence
that satisfy a certain condition. The project operator is used
to discard irrelevant knowledge from a situation sequence
through removing dimensions. Set-based operators are
used to combine or compare the situational knowledge con-
tained in two situation sequences. Applying the union oper-
ator results in a situation sequence containing the combined

knowledge of the input sequences. An intersection opera-
tion results in a sequence containing only shared knowledge.
The difference operator is used to extract knowledge that
is contained in either of the input sequences. Temporal
operators are used to manipulate the time intervals. The
synchronization operation, for instance, splits the original
intervals of two situation sequences such that both sequences
are synchronous afterwards. Synchrony means that two se-
quences are described using exactly the same time intervals.
In most cases this results in situation sequences where neigh-
boring situations have identical characteristics. In order to
coalesce such situations a normalization operation us used.

2.2.2 Identifying situations
Situations are computed in push and pull mode. In a pull

mode, this is a straightforward identification of the char-
acteristics values. The push mode is more challenging as
situations need to be continuously known by the system.
What triggers a situation change is an event that affects a
characteristic value — such as a significant change of loca-
tion. The frequency with which the situations are computed
depends on the update frequency of input information, e.g.,
an trajectory update, the update of the dynamic part of the
location or personal profile. This can be done (i) in a cyclic
fashion in case the update frequency and times are known
or (ii) in an event-based fashion, which means that the pro-
cessing unit gets informed about relevant updates via an
event that triggers the new situation sequence as well as the
computation of the delta for its further processing.

2.3 Plans and Activities
When supporting activity planning, two phases are of in-

terest, namely the planning phase itself and the execution
phase (once planned activities have been defined). In the
planning phase we would like to support the user by checking
a plan against weather data, thus identifying opportunities
for carrying it out at a time when weather related require-
ments are met. In the execution phase, the requirements of
a defined plan are checked against the current forecast. The
user is alerted if there is a risk of deviation.

A schedule describes a plan where all steps or activities
have been assigned a certain time interval that is anchored
on the time axis. We model a schedule as a sequence of
situations Sc = 〈(SP1, tb1, te1,), . . . , (SPn, tbn, ten)〉 .

An activity sequence describes a plan where only the
order of the steps is fixed. Such activity sequences are de-
scribed as a sequence of situation patterns As = 〈SP1, . . . , SPn〉 .
Even tough time is not associated with a single pattern,
the anticipated duration of a situation can play a role here
As = 〈(SP1, d1), . . . , (SPn, dn)〉 .

Setting up a schedule or an activity sequence can be done
in different ways: either using planning support systems for
use cases in the construction industry or agriculture or using
a simple organizer (e.g., MS Outlook) for planning business
trips or leisure activities. Another possibility is to specify a
route/trajectory (using a routing service, e.g., when biking,
walking or driving). In this case the situation sequence, that
is, the location-related parts of the schedule, can be derived
from this trajectory.

2.4 Situation-centric Service Provision
The idea behind our situation-centric approach is to use

the concept of situations as a simple interface to provide

Figure 1: The principle of situation-centric service
provisioning.

meteorological services to the user. Situations hence serve
as a central model. User requests as well as weather infor-
mation are mapped onto a common situation model. This
includes, on the one hand, abstracting from observed or pre-
dicted weather parameters into a weather taxonomy and, on
the other hand, mapping the spatial aspects into a location
taxonomy. This provides for a simple easily understandable
weather model.

In addition, querying such data in an ad hoc way (pull
services) or registering a persistent query with a service to
be alerted later (push services, continuous queries) is done
by specifying a situation or a sequence of them. The ser-
vices use the situations as their underlying “domain model”.
They interpret, combine, and compare the sequences in an
application-dependent way to deliver their information.

In our example of planned activity support the users’ sched-
ules and activity sequences are formulated as situation se-
quences or situation pattern sequences. Matching between
user plans and potentially conflicting weather conditions is
done by using operations defined on situations and situa-
tion sequences. The following general actions are necessary
to provide such services:

• Generate weather-related situations (weather situations)
from meteorological data.

• Manipulate situations and situation patterns (select,
project, combine, find overlaps, find discrepancies, and
so on (see Section 2.2.1)).

• Manipulate situation sequences and pattern sequences.

• Monitor situation sequences for change.

• Search situation sequences or pattern sequences for oc-
currence of search patterns.

3. THE SITUMET PLATFORM

3.1 Architecture
The architecture of the SITUMET platform consists of

three subsystems, namely, the forecast backend, the mete-
orological product engine, and the application services. A
conceptual presentation of the architecture is given on Fig-
ure 2.

3.2 Forecast backend
The forecast backend subsystem is responsible for provid-

ing weather forecast information that can be queried by ap-
plication services. It consists of (i) a set of data sources, (ii)
a data acquisition layer, and (iii) the actual forecast system.

The forecast information is collected in the forecast database,
which serves as a logically centralized data container. The
database decouples the forecast computation from handling
the service requests. Because most of the forecasting algo-
rithms are time consuming, we decided against the possibil-
ity of a direct and synchronous initiation of a calculation by
a client. Services can either query existing information from
the database, or in case they have special requirements that
are not covered, they can place a calculation request (cal-
culation on demand). Such a request can be specified to be
recurring or can be parameterized, e.g., with a timeout. An
“on-the-fly” computation can then be realized by an asyn-
chronous two-step process of first placing the demand and
later querying the result from the database.

3.3 Meteorological product engine
The task of the meteorological product engine is to re-

ceive and interpret weather information requests from client
services, to decompose it, to select the relevant weather in-
formation from the forecast database, and to aggregate that
information according to a client’s request. The product
engine fulfills this task using the situation-centric approach
described in this paper, thus providing the interface of the
SITUMET platform for service developers. It provides pro-
cessing of ad hoc queries (pull mode) or continuous queries
(push mode). Querying weather information in an ad hoc
manner is done by the service using user situations to spec-
ify the request. In the case of continuous queries, there are
two types of events to be monitored: (i) the change of a
user situation (triggered by the service) (ii) the change of a
weather situation (initiated by the forecast monitor).

The situation generator is responsible for mapping weather
forecast data into the weather- and location-related situa-
tion dimensions. Additionally, demand-oriented calculation
of forecast information and derivation of weather situations
is supported through interfaces that provide means to place
a respective request with the forecast system and/or the sit-
uation generator.

3.4 Services
Using the interfaces of the product engine, the meteoro-

logical services implement the application-specific business
logic. The services are responsible for presentation of the
weather information received and for the further application-
specific processing of the information. The services use the
functionality of the situation framework to capture the char-
acteristics of the user’s context over time and for detecting
situational changes. Situational information (that is, his-
toric, current, and anticipated situations) is supplied as im-
plicit parameters to requests, which allows for intelligent and
pro-active weather information services.

4. APPLICATION

4.1 Application Description
WIND is an implementation of a weather alerting system

developed at Fraunhofer ISST in collaboration with meteo-
media a private European weather service and several insur-
ance companies in Germany and Austria. The name is short
for Weather Information on Demand. WIND is operational
since 2004 with approximately 350.000 users (as of writing),
a number that is continuously growing. The meteorological
backend service of the system provides area-based informa-

Figure 2: Conceptual presentation of the architecture of the SITUMET platform.

tion about severe weather warnings. There are two types of
warnings supported.

• Region-based warnings use predefined natural regions
(represented as sets of polygons) and are produced
by the meteorologists of the Unwetterzentrale (thun-
derstorm alert center) of meteomedia or they are be-
ing generated from radar input. Nature regions are
small areas defined under meteorological aspects along
weather divides. Region-based warnings are stored as
situations encompassing location- and weather-related
dimensions (e.g., weather type, severity, wind speed).
Additionally, urgency and probability/certainty levels
are given.

• Cell-based warnings are being generated from radar-
based systems that automatically detect location, sever-
ity, and movement of thunderstorm cells. We further
distinguish static cells from dynamic cells. Static cells
are represented by a circle describing location and size
of the cell. Dynamic cells are modeled using one circle
for the origin (the place where the cell was actually
detected) and a second circle for the anticipated desti-
nation describing drifting direction and change in size.
The trapezoid that is defined by the intersection points
of the outer tangents of both circles describes the drift-
ing course of the cell. The whole shape, that is, the
union of the circles and the trapezoid is called a club.

WIND is a subscription-based system. In their simplest
form, the subscriptions specify the location of interest and a
profile (e.g., car driver, house owner). This profile is inter-
preted as a permanent situation (although it is possible to
change the location sending an SMS containing, e.g., a zip-
code). The profile definitions form the knowledge base and
tell which kind of weather situation is potentially dangerous
(the defaults are set together by experts from the weather
service and insurance company). They can be changed by
users to meet their individual needs. In its extended form,
a subscription specifies a location along with ranges for the
different meteorological parameters that the user wants to
be alerted about.

WIND mobile adds dynamic to this alerting service. It
is an application for the current generation of smart mobile
phones that informs users about currently active weather
alerts according to their current and anticipated location
and their situation-dependent profile (e.g., outdoor, in car).
The application supports two user interface modes: an over-

view mode and an alert mode. In overview mode the user
can use map-based views or a list view in order to inform
him- or herself about the current weather situation.

4.2 Technical Details
WIND mobile is written in Java and runs in an J2ME

environment on the client (currently Nokia’s GPS-enabled
N95 and 6110) and in an J2SE environment on a Debian
Linux server. We rely on OpenStreetMap data to support
the map-based view. The map interface is a hybrid view
using pre-calculated bitmap tiles for the map and Scalable
Vector Graphics (SVG) for the presentation of weather data.
We use GPS-based positioning to retrieve the current posi-
tion of the user. In addition, we are experimenting and test-
ing also with vague positioning using simulated cell-based
(GSM/UMTS) positions. In order to comply with standards
set in the early warning arena we use the Common Alert-
ing Protocol (CAP) [1] and the EDXL Distribution Element
[2] as the interface between the application and the request
handling service of the server backend. Both standards are
XML-based languages specified by the OASIS consortium.

The application uses both pull and push mode. This
means that it uses ad hoc situational requests to update
warning information on demand. Furthermore, a monitor
is established, which is updated using current location and
anticipated situational information in case the client appli-
cation is passive in the background.

5. ACKNOWLEDGMENTS
This work was partly supported by the (Zentrum für In-

formation und Technologie (ZIT)), Vienna, Austria under
the Vienna Spot of Excellence Program.

6. REFERENCES
[1] Common alerting protocol (CAP), v1.1, oasis, url =

http://www.oasis-open.org, 2005.

[2] OASIS, emergency data exchange language (EDXL)
distribution element, v. 1.0, committee specification,
url = http://www.oasis-open.org, 2006.

[3] U. Meissen, S. Pfennigschmidt, A. Voisard, and
T. Wahnfried. Context- and situation-awareness in
information logistics. In Current Trends in Database
Technology – EDBT Workshops, volume 3268 of LNCS,
pages 335–344, Berlin/Heidelberg/New York, 2004.
Springer Verlag.

