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Abstract. The goal of speaker diarization is to determine where each
participant speaks in a recording. One of the most commonly used tech-
nique is agglomerative clustering, where some number of initial models
are grouped into the number of present speakers. The choice of com-
plexity, topology, and the number of initial models is vital to the final
outcome of the clustering algorithm. In prior systems, these parameters
were directly assigned based on development data, and were the same
for all recordings. In this paper we present three techniques to select the
parameters individually for each case, obtaining a system that is more
robust to changes in the data. Although the choice of these values de-
pends on tunable parameters, they are less sensitive to changes in the
acoustic data and to how the algorithm distributes data among the differ-
ent clusters. We show that by using the three techniques, we achieve an
improvement up to 8% relative in the development set and 19% relative
in the test set over prior systems.

1 Introduction

The goal of speaker diarization is to segment an audio recording into speaker-
homogeneous regions [1]. Typically, this segmentation must be performed with
little knowledge of the characteristics of the audio or of the participants in the
recording. For example, we may know the source and date of the audio recording
(e.g. CNN Nightly News or a NIST meeting), but we typically do not know how
many speakers occur in the recording, how many speakers are male vs. female,
whether there are commercials, music, or other noises, etc.

Typically, most speaker diarization systems use algorithms that are governed
by tunable low-level parameters that are adjusted using development data of
the same sort as the testing data. This is the case, for example, for the acoustic
models used, the penalty factor used on the Bayesian Information Criterion
(BIC) to compare models [2], and some initial parameter values such as the
number of initial speaker clusters, the number of Gaussian mixtures per model
at each state of the process, and the average speaker turn length. Such systems
perform poorly when conditions change between the train and test sets; also
selecting a constant value for all the recordings in a set lead to the omission of
some particularities of each recording, resulting in a suboptimal result.
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In this paper, we present three algorithms that help determine important
parameters in the clusters modeling, namely the number of Gaussian mixtures
per model at each step of the processing, the number of initial models in the
system, and the topology of each acoustic model. In order to determine the
number of Gaussian mixtures and the number of initial clusters, the algorithms
base their selection on information on each particular recording rather than
defining a pre-fixed value for all recordings of a certain type. In order to do
this, we define a parameter that we call the Cluster Complexity Ratio (CCR),
which defines a ratio between the data being modeled and the mixtures needed
to represent it. The CCR ratio is defined using development data, and it is used
to define recording-specific values for the above mentioned parameters.

The third novelty presented in this paper is the elimination of the dependency
of the acoustic models on the average speaker turn length. This is achieved by
modifying the acoustic modeling topology by changing the probabilities of self-
loop and transition in the last state. By doing so, we can apply a minimum
duration for a speaker turn while not influencing the final duration. While setting
a minimum duration for speaker turns is advantageous for the processing of
the recordings and can be set to be independent of the kind of recording we
encounter, the average speaker turn duration is quite variable between individual
recordings and recording types. It is therefore interesting to let the acoustic data
define when the speaker turn finishes once it achieves a minimum length.

In section 2, we present the speaker diarization algorithm with the proposed
algorithms. In sections 3 through 5, we present the algorithms in detail. Then
the experiments are presented, and finally conclusions are drawn from them.

2 Agglomerative Speaker Diarization System

As explained in [3] and [4], the speaker clustering system is based on an agglom-
erative clustering technique. It initially splits the data into K clusters (where
K must be greater than the number of speakers and is chosen by the presented
algorithm), and then iteratively merges the clusters (according to a merge met-
ric based on ΔBIC) until a stopping criterion is met. Our clustering algorithm
models the acoustic data using an ergodic hidden Markov model (HMM), where
the initial number of states is equal to the initial number of clusters (K). Upon
completion of the algorithm’s execution, each remaining state is taken to repre-
sent a different speaker. Each state in the HMM model contains a set of MD
sub-states, imposing a minimum duration on the model (we use MD = 3 sec-
onds). Within the state, each one of the sub-states shares a probability density
function (PDF) modeled via a Gaussian mixture model (GMM). A modification
to this architecture presented in this paper avoids any maximum time duration
constraints on the speaker turns, as further explained in section 5.

The following items show step by step the clustering algorithm used in the
meetings domain, where we include the novel processing presented in this paper
(explanation on previous systems can be found in [5] and [3]):
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1. Run speech/non-speech detection on input data.
2. Extract acoustic features from the data and remove non-speech frames.
3. (new) Estimate the number of initial clusters K and set their initial model

complexity (number of Gaussian mixtures per model).
4. Create models for the K initial clusters via linear initialization.
5. Perform several iterations of segmentation and training to stabilize the data

among the different models.
6. (new) Adjust the complexity of each resulting model according to the data

assigned to them and retrain all models.
7. Perform iterative merging using the following steps:

(a) Run a Viterbi decode to resegment the data.
(b) (new) Adjust the models complexity according to the newly assigned

data.
(c) Retrain the models using the Expectation-Maximization (EM) algorithm

and the segmentation from step (a).
(d) Select the cluster pair with the largest merge score (based on ΔBIC)

that is > 0.0.
(e) If no such pair of clusters is found, stop and output the current clustering.
(f) Merge the pair of clusters found in step (c). The models for the individual

clusters in the pair are replaced by a single, combined model.
(g) Go to step (a).

For the merging and clustering stopping criteria, we use a variation of the
commonly used Bayesian Information Criterion (BIC) [2]. The ΔBIC compares
two possible models: two clusters belonging to the same speaker or to different
speakers. The variation used was introduced by Ajmera et al. [4], [6], and consists
of the elimination of the tunable parameter λ by ensuring that, for any given
ΔBIC comparison, the difference between the number of free parameters in both
models is zero.

Both the estimation of the initial number of clusters and the model complex-
ity selection ensure that each individual show starts at an optimum number of
clusters, and that each cluster is able to model well the data in it. Although
theoretically the initial number of clusters should not be a decisive parameter
for an agglomerative clustering system, in practice it turns to be an important
factor in the performance of a system. This is probably due to the different re-
sulting number of Gaussian mixtures that are used to model each cluster at each
stage of the process. It is therefore important to determine a tradeoff between
the number of Gaussian mixtures assigned to each cluster and the number of
initial clusters. In sections 3 and 4, we present the relationship between both
parameters through a newly defined parameter called the Cluster complexity
Ratio (CCR).

3 Model Complexity Selection

The acoustic models used to represent each cluster are a key part of the agglom-
erative clustering process. On the one hand, comparing their likelihood given
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the data is how we decide whether two models belong to the same cluster or
not. On the other hand, they are used in the decoding process to redistribute
the acoustic data into the different clusters on every iteration.

When designing their size, an important decision is whether we use fixed mod-
els (meaning a fixed number of Gaussian mixtures from start to finish), or if we
allow the number of Gaussian mixtures to vary according to time or occupancy.
Using fixed models is a viable alternative, but runs into the problem of having
sufficient training data when the we set the number of Gaussian mixtures to be
high, or being too general a model when it is set to be small.

Furthermore, when comparing two models via BIC, if they are too general
they tend to over-merge, and when they are too specific to the data they under-
merge. Therefore it is important to find a tradeoff on the number of mixtures
used (model complexity). This has been addressed in our past systems ([5] and
[3]) by using variable complexities as the merging process progresses. In such
systems, all cluster models (regardless of their size) are initially trained using
a fixed number of Gaussian mixtures. Upon merging any two clusters, the data
from both original clusters are merged and a new cluster model is created as the
sum of both parents’ Gaussian mixtures. This is a variable complexity approach
that changes over time.

Such an approach has a drawback that is addressed with our proposed tech-
nique. Even though when we start the algorithm, we have the same amount of
data assigned to each individual cluster (due to using linear initialization of the
available data into clusters), when iterating over decoding the data with the
models and merging the different models we obtain clusters with much less data
assigned to them that are still modeled with the same complexity than much
more populated ones. When performing a BIC comparison, we are comparing
more specific models to more general ones, suffering in system performance.

We present an algorithm that selects the number of mixtures to be used
when modeling each cluster according to its occupancy. This could be referred
to as an occupancy driven approach. After each change in the amount of
data assigned to each cluster (due to a segmentation), we count the number
of acoustic frames that are assigned to each of the models and determine the
number of mixtures by:

M j
i = round(

N j
i

CCRgauss
) (1)

The number of Gaussian mixtures to model cluster i at iteration j (M j
i ) is

determined by the number of frames belonging to that cluster at that time (N j
i )

divided by a constant value (CCRgauss) that we call Cluster Complexity Ratio,
fixed across all meetings.

In both approaches (time and complexity driven), the total number of mix-
tures used over all models remains constant in average, being distributed between
the different cluster models as described above. This allows tracking of the sys-
tem evolution by inspection of the Viterbi decoding total likelihood, which can
be compared across merging iterations.
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When the complexity of any given model changes, we update the model in one
of two alternative ways: a) when the final complexity is greater than the initial
one, we iteratively split the Gaussian with the biggest posterior probability into
two (in the same way as performed within HTK) until the desired number is
reached; or b) when the final complexity is smaller than the initial, we erase the
initial model and obtain a new model of the given complexity by initializing it
to the desired number of Gaussian mixtures given the data.

4 Automatic Selection of the Initial Number of Clusters

In order to perform an agglomerative clustering on the data we need to define an
initial number of clusters. This value needs to be higher than the actual number
of speakers to allow the system to perform some iterations before finding the
optimum number. It also cannot be too big, as each model needs a minimum
cluster occupancy to be trained properly, and to avoid unnecessary computation.

In prior work ([5] for the meetings domain and [3] for broadcast news data),
the number of initial clusters was fixed within each domain that we work on.
In the meetings domain, it was set to either 10 or 16 initial clusters, and in the
broadcast news domain it was set to 40 initial clusters. The selection of these
values has to be tuned to be greater than the possible number of speakers in any
given recording while maximizing the performance.

With the following method, we can estimate the number of initial clusters on
a per recording basis by taking into account the total amount of data available
for clustering:

K =
Ntotal

GclusCCRgauss
(2)

We make the number of initial clusters a function of the amount of data
available for clustering, the number of Gaussian mixtures we want to assign per
cluster (we use, as in prior work, Gclus = 5) and the Cluster Complexity Ratio
CCRgauss. This initializes the system using an average complexity of Gclus and
the amount of data per cluster as defined by CCRgauss, which is the same as
when defining the models complexity during the previously presented algorithm.
This technique does not try to guess the real number of speakers present in a
recording, but rather sets an upper boundary to the number of speakers that
is closely coupled with the complexity selection algorithm and which allows a
correct modeling of each initial cluster for each particular recording.

5 Acoustic Modeling Without Time Restrictions

Our clustering algorithm models the acoustic data using an ergodic hidden
Markov model (HMM), where state corresponds to one of the initial clusters.
Upon completion of the algorithm’s execution, each remaining state is consid-
ered to represent a different speaker. Each state contains a set of MD sub-states,
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Fig. 1. Cluster models with Minimum duration and modified probabilities

as seen in figure 1, imposing a minimum duration of each model. Each one of the
sub-states has a probability density function modeled via a Gaussian mixture
model (GMM). The same GMM model is tied to all sub-states in any given state.
Upon entering a state, at time n the model forces a jump to the following sub-
state with probability 1.0 until the last sub-state is reached. In that sub-state, it
can remain in the same sub-state with transition weight α, or jump to the first
sub-state of another state with weight β/M , where M is the number of active
states/clusters at that time. In prior publications, these were set to α = 0.9 and
β = 0.1 (summing to 1).

One disadvantage of using these settings is that it imposes an implicit dura-
tion model on the data beyond the minimum duration MD set as a parameter.
Such duration modeling changes as we modify the MD value, as illustrated by
equations 3 and 4.

lkldAA = prob(x(0)|ΘA)
MD−1∏

i=1

(1 · prob(x(i)|ΘA))

·
2·MD−1∏

i=MD

(α · prob(x(i)|ΘA)) (3)

lkldAB = prob(x(0)|ΘA)
MD−1∏

i=1

(1 · prob(x(i)|ΘA))

· β

M
prob(x(MD)|ΘB)

2·MD−1∏

i=MD+1

(1 · prob(x(i)|ΘB)) (4)

Equation 3 shows the computed likelihood given 2MD acoustic frames and
remaining in cluster A during all of them. Equation 4, on the other hand, shows
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the total likelihood if we jump to a model B after the initial MD frames. When
both models are the same (A=B) it is desired that eq. 3 be greater than eq. 4
or else the possible speaker turn durations would be strongly quantized to the
MD duration. In this case, it happens when αMD > β

M .
Setting the values of α = 0.9 and β = 1 − α caused long speaker turns to be

artificially penalized against turns with the minimum MD frames. In order to
remove this effect (since we do not have a priori information on the average turn
length of the input data), we propose to set the value of α = 1.0 and β = 1.0.
Thus, once a segment exceeds the minimum duration, the HMM state transitions
no longer influences the turn length; turn length is solely governed by acoustics.
This creates a non-standard (but valid) HMM topology as α+β no longer sums
to 1.

6 Experiments and Results

Speaker diarization experiments were conducted using the data distributed for
the NIST Rich Transcription 2004 and 2005 Spring Meeting Recognition Evalua-
tion, RT04s and RT05s ([7]). This consists of excerpts from multi-party meetings
in English collected at six different sites. From each meeting, only an excerpt
of 10 to 12 minutes is evaluated. Although a number of distant microphones
is available for each meeting, only the most centrally located microphone (as
defined my NIST as the SDM channel) was used to test the algorithms pre-
sented here. We merged the RT04s development and evaluation data to create
a development set (a total of 16 meeting excerpts), used to adjust some of the
parameters in the system. The RT05s evaluation data was used to validate the
chosen parameters.

The metric used to evaluate the performance of the system is the same as is
used in the NIST RT evaluations and is called Diarization Error Rate (DER). It
is computed by first finding an optimal one-to-one mapping of reference speaker
ID to system output ID and then obtaining the error as the percentage of time
that the system assigns the wrong speaker label. The results given below are the
time weighted DER average for the development and evaluation sets.

Although hand-made reference files were provided for each of the sets, they are
at times inconsistent and therefore not very suitable to test any new algorithm.
In fact, it is planned that for the RT06s evaluation systems will be scored using
forced aligned reference files rather than hand-made ones. The automatically
generated references are obtained by using a speech recognition system that
aligns the words uttered by each speaker to the waveform, and therefore outputs
the times where each speaker spoke, suitable for speaker diarization. In the
present paper, we used a forced alignment generated using ICSI-SRI ASR system
(see [8]). The meeting named NIST 20050412 1303 contains a telephone channel
whose transcript was not provided; therefore it was not able to be fully aligned
and was taken out of the test set, leaving us with 9 meetings.
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In order to select the optimum values for the CCR parameters and the number
of Gaussian mixtures per cluster, we did a greedy search on the parameter space
using the baseline system including the presented variation to the acoustic mod-
els. As we did not perform an exhaustive search, the resulting parameters might
not be the optimal ones. The chosen values are CCR = 8 seconds/Gaussian and
5 Gaussian mixtures per initial cluster. The use of both parameters to determine
the number of initial clusters sets all recordings to a range of clusters from 10 to
16, which in the meetings environment we have seen to work the best in previous
publications.

Using the selected parameters, in table 1 we show the Diarization Error Rates
of all presented systems, individually and in conjunction with each other, and
the baseline system, both for the development data set and the test set.

Table 1. DER for the development and test sets comparing the different proposed
systems

System Development set Test set
Baseline system 18.38% 14.43 %

Speaker turn with no time restrictions 17.75% 14.49%
Complexity selection 17.23% 11.68%

Initial # models selection 17.59% 14.00%
Complexity + # initial models selection 16.95% 12.48%

The baseline system is based on the system presented in [5], with model
probabilities α = 0.9 and β = 0.1. The second system introduces the change in
the acoustic models to avoid the speaker turn length restrictions. All systems
after the second one include such modification. The third and fourth systems
correspond to each of the model parameter estimation techniques on their own,
and the last system contains all of the proposed techniques.

By avoiding the speaker turn length restriction we obtain an improvement on
the development set but not in the evaluation set, though it achieves almost the
same result. All other systems improve the baseline results to different degrees.
The best system on the development set is the one combining the three presented
techniques, although the improvement over the baseline is 8% relative, smaller
than the improvement obtained by the complexity selection algorithm on the
test set, which is a 19% relative. This indicates the viability of the algorithms
to be used on unseen recordings as all parameters had been trained using the
development set.

By looking at the overall results, we can generalize that although we have
the same number of parameters in the system (before we needed to define the
number of Gaussian mixtures per cluster and the number of initial clusters, and
now the number of mixtures and the CCR), it tunes better to the individual
data sources and is more robust to changes in the show length and the structure
of the acoustic data (e.g. how long and how often each speaker speaks).
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7 Conclusions

In this paper, we presented three techniques for improving the acoustic mod-
elling of a speaker diarization system based on agglomerative clustering. These
techniques define the quantity of initial clusters to use, their complexity (num-
ber of Gaussian mixtures) and the topology of the models regarding duration
constraints. We introduced a new parameter called the Cluster Complexity Ra-
tio (CCR), which was used to define both the number of initial clusters and
the cluster complexity, and allows models to adapt to each individual recording
according to the amount of data available for clustering and the structure of the
content in the recording. We showed an improvement of up to 8% on the devel-
opment set and 18% on the test set, which ensures the viability of this method
to be used on unseen data.
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