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ABSTRACT

We describe the Arabic broadcast transcription system fielded by
IBM in the GALE Phase 4 machine translation evaluation. Key ad-
vances over our Phase 3.5 system include improvements to context-
dependent modeling in vowelized Arabic acoustic models; the use
of neural-network features provided by the International Computer
Science Institute; Model M language models (a novel, class-based
exponential model); a neural network language model that uses syn-
tactic and morphological features; and improvements to our system
combination strategy. These advances were instrumental in achiev-
ing a word error rate of 8.9% on the Phase 4 evaluation set, and an
absolute improvement of 1.6% word error rate over our 2008 system
on the unsequestered Phase 3.5 evaluation data.

Index Terms— large vocabulary speech recognition

1. INTRODUCTION

The purpose of the DARPA Global Autonomous Language Exploita-
tion (GALE) program is to make Arabic and Chinese broadcasts,
newswire, and web logs accessible to monolingual English speak-
ers. To that end, the GALE program has sponsored annual com-
petitive evaluations of machine translation systems in which speech
transcription is a necessary front-end for broadcast material. Here
we describe IBM’s 2009 transcription system for Arabic broadcasts,
which was fielded in the GALE Phase 4 machine translation evalu-
ation. Key innovations in this year’s system include improvements
to context-dependent modeling in vowelized Arabic acoustic mod-
els; the use of neural-network features provided by the International
Computer Science Institute (ICSI); Model M language models [1]; a
neural network language model that uses syntactic and morphologi-
cal features [2]; and improvements to our system combination strat-
egy. These advances were instrumental in achieving a word error rate
of 8.9% on the Phase 4 evaluation set, and an absolute improvement
of 1.6% word error rate over our 2008 system on the unsequestered
Phase 3.5 evaluation data.

2. OVERVIEW

Like other transcription systems fielded in competitive evaluations,
IBM’s 2009 GALE Arabic transcription system relies upon multi-
ple passes of decoding, acoustic model adaptation, language model
rescoring, and system combination to achieve the lowest possible
word error rate. In this section, we briefly describe the components
of the 2009 system and the processing steps used to produce the
final transcripts. Because the 2009 system is similar to our 2008
system [3], we devote most of this paper to the novel aspects of the
2009 system.

2.1. Acoustic models

Our 2009 transcription system uses the five different acoustic mod-
els described below. Unless otherwise specified, all models use
40-dimensional features that are computed by an LDA projec-
tion of a supervector composed from 9 successive frames of 13-
dimensional mean- and variance-normalized perceptual linear pre-
diction (PLP) [4] features followed by diagonalization using a global
semi-tied covariance transform [5] and use pentaphone cross-word
context with a “virtual” word-boundary phone symbol that occu-
pies a position in the context description, but does not generate
an acoustic observation. Speaker-adapted systems are trained us-
ing vocal tract length normalization (VTLN) [6] and feature-space
maximum-likelihood linear regression (fMLLR, also called con-
strained MLLR) [7].

SI A speaker-independent, unvowelized (graphemic) acoustic
model trained using model-space boosted maximum mutual
information [8]. The PLP features for this system are only
mean-normalized. TheSI model comprises 3K states and
151K Gaussians.

U A speaker-adapted, unvowelized acoustic model trained using
both feature- and model-space BMMI. This model also made
use of variable frame rate processing [9]. TheU model com-
prises 5K states and 803K Gaussians.

SGMM A speaker-adapted, vowelized subspace Gaussian mix-
ture model [10, 3] trained with feature- and model-space ver-
sions of a discriminative criterion based on both the minimum
phone error (MPE) [11] and BMMI criteria. This model also
made use of variable frame rate processing [9]. TheSGMM
model comprises 6K states and 150M Gaussians that are rep-
resented using an efficient subspace tying scheme.

V A speaker-adapted, vowelized (phonemic) acoustic model
trained using the feature-space BMMI and model-space MPE
criteria. This model differs from the others in its treatment
of context and tying structure, the details of which are given
in Section 3. TheV model comprises 50K states and 801K
Gaussians.

NN A speaker-adapted, vowelized acoustic model trained using the
feature-space BMMI and model-space MPE criteria. This
model differs from the others in that it uses neural-network
features provided by the International Computer Science In-
stitute. Section 4 describes these features in more detail. The
NN model comprises 10K states and 889K 36-dimensional
Gaussians.

We use an acoustic training set composed of approximately 1800
hours of transcribed Arabic broadcasts provided by the Linguistic
Data Consortium (LDC) for the GALE Phase 4 evaluation and 85
hours of FBIS and TDT-4 data with transcripts provided by BBN.



We report results on several data sets: DEV’07 (2.5 hours);
EVAL’08U, the unsequestered portion of the GALE Phase 3.5 eval-
uation set (3 hours); and EVAL’09, the GALE Phase 4 evaluation
set (16 hours). DEV’07 and EVAL’08U are development data: our
models were tuned on these sets. EVAL’09 is unseen data on which
no tuning was done.1

2.2. Language models

The language model training data is a collection of about 1.6 bil-
lion words provided by the LDC. We divide the training corpus into
20 different sources, including acoustic transcripts (split into broad-
cast news and broadcast conversation genres), different portions of
the Arabic Gigaword corpus (LDC2009T30), Arabic text from par-
allel corpora used for machine translation training, etc. To build the
baseline language model, we train a 4-gram model with modified
Kneser-Ney smoothing [12] for each source, and then linearly inter-
polate the 20 component models with the interpolation weights cho-
sen to optimize perplexity on a held-out set. Typically, the language
models corresponding to the audio transcripts (roughly 15 million
words) have the highest weights because they are best matched to
the domain of interest. The resulting interpolated language model
is pruned using entropy pruning [13] to about 7M n-grams for the
construction of static, finite-state decoding graphs. The unpruned
model, which contains 883M n-grams, is used for lattice rescoring.
We use a vocabulary of 795K words, which is based on all available
corpora, and is designed to completely cover the acoustic transcripts.

In previous years [3] we interpolated a large unpruned language
model with a word-based neural network language model (NNLM).
This year we enriched our language models by adding Model M
(a class-based exponential model) [1] and neural network language
models using syntactic features [2]. These new models are described
in Sections 5 and 6.

2.3. System combination

We employ three different techniques for system combination. The
first technique is cross-adaptation, where the fMLLR and MLLR
transforms required by a speaker-adapted acoustic model are com-
puted using transcripts from some other, different speaker-adapted
acoustic model. The second technique is a form of multi-stream
acoustic modeling in which the acoustic scores (weighted negative
log-likelihoods) are computed as a weighted sum of scores from two
or more models that can have different decision trees [14]. The third
technique is hypothesis combination using thenbest-rover [15]
tool from the SRILM toolkit [16]. The choice of systems to combine
and the weights the systems receive in the combination process was
based on performance on the GALE DEV’07, DEV’08, DEV’09,
and EVAL’08U sets.

2.4. System architecture

Our 2009 transcription system uses the following steps.

1. Cluster the audio segments into hypothesized speakers.

2. Decode with theSI model.

3. Using transcripts from (2), compute VTLN warp factors per
speaker.

4. Using theU model and transcripts from (2), compute fMLLR
and MLLR transforms, then decode.

1Note that under GALE program rules, only the unsequestered portion of
EVAL’09 can be used for future system development.

Step Decoding pass DEV’07 EVAL’08U EVAL’09
(2) SI 16.7% 15.3% 16.6%
(4) U 10.4% 9.9% 11.5%
(5) SGMMxU 8.4% 8.7% 10.3%
(7) SGMMxU.vfr 8.4% 8.6% 10.0%
(8) UxSGMM.vfr 8.9% 8.7% 10.3%
(9c) V NNxSGMM 8.4% 8.4% 10.1%
(10) Model M on ( 7) 7.9% 8.0% 9.6%
(11) syntax on ( 10) 7.6% 7.6% 9.3%
(12) Model M on ( 8) 8.3% 8.2% 9.7%
(13) Model M on ( 9c) 8.1% 7.9% 9.6%
(14) (11) + (12) + (13) 7.4% 7.3% 8.9%

Table 1. % word error rates for different stages in our 2009 GALE
Arabic transcription system on DEV’07, EVAL’08U, and EVAL’09.

5. Using theSGMM model and transcripts from (4), compute
fMLLR and MLLR transforms, then decode.

6. Using transcripts from (5), compute best frame rates per ut-
terance.

7. Using theSGMM model, transcripts from (5), and frame
rates from (6), compute fMLLR and MLLR transforms, then
decode and produce lattices.

8. Using theU model, transcripts from (7), and frame rates from
(6), compute fMLLR and MLLR transforms, then decode and
produce lattices.

9. (a) Using theV model and transcripts from (5), compute
fMLLR and MLLR transforms.

(b) Using theNN model and transcripts from (5), compute
fMLLR and MLLR transforms.

(c) Using theV model with transforms from (9a) and the
NN model with transforms from (9b) together as a
multi-stream acoustic model, decode and produce lat-
tices.

10. Rescore the lattices from (7) using an interpolation of nine
Model M language models, and extract the 200-best hypothe-
ses for each utterance.

11. Score the 200-best lists from (10) with a neural network lan-
guage model that uses syntax features, and produce new lan-
guage model scores that interpolate the Model M and syntax
language model scores.

12. Rescore the lattices from (8) using an interpolation of nine
Model M language models, and extract the 100-best hypothe-
ses for each utterance.

13. Rescore the lattices from (7) using an interpolation of nine
Model M language models, and extract the 100-best hypothe-
ses for each utterance.

14. Combine the hypotheses from (11), (12), and (13) using the
nbest-rover tool from the SRILM toolkit [16].

3. CONTEXT MODELING FOR VOWELIZED ARABIC

One way to exploit a large amount of training data, as we have for
the GALE Arabic task, is to build very detailed acoustic models by
extending the size of the context. For theV models we made four
changes to the context modeling that proved to be beneficial.



word boundary within-word
marker context global tree? DEV’07
virtual phone 2 no 13.3%
wb & we tags 2 no 13.1%
wb & we tags 3 no 13.0%
wb & we tags 3 yes 12.9%

Table 2. % word error rates on DEV’07 for improved forms of con-
text modeling for vowelized Arabic acoustic models.

tree DEV’07
standard 12.8%
dual 12.3%

Table 3. % word error rates on DEV’07 for a standard decision tree
specifying 10K GMMs and a dual tree that specifying 50K states
sharing 10K GMMs.

1. Instead of marking word boundaries with a “virtual” word
boundary phone that occupies a position in the context de-
scription, but does not generate an acoustic observation, we
used word-begin and word-end tags to label phones in the
start-of-word and end-of word positions.

2. We expanded the number of phones on which a state can be
conditioned to±3 within words, while keeping the extent of
cross-word context dependency to one phone.

3. We used a single, global decision tree that lets us share states
between different phones.

4. We use a dual decision tree that specifies 10K different Gaus-
sian mixture models, but a total of 50K context-dependent
states, each of which has its own mixture weights for one of
the 10K GMMs.

The first three changes are tested on the DEV’07 set using
speaker-adapted, vowelized models comprising 400K Gaussian mix-
ture components trained on the GALE Phase 3.5 training set, which
contains 1500 hours of audio. As can be seen in Table 2, we achieve
small improvements with each change to the context modeling. The
dual decision tree is compared to a standard decision tree on the same
task, but with models comprising 800K mixtures that were trained on
the full 1800 hours. As can be seen in Table 3, the dual tree’s more
detailed acoustic modeling further improves performance.

4. NEURAL NETWORK FEATURES

The neural network features used in IBM’s 2009 evaluation system
follow the Tandem [17] model. A multilayer perceptron (MLP) is
trained to discriminate between 36 different phonetic targets. The
input to the MLP is 9 successive frames (±4 frames around the cur-
rent frame) of 13-dimensional VTLN PLP features plus delta and
double-delta features, for a total of 351 input units. The PLP fea-
tures were mean- and variance-normalized per speaker. There is a
single hidden layer comprising 10,000 hidden units that use a logis-
tic nonlinearity. The 36 output units are processed through a softmax
nonlinearity, and the MLP is trained with the cross-entropy error cri-
terion on 760 hours of GALE Arabic data.

To provide features for a standard GMM/HMM acoustic model,
the MLP outputs are processed through a logarithmic nonlinearity, so

Model DEV’07 EVAL’08U EVAL’09
V 8.2% 7.9% 9.7%
V-NN 8.1% 7.9% 9.6%

Table 4. % word error rates for theV andV-NN models on DEV’07,
EVAL’08U, and EVAL’09, with Model M rescoring.

DEV’07 EVAL’08U EVAL’09
Baseline LM 8.4% 8.6% 10.0%
Model M 7.9% 8.0% 9.6%
Syntax 7.6% 7.6% 9.3%

Table 5. Word error rates after Model M and syntax rescoring for
the SGMM system.

the features are estimates of phone log-posterior probabilities, given
the acoustic data. Unlike the standard Tandem approach, the fea-
tures were not orthogonalized using the Karhunen-Loeve Transform
(KLT). Instead, we train a global, semi-tied covariance (STC) trans-
form [5], interleaving GMM and STC updates during model train-
ing. Because a global STC transform attempts to diagonalize the
class-conditional feature distributions instead of the global feature
distribution, we expected that this approach would outperform diag-
onalization based on the KLT. Pilot experiments on a 50-hour subset
of the GALE Arabic training data confirmed this expectation.

To illustrate the benefits of the neural network features, we com-
pare the performance of theV model alone to the multi-streamV-NN
model in Table 4. Both models are cross-adapted on theSGMM out-
put and the resulting lattices are rescored with the Model M language
model (Section 5), so theV-NN results match those for Step 13 in
Table 1. We see small improvements on two of the three data sets. In
designing the final system combination, we also observed that com-
binations using theV-NN model consistently outperformed combi-
nations using only theV model, but that the difference was small.

5. MODEL M LANGUAGE MODELS

Model M is a novel, class-based exponential language model. It is
motivated by the observation that shrinking the sum of parameter
magnitudes in an exponential language model tends to improve per-
formance [1]. As mentioned in Section 2.2, the baseline language
model is a linear interpolation of 4-gram models built on 20 differ-
ent sources. We build Model M models on the nine corpora with
the highest interpolation weights in the baseline model, and create a
new language model which is an interpolation of the nine Model M
language models and the original unpruned 883M n-gram language
model. We use this new language model to rescore the lattices for all
the systems used in the evaluation. In the first two rows of Table 5,
we present lattice rescoring results for the baseline language model
and this new language model for the SGMM system. We see that
significant improvements of 0.4-0.6% absolute are achieved. Simi-
lar improvements are obtained for all the other acoustic models.

6. NEURAL NETWORK SYNTACTIC
LANGUAGE MODELS

We incorporate syntactic and morphological features as additional
context features in a neural network language model (NNLM), and
obtain up to 5% relative word error rate improvement over a regular



word-based NNLM. Details are published in [2], while here we pro-
vide a brief summary and new results on multiple systems used in
the 2009 GALE (P4) evaluation, in combination with Model M.

Long-span context words and syntactic features from the parse
tree may be complementary to n-gram features, and are easily incor-
porated into a NNLM. The syntactic features we use include exposed
head words and their non-terminal labels, both before and after the
predicted word. Before parsing, we segment words into morphs us-
ing Arabic Treebank (ATB) segmentation. We use a maximum en-
tropy parser trained on the Arabic Treebank and various broadcast
news data sources released under the DARPA GALE program. Af-
ter parsing, exposed head words and their non-terminal labels are
extracted as additional context features used by the NNLM.

During testing, we use anN -best rescoring framework to take
advantage of the complete parse tree of the entire sentence, as well
as different tokenization representations (words versus morphs), by
combining scores at the sentence level. The best weights of different
models are found by simplex optimization on DEV’07. We choose
N = 100 because the 100-best oracle word error rate is very close
to that of the lattice.

The syntactic NNLM is trained on a subset of the language
model training data deemed most relevant to the task: the 15 mil-
lion words of audio transcripts. For the NNLM, we use 30 dimen-
sional input vectors, 100 hidden units, and up to 60 epochs of train-
ing. The NNLM provides probabilities for only the 20k most fre-
quent morphs, and we normalize using a background 4-gram lan-
guage model trained on the ATB segmented audio transcripts.

Using syntactic NNLMs, we had previously obtained 0.3-0.5%
absolute word error rate improvement over a regular word-based 6-
gram NNLM on the best set of lattices from the 2008 (P3.5) eval-
uation. For the 2009 (P4) evaluation, we observe that combining a
word-based NNLM with Model M gives only small improvements.
For example, adding the NNLM to Model M results in word error
rates of 7.8% for DEV’07 and 8.0% for EVAL’08. As shown on the
last line in Table 5, NNLMs with morphological and syntactic fea-
tures make further improvement when combined with Model M, up
to 0.4% absolute improvement. Similar improvements are observed
for other test sets and acoustic models. For example, with the un-
vowelized (U) system, the improvement on EVAL’09 is 0.3%.

7. SUMMARY

In this paper we have presented IBM’s 2009 GALE Arabic speech
transcription system, and described improvements made over the
past year that led to a word error rate of 8.9% on the 2009 evalu-
ation data and a year-to-year, absolute reduction of 1.6% word error
rate on the unsequestered 2008 evaluation data. The key advances
that enabled this level of performance are improvements to context-
dependent modeling in vowelized Arabic acoustic models; the use of
neural-network features provided by ICSI; Model M language mod-
els; a neural network language model that uses syntactic and mor-
phological features; and improvements to our system combination
strategy.
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