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Abstract. The goal of speaker diarization is to segment an audio record-
ing into speaker-homogeneous regions [1]. Typically, this segmentation
must be performed with little knowledge of the characteristics of the
audio or of the talkers in the recording. For example, we may know
the source and date of the audio recording (e.g. CNN Nightly News or
a meeting that was held at CMU), but we typically do not know how
many speakers occur in the recording, how many male vs. female talkers
occur, or whether there are commercials, music, or other noises, etc.
In this paper, we present the ICSI speaker diarization system. This sys-
tem was used in the 2007 National Institute of Standards and Technology
(NIST) Rich Transcription evaluation. The ICSI system automatically
performs both speaker segmentation and clustering without any prior
knowledge of the identities or the number of speakers. Our system uses
“standard” speech processing components and techniques such as HMMs,
agglomerative clustering, and the Bayesian Information Criterion. How-
ever, we have developed the system with an eye towards robustness and
ease of portability. Thus we have avoided the use of any sort of model
that requires training on “outside” data and we have attempted to de-
velop algorithms that require as little tuning as possible.

1 Introduction

The goal of speaker diarization is to segment an audio recording into speaker-
homogeneous regions. This task is sometimes referred to as the “Who Spoke
When” task. Knowing when each speaker is speaking is useful as a pre-processing
step in speech-to-text (STT) systems to improve the quality of the output. Such
pre-processing may include vocal tract length normalization (VTLN) and/or
speaker adaptation. Automatic speaker segmentation may also be useful in in-
formation retrieval and as part of the indexing information of audio archives.

For the past three years, the US National Institute of Standards and Technol-
ogy (NIST) has conducted competitive evaluations of speaker diarization systems
using recordings from multi-party meetings. For these evaluations, the speaker
diarization task must be performed with little knowledge of the characteristics
of the audio or of the talkers in the recording. Within the meeting domain,
there are several conditions on which diarization systems are evaluated. The



primary evaluation condition allows the use of audio recorded from multiple dis-
tant microphones. As an optional task, NIST also evaluates the performance
of diarization systems when the audio input comes from just a single (distant)
microphone. The performance of diarization systems on the multiple distant mi-
crophone task is typically better than on the single distant microphone task due
to the extra information provided by the additional microphones.

One of the most commonly used techniques for performing speaker diarization
is agglomerative clustering, where a large number of initial models are merged
pair-wise, until the system arrives at a single model per speaker. Techniques
such as agglomerative clustering often call for the use of “tunable” parameters
such as: the number of initial models, the number of Gaussian mixtures per
model, or the penalty factor used in the Bayesian Information Criterion (BIC)
[2]. The choice of the values for these parameters can be vital to the performance
of the clustering system. Typically, system designers choose the values for the
parameters empirically based on training and development data. It is important
that this data be as similar as possible to the data on which the system will
ultimately be tested in order to ensure robust behavior.

In this paper, we present the ICSI speaker diarization system used in the
NIST RT07s evaluations. The system we present is based on agglomerative clus-
tering and automatically deduces the number of speakers in a recording, along
with the information about where each speaker is speaking. The algorithm runs
iteratively, alternating model alignment with model merging. The algorithm we
use for model merging is a modification of BIC in which we keep the number of
parameters between the two BIC hypotheses constant. An important property
of this modification of BIC is that it allows us to eliminate the BIC penalty
term, thus eliminating one of the parameters that must be tuned.

In section 2, we present an overview of the speaker diarization system that
we used for the 2007 evaluation. In section 3 we describe several experiments we
ran after the evaluation to examine the behavior of the system in more detail.
Finally, we end with some conclusions and future work.

2 System Description

2.1 Front-end Acoustic Processing

The acoustic processing consists of three steps. First, Wiener filtering [3] is per-
formed on each available audio channel. The goal of the Wiener filtering is to
remove any “corrupting” noise from the signal. The noise is assumed to be ad-
ditive and of a stochastic nature. The implementation of the Wiener filtering
we use was taken from the noise reduction algorithm developed for the Aurora
2 front-end proposed by ICSI, OGI, and Qualcomm [4]. The algorithm per-
forms Wiener filtering with typical engineering modifications, such as a noise
over-estimation factor, smoothing of the filter response, and a spectral floor. We
modified the algorithm to use a single noise spectral estimate for each meeting
waveform. This was calculated over all the frames judged to be non-speech by
the voice-activity detection component of the Qualcomm-ICSI-OGI front end.



After Wiener filtering, if multiple audio channels (i.e. recordings from mul-
tiple microphones) are available, a single “enhanced” channel is created by run-
ning delay and sum beamforming on the separate channels. The beamforming
was done using the BeamformIt 2.0 toolkit3 with a 500 msec analysis window
stepped at a 250 msec frame rate. Finally, feature extraction is performed on
the resulting beamformed channel.

Our system uses two types of acoustic features. The first nineteen Mel Fre-
quency Cepstrum Coefficients (MFCC), created using the HTK toolkit4, form
our standard feature type. These features are created at a 10 msec frame rate
with a 30 msec analysis window. The second type of feature we use is only used
when multiple audio channels are available (the MDM condition). In this case,
we use the BeamformIt tool to calculate the delay values between the different
audio channels. When using BeamformIt to produce these delay features, we use
a 500 msec analysis but it is stepped at the same frame rate (10 msec) as was
used for the MFCC features. The delay factors are then added to the system as
a second feature stream.

2.2 Speech/Non-speech Detection

One of the improvements we made this year was the creation of a new speech/non-
speech detector. The detector we used last year consisted of two stages. It first
selected those regions in the audio with high and low energy levels and then in
the second stage it trained dedicated speech models on the high energy regions
and silence models on the low energy levels. The major advantage of this ap-
proach is that it does not use models trained on outside data making it robust
to changes in audio conditions. The drawback of using energy however is that
it is not possible to use this approach when the audio contains fragments with
high energy levels that are non-speech. For another task [5], we developed a new
speech/non-speech detector inspired by last year’s system. This new system is
better able to detect audible non-speech.

The new speech/non-speech detector consists of three steps. First, as in last
years system, an initial guess is made about which regions in the audio are
speech, silence or non-speech sounds. Only the regions that are classified with
a high confidence score are labeled. To create these three regions, an initial
segmentation is created with an HMM that contains a speech and a silence
GMM that was trained on broadcast news data. The silence region is then split
into two classes: regions with low energy and regions with high energy and high
zero-crossing rates. From the data in each of these two classes a new GMM is
trained. The GMM trained on the low energy data contains 7 gaussians, and
the GMM trained on the high energy, high zero-crossing rate data contains 18
gaussians (once fully trained.) For the speech regions, a third GMM is trained
with 24 gaussians. The gaussians of all three models are built up iteratively, and
during this process the audio is re-segmented a number of times [6].

3 Available at: http://www.icsi.berkeley.edu/x̃anguera/beamformit
4 Available at http://htk.eng.cam.ac.uk/



In the second step of the speech/non-speech detector, models are trained
from the data in the three regions defined by the first step, and we label these
regions: “speech”, “silence” and “non-speech sound”. We always assume that a
recording has all three types of regions. However, if an audio recording does not
contain any non-speech sounds, it is possible that the “sound” model will end
up containing “speech” data. Therefore, in the third step, the system checks to
see if the “sound” and “speech” models are similar. To test for similarity, a new
model is trained on the combined speech and sound data, and BIC is used to
test whether it is better to model all of the data with one combined model or
two separate models (similar to what we do during the diarization process). If
the BIC score is positive, the sound model is discarded and a new speech model
is trained using all of the speech and sound data.

For all of these steps, we use feature vectors with 12 MFCC components, zero-
crossing, deltas and delta-deltas. The underlying system uses a Hidden Markov
Model with two (or three) “strings” of states in parallel (in order to enforce
a minimum duration for each segment). Each string shares a single Gaussian
Mixture Model (GMM) as its probability density function that represents one
of the three classes. The segmentation into the two (or three) classes is found by
performing a Viterbi search on the data using this HMM.

2.3 Cluster Modeling

The Probability Density Function (PDF) used in our diarization system is mod-
eled with a Gaussian Mixture Model (GMM). If multiple audio channels are
available, each of the two audio streams (MFCC and delays) are modeled using
separate GMMs, and the overall PDF is modeled as a weighted combination of
these two GMMs. The weights of the two streams are initially set to fixed values
(0.65 and 0.35). Then, during the merging process, the weights are adapted using
the algorithm introduced in [7]. This approach makes it possible to automati-
cally find appropriate weights for the two streams during the diarization process
and eliminates the need to tune the weights on a development set.

2.4 Diarization Algorithm

As explained in [8] and [9], the speaker clustering system is based on an agglom-
erative clustering technique. It initially splits the data into K clusters (where K

should be greater than the number of true speakers), and then iteratively merges
the clusters (according to metric based on ∆BIC) until a stopping criterion is
met. Our clustering algorithm models the acoustic data using an ergodic hidden
Markov model (HMM), where the initial number of states is equal to the initial
number of clusters (K). Upon completion of the algorithm’s execution, each re-
maining state is taken to represent a different speaker. Each state in the HMM
contains a set of MD sub-states, imposing a minimum duration on the model
(we use MD = 2.5 seconds). Also, each one of the sub-states shares a single
probability density function (PDF).

The following outlines the clustering algorithm step-by-step.



1. Run front-end acoustic processing.
2. Run speech/non-speech detection.
3. Extract acoustic features from the data and remove non-speech frames.
4. Create models for the K initial clusters via linear initialization.
5. Perform several iterations of segmentation and training to refine the initial

models.
6. Perform iterative merging and retraining as follows:

(a) Run a Viterbi decode to re-segment the data.
(b) Retrain the models using the Expectation-Maximization (EM) algorithm

and the segmentation from step (a).
(c) Select the cluster pair with the largest merge score (based on ∆BIC)

that is > 0.0.
(d) If no such pair of clusters is found, stop and output the current clustering.
(e) Merge the pair of clusters found in step (c). The models for the individual

clusters in the pair are replaced by a single, combined model.
(f) Go to step (a).

For our stopping criteria, we use ∆BIC, a variation of the commonly used
Bayesian Information Criterion (BIC) [2]. ∆BIC compares two possible hypothe-
ses: 1) a model in which the two clusters belong to the same speaker or 2) a model
in which to two clusters represent different speakers. The variation used was in-
troduced by Ajmera et al. [9], [10], and consists of the elimination of the tunable
parameter (λ) by ensuring that, for any given ∆BIC comparison, the difference
between the number of free parameters in the two hypotheses is zero.

3 Experiments and Results

3.1 Data

All of the experiments reported here were conducted using data distributed by
NIST as part of the Rich Transcription 2004, 2005, 2006 and 2007 meeting recog-
nition evaluations [11]. This data consists of excerpts from multi-party meetings
collected at eight different sites. From each meeting, an excerpt (chosen by NIST)
of 10 to 12 minutes is used.

RT07s Development Data Table 3.1 lists the names of the 21 meetings we
used for our development testing for this year’s evaluation. Because of the “flak-
iness” of the diarization error rate (DER) (see 3.2 for an explanation of DER)
that we have observed in previous work [12], we believe that it is important
to use as many meetings as possible for development. This helps to “smooth”
diarization error rates by preventing large variations in the scores of one or two
meetings from influencing the overall DER.

We performed all of our development work on the Multiple Distant Micro-
phone (MDM) condition.



ICSI 20000807-1000 ICSI 20010208-1430
LDC 20011116-1400 LDC 20011116-1500
NIST 20030623-1409 NIST 20030925-1517
AMI 20041210-1052 AMI 20050204-1206
CMU 20050228-1615 CMU 20050301-1415
VT 20050304-1300 VT 20050318-1430
CMU 20050912-0900 CMU 20050914-0900
EDI 20050216-1051 EDI 20050218-0900
NIST 20051024-0930 NIST 20051102-1323
TNO 20041103-1130 VT 20050623-1400
VT 20051027-1400

Table 1. The names of the 21 meetings used for development.

CMU 20061115-1030 CMU 20061115-1530
EDI 20061113-1500 EDI 20061114-1500
NIST 20051104-1515 NIST 20060216-1347
VT 20050408-1500 VT 20050425-1000

Table 2. The names of the eight RT07s evaluation meetings.

RT07s Evaluation Data Table 3.1 list the eight meetings that were chosen
by NIST for this year’s evaluation.

3.2 Error Metric

The metric used to evaluate the performance of the system is the same as is used
in the NIST RT evaluations and is called Diarization Error Rate (DER). It is
computed by first finding an optimal one-to-one mapping of reference speaker
ID to system output ID and then obtaining the error as the percentage of time
that the system assigns the wrong speaker label. All results presented here use
the official NIST DER metric.

3.3 Experiments

Speech/Non-speech Detection This speech/non-speech system described in
Section 2.2 outperformed last year’s speech/non-speech system on our develop-
ment set. Although typically in the meeting domain the number of non-speech
sounds is negligible, in two of the twenty one meetings of our development set,
the system classified part of the audio as non-speech sounds (paper shuffling and
doors slamming). In the other meetings, (including all of the meetings in the test
set) the BIC score was always positive and each sound model was discarded.

Table 3 contains the results of last year’s system and our new system on
the test set. The first two rows show the results scored only for speech activity
detection. The new system has a slightly lower false alarm rate. The last two
rows of table 3 show the results of our current diarization system using either the



speech/non-speech segmentation of the RT06 detector or the RT07 detector. On
this data, the new detector has a lower false alarm rate. Most of the performance
gain though is a result of the reduction in speaker error (diarization). This is
partly explainable by the fact that we do not smooth the speech/non-speech data
before diarization (see the next experiment). We surmise that the remainder of
the gain is due to the reduced number of false alarms. We believe that this helps
to make the data used to train the GMMs “cleaner”, resulting in better models.

System % missed speech % false alarm % SAD % Spkr % DER

RT06 (only SAD) 1.10 2.80 3.90 n.a. n.a.
RT07 (only SAD) 1.20 2.10 3.30 n.a. n.a.
RT06 (diarization) 4.40 2.30 6.70 4.10 10.81
RT07 (diarization) 4.50 1.50 6.00 2.50 8.51

Table 3. Performance of the RT06 and RT07 speech/non-speech detectors on the
RT07s Eval data. In the first two rows, only the SAD segmentation is scored. The
last two rows show the results of the RT07 diarization system using either the RT06
speech/non-speech system or the RT07 speech/non-speech system.

Smoothing SAD In previous years, we have tuned our speech/non-speech de-
tectors by minimizing the SAD error on a development set. One of the steps
that helps in minimizing the SAD error is ‘smoothing’ the output (NIST pro-
vides scripts to do this). During this process, short non-speech segments (shorter
than 0.3s) are removed from the segmentation. Smoothing helps to reduce the
SAD error because the reference segmentation is smoothed as well, and so these
little fragments of non-speech will be regarded as missed speech if no smoothing
is performed. On the other hand, adding these short non-speech segments to
the speech data that is processed by the speaker diarization system will most
likely increase the DER. The non-speech will be assigned to one or more clus-
ters and will “muddy” the data pool, forcing the GMMs to be less specific for
a particular speaker. Therefore, this year we decided to use the unsmoothed
speech/non-speech segmentation as input to our diarization system and perform
smoothing after the diarization process is finished. The improvement over using
the smoothed speech/non-speech segmentations on the test set was marginal. On
the conference room MDM task, using the smoothed segmentation resulted in
a diarization error of 9.03%, and so the improvement by using the unsmoothed
speech/non-speech input was only 0.52% absolute.

Blame assignment In order to find out what part of our system is contributing
most to the total DER, we conducted a cheating experiment. Instead of using the
automatically generated speech/non-speech segmentation, we used the reference
segmentation as input for our diarization system. Table 4 contains the error rates



of our MDM and SDM submissions and the results of the cheating experiments.
All results are scored with and without overlap.

%Miss %FA %Spkr %DER

MDM -ref +ovlp 4.5 1.5 2.5 8.51

MDM +ref +ovlp 3.7 0.0 3.8 7.47
MDM -ref -ovlp 0.9 1.6 2.6 5.11
MDM +ref -ovlp 0.0 0.0 3.9 3.94
SDM -ref +ovlp 5.0 1.8 14.9 21.74

SDM +ref +ovlp 3.7 0.0 12.8 16.51
SDM -ref -ovlp 1.4 2.0 14.7 18.03
SDM +ref -ovlp 0.0 0.0 12.7 12.75

Table 4. DER for the MDM and SDM submissions. The rows in bold show the results of
the actual submissions. They are scored with overlap and make use of our speech/non-
speech segmentation. The systems marked with -ovlp/+ovlp are scored with/without
overlap and the systems marked with -ref/+ref make use of the automatic speech/non-
speech segmentation or of the reference speech/non-speech segmentation.

Even if the reference segmentation is used, the percentage of missed speech
will not be zero. This is because our diarization system is only able to assign
a speech fragment to one single speaker and thus, when scoring with overlap
speech, all overlapping speech will be missed. As can be seen in the second row
of table 4 the error due to missed overlapping speech is 3.7%. The total error
due to missed speech and false alarms is 6.0%. Subtracting the error due to
overlap leaves the error contribution of our speech/non-speech system: 2.3%. The
remaining 3.8% of the total DER is caused by the diarization step (speaker error).
Note that the percentages change slightly if scored without overlap because
ignoring segments with overlap will decrease the total amount of speech, which
is part of the DER calculation.

The same blame assignment can be done for the SDM task. The error because
of missed overlapping speech for the SDM task is 3.7%, and the error due to the
speech/non-speech detector is 3.1% (3.4% if scored without overlap). The speaker
error caused by the diarization system is 14.9%.

Noise Filtering In a series of experiments, we tested how much the system
gains from applying Wiener filtering. Wiener filtering is normally applied to the
audio used for the speech/non-speech detector, and on the audio that is used
to create MFCC features, and on the audio that is used to calculate the de-
lay features. Table 5 shows the results of several experiments where we omitted
filtering for one or more of these components. It shows that filtering helps to
reduce the DER considerably. Although it seems that filtering the audio for
speech/non-speech helps the most, the SAD error on unfiltered audio only in-
creases marginally (from 3.3% to 3.4%).



Where do we apply Wiener filtering? %DER

Nowhere 15.80
Speech/non-speech 10.54

Speech/non-speech and MFCC 12.99
Speech/non-speech and Delays 13.70

All components 8.51

Table 5. DER for the MDM submission (bottom row) and for the experiments where
Wiener filtering is omitted in one or more of the components.

Delay Features This year we used the algorithm introduced in [7] to auto-
matically determine stream weights for the MFCC and delay feature streams. In
last year’s submission, the weights were fixed to 0.9 and 0.1. We have conducted
an experiment on this year’s evaluation data where the weights were fixed (as
was done last year) in order to determine if the adaptive weighting was the right
choice for the evaluation data. On the MDM conference meeting task the DER
was 9.29% using the RT 2006 fixed weights. Thus, the new algorithm improved
the DER by 0.78% absolute.

The gap between our results in the SDM task and MDM task is considerably
large. This performance difference could be because it is not possible to use
the second (delay) feature stream for SDM. To test this hypothesis we have
ran the MDM data using only the MFCC stream. The diarization error of this
experiment is 14.02%. A difference of 5.51% DER absolute.

4 Conclusions

In this paper, we have presented the ICSI RT07s speaker diarization system.
This year, we introduced a new speech/non-speech detector that is able to filter
out audible non-speech without the need for models trained on “outside” data.
This new speech/non-speech system reduced false alarm errors by 0.7% absolute
compared to our RT06s speech/non-speech system. Post evaluation experiments
showed that by reducing the false alarms, the diarization system also performed
better (2.3% DER absolute).

Other post evaluation experiments showed that the use of cross-channel de-
lays as a second feature stream (for the MDM task) improved the system con-
siderably resulting in a gain of 5.51% DER absolute. We also observed that
omitting noise filtering in either one of the feature streams decreases the perfor-
mance of the system by up to 7.29% absolute. We obtained modest improvements
(0.52% DER absolute) in system performance by using unsmoothed speech/non-
speech segmentations as input to the diarization system. We also achieved an-
other modest improvement (0.78% DER absolute) by dynamically tuning the
stream weights as proposed by [7] rather than using fixed stream weights.

The gap in performance of our system between the SDM and MDM tasks is
striking. Our post evaluation experiments showed that the errors due to missed



overlapping speech and misclassified speech/non-speech are comparable for the
two tasks. Thus, the main difference in performance is caused by the diarization
system itself (3.8% DER for MDM and 14.9% DER for SDM). We believe that
our SDM system can be improved considerably by introducing additional feature
streams, similar to what we used in the MDM system. Of course these additional
streams would not be based on delays since there is only a single microphone in
the SDM condition, but we believe that we could use other acoustic features (e.g.
PLP or RASTA features), or even the output of other speaker diarization systems
as additional feature streams. For the next evaluation we will concentrate on
finding suitable features to add to the primary MFCC feature stream.

Finally, because of the “flakiness” of the diarization error rate, this year we
performed all of our development work using a much larger set of recordings (21
in total) than we have used in past evaluations. We believe that using this larger
set of data helps to reduce some of the flakiness, thus leading to better decisions
about system design and tuning.
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