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HEARING IS BELIEVING: BIOLOGICALLY-INSPIRED METHODS FOR 

ROBUST AUTOMATIC SPEECH RECOGNITION 

Richard M. Stern and Nelson Morgan 

Introduction  

Many feature extraction methods that have been used for automatic speech recognition (ASR) 

have either been inspired by analogy to biological mechanisms, or at least have similar functional 

properties to biological or psychoacoustic properties for humans or other mammals. These meth-

ods have in many cases provided significant reductions in errors, particularly for degraded sig-

nals, and are currently experiencing a resurgence in community interest. Many of them have been 

quite successful, and others that are still in early stages of application still seem to hold great 

promise, given the existence proof of amazingly robust natural audio processing systems. 

The common framework for state-of-the-art automatic speech recognition systems has been fairly 

stable for about two decades now: a transformation of a short-term power spectral estimate is 

computed every 10 ms, and then is used as an observation vector for Gaussian-mixture-based 

HMMs that have been trained on as much data as possible, augmented by prior probabilities for 

word sequences generated by smoothed counts from many examples. The most probable word 

sequence is chosen, taking into account both acoustic and language probabilities. While these sys-

tems have improved greatly over time, much of the improvement has arguably come from the 

availability of more data, more detailed models to take advantage of the greater amount of data, 

and larger computational resources to train and evaluate the models. Still other improvements 

have come from the increased use of discriminative training of the models. Additional gains have 

come from changes to the front end (e.g., normalization and compensation schemes), and/or from 

adaptation methods that could be implemented either in the stored models or through equivalent 

transformations of the incoming features.  Even improvements obtained through discriminant 
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training (such as with the Minimum Phone Error or MPE method) have been matched in practice 

by discriminant transformations of the features (such as Feature MPE, or fMPE ). 

System performance is crucially dependent on advances in feature extraction, or on modeling 

methods that have their equivalents in feature transformation approaches. With degraded acousti-

cal conditions (or, more generally, when there are mismatches between training and test condi-

tions), it is even more important to generate features that are insensitive to non-linguistic sources 

of variability.  For instance, RASTA processing and cepstral mean subtraction both have the pri-

mary effect of reducing sensitivity to linear channel effects. Significant problems of this variety 

remain – even as seemingly simple a task as the recognition of digit strings becomes extremely 

difficult when the utterances are corrupted by real-world noise and/or reverberation. 

While machines struggle to cope with even modest amounts of acoustical variability, human be-

ings can recognize speech remarkably well in similar conditions; a solution to the difficult prob-

lem of environmental robustness does indeed exist.  While a number of fundamental attributes of 

auditory processing remain poorly understood, there are many instances in which analysis of psy-

choacoustical or physiological data can inspire signal processing research. This is particularly 

helpful because providing a particular conceptual framework for feature-extraction research 

makes feasible a search through a potentially very large set of possible techniques. 

In many cases researchers develop feature-extraction approaches without any conscious mimick-

ing of any biological function. Even for such approaches, a post hoc examination of the method 

often reveals similar behavior.  

In summary, the feature extraction stage of speech recognition is important historically and is the 

subject of much current research, particularly to promote robustness to acoustic disturbances such 

as additive noise and reverberation.  Biologically-inspired and biologically-related approaches are 

an important subset of feature extraction methods for ASR.  
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Background  

State of the Art for ASR in Noise versus human performance 

Human beings have amazing capabilities for recognizing speech under conditions that still con-

found our machine implementations.  In most cases ASR is still more errorful, even for speech 

signals with high signal-to-noise ratios (SNRs), (Lippmann, 1997). More recent results show a 

reduced but still significant gap (Scharenborg and Cooke, 2008; Glenn et al., 2010). For instance, 

the lowest word error rates on a standard conversational telephone recognition task are in the 

mid-teens, but inter-annotator error rates for humans listening to speech from this corpus have 

been reported to be around 4 percent for careful transcription. As Lippmann noted, for the 5000-

word Wall Street Journal task, human listeners’ error rate was tiny and virtually the same for 

clean and noisy speech (for additive automotive noise at 10-dB SNR). Even the most effective 

current noise robustness strategies cannot approach this. There is, however, a caveat: human be-

ings must pay close attention to the task to achieve these results.  

Human hearing does much more than speech recognition. In addition, the nature of information 

processing by computers is inherently different from biological computation. Consequently, when 

implementing ASR mechanisms inspired by biology, we must take care to understand the func-

tion of each enhancement. Our goals as speech researchers are fundamentally different from those 

of biologists, whose aim is to create models that are functionally equivalent to the real thing.  

What follows is a short summary of mammalian auditory processing, including the general re-

sponse of the cochlea and the auditory nerve to sound, basic binaural analysis, some important 

attributes of feature extraction in the brainstem and primary auditory cortex, along with some rel-

evant basic psychoacoustical results.  We encourage the reader to consult texts and reviews such 

as Moore (2003) and Pickles (2008) for a more complete exposition of these topics. 

Peripheral Processing 
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Peripheral frequency selectivity.  The initial part of the auditory chain is a series of connected 

parts, moving signals forward. Time-varying air pressure associated with sound impinges on the 

ears, inducing small inward and outward motion of the tympanic membrane (eardrum). The ear-

drum is connected mechanically to the three bones in the middle ear, the malleus, incus, and sta-

pes (or, more commonly, the hammer, anvil, and stirrup).  The mechanical vibrations of the sta-

pes induce wave motion in fluid in the spiral tube known as the cochlea. The basilar membrane is 

a structure that runs the length of the cochlea. It has a density and stiffness that vary along its 

length, causing its resonant frequency to vary as well. Affixed to the human basilar membrane are 

about 15,000 “hair cells”, which innervate about 30,000 spiral ganglion cells whose axons form 

the individual fibers of the auditory nerve.  Because of the spatially-specific nature of this trans-

duction, each fiber of the auditory nerve only responds to a narrow range of frequencies.   

Sound at a particular frequency elicits vibration along a localized region of the basilar membrane, 

which in turn causes the initiation of neural impulses along fibers of the auditory nerve that are 

attached to that region of the basilar membrane.  The frequency for which a fiber of the auditory 

nerve is the most sensitive is referred to as the “characteristic frequency” (CF) of that fiber.  This 

portion of the auditory system is frequently modeled as a bank of bandpass filters (despite the 

many nonlinearities in the physiological processing), and the “bandwidth” of the filters appears to 

be approximately constant for fibers with CFs above 1 kHz when plotted as a function of log fre-

quency. In other words, these physiological filters have a nominal bandwidth that is roughly pro-

portional to center frequency. The bandwidth of the filters is roughly constant at lower frequen-

cies. This frequency-based or “tonotopic” organization of individual parallel channels is generally 

maintained from the auditory nerve to higher centers of processing in the brainstem and the audi-

tory cortex. 

The basic description above is highly simplified, ignoring nonlinearities in the cochlea and in the 

hair-cell response. In addition, there are actually two types of hair cells with systematic differ-
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ences in response. The “inner” hair cells transduce and pass on the spectral representation of the 

signal produced by the basilar membrane to higher levels in the auditory system. The “outer” hair 

cells, which constitute the larger fraction of the total population, have a response that is affected 

in part by efferent feedback from higher centers of neural processing.  They amplify the incoming 

signals nonlinearly, with low-level inputs amplified more than more intense ones, achieving a 

compression in dynamic range. Spikes generated by fibers of the auditory nerve occur stochasti-

cally, and hence the response of the nerve fibers must be characterized statistically.  

The rate-intensity function.  While the peripheral auditory system can roughly be modeled as a 

sequence of operations from the original arrival of sound pressure at the outer ear to its represen-

tation at the auditory nerve (ignoring the likely importance of feedback), these components are 

not linear. In particular, the rate-intensity function is roughly S-shaped, with a low and fairly con-

stant rate of response for intensities below a threshold, a limited range of about 20 dB in which 

the response rate increases in roughly linear proportion to the signal intensity, and a saturation 

region for higher intensities. Since the range of intensities between the lowest detectable sounds 

and those that can cause pain (and damage!) is about 120 dB, compression is a critical part of 

hearing.  The small dynamic range of individual fibers is mitigated to some extent by the varia-

tions in fiber threshold intensities at each CF, as well as the use of a range of CFs to represent 

sounds.   

Synchrony of temporal response to incoming sounds.  For low-frequency tones, e.g., below 5 

kHz (in cats), auditory neurons are more likely to fire in phase with the stimulus, even though the 

exact firing times remain stochastic in nature. This results in a response that roughly follows the 

shape of the input signal on the average, at least when the signal amplitude is positive. This 

“phase-locking” permits the auditory system to compare arrival times of signals to the two ears at 

low frequencies, a critical part of the function of binaural spatial localization. However, this 

property may also be important for robust processing of the signal from each individual ear. The 
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extent to which the neural response at each CF is synchronized to the nearest harmonic of the 

fundamental frequency of a vowel, called the averaged localized synchronized rate (ALSR), is 

comparatively stable over a range of input intensities, while the mean rate of firing can vary sig-

nificantly. This suggests that the timing information associated with the response to low-

frequency components can be substantially more robust to intensity and other sources of signal 

variability than the mean rate of neural response. Note that the typical signal processing measures 

used in ASR are much more like mean-rate measures, and entirely ignore this timing-based in-

formation. 

Lateral suppression.  For more complex signals than pure tones, the response to signals at a giv-

en frequency may be suppressed or inhibited by energy at adjacent frequencies. The presence of a 

second tone over a range of frequencies surrounding the CF inhibits the response to the probe 

tone at CF, even for some intensities of the second tone that would be below threshold if it had 

been presented in isolation. This form of “lateral suppression” enhances the response to changes 

in the signal content with respect to frequency, just as overshoots and undershoots in the transient 

response have the effect of enhancing the response to changes in signal level over time.  

As an example of the potential benefit that may be derived from such processing, the upper pan-

els of Fig. 1 depict the spectrogram of an utterance from the TIMIT database for clean speech 

(left column) and speech in the presence of additive white noise at an SNR of 10 dB (right col-

umn).  The central panels of that figure depict a spectrogram of the same utterance derived from 

standard MFCC features.  Finally, the lower panels of the same figure shows reconstructed spec-

trograms of the same utterance derived from a physiologically-based model of the auditory-nerve 

response to sound proposed by Zhang et al. (2001) that incorporates the above phenomena.  It can 

be seen that the formant trajectories are more sharply defined, and that the impact of the additive 

noise on the display is substantially reduced. 
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Processing at more central levels 

Sensitivity to interaural time delay and intensity differences.  Two important cues for human 

localization of the direction of arrival of a sound are the interaural time difference (ITD) and in-

teraural intensity difference (IID). ITDs are most useful at low frequencies and IIDs are only sig-

nificant at higher frequencies for spatial aliasing and physical diffraction, respectively. Units in 

the superior olivary complex and the inferior colliculus appear to respond maximally to a single 

“characteristic” ITD, sometimes referred to as the characteristic delay (CD) of the unit. An en-

semble of such units with a range of CFs and CDs can produce a display that represents the in-

teraural cross-correlation of the signals to the two ears after the frequency-dependent and nonlin-

ear processing of the auditory periphery.  

Sensitivity to amplitude modulation and modulation frequency analysis.   Physiological re-

cordings in cochlear nuclei, the inferior colliculus, and the auditory cortex have revealed the pres-

ence of units that appear to be sensitive to the modulation frequencies of sinusoidally-amplitude-

modulated (SAM) tones (e.g., Joris et al. 2004). In some of these cases, response would be max-

imum at a particular modulation frequency, independently of the carrier frequency of the SAM 

tone complex, and some of these units are organized anatomically according to best modulation 

frequency. These results have lead to speculation that the so-called modulation spectrum may be 

a useful and consistent way to describe the dynamic temporal characteristics of complex signals 

like speech after the peripheral frequency analysis. However, psychoacoustic results show that 

lower modulation frequencies appear to have greater significance for phonetic identification.  

Spectro-temporal receptive fields.  Finally, the firing patterns of neurons in the A1 cortical 

spiking in ferrets show that neurons in A1 (primary auditory cortex) are highly tuned to specific 

spectral and temporal modulations (as well as being tonotopically organized by frequency, as in 

the auditory nerve) (Depireux et al, 2001). The sensitivity patterns of these neurons are often re-
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ferred to as spectro-temporal receptive fields (STRFs) and are often illustrated as color tempera-

ture patterns on an image of the time-frequency plane. 

Psychophysical phenomena that have motivated auditory models  

Psychoacoustical as well as physiological results have enlightened us about the functioning of the 

auditory system.  In fact, interesting auditory phenomena are frequently first  revealed  through 

psychoacoustical experimentation, with the probable physiological mechanism underlying the 

perceptual observation identified at a later date.  We briefly discuss several sets of basic psychoa-

coustic observations that have played a major role in auditory modeling. 

Auditory frequency resolution.  We have noted above that many physiological results suggest 

that the auditory system performs a frequency analysis, which is typically approximated in audi-

tory modeling by a bank of linear filters.  Beginning with the pioneering efforts of Harvey Fletch-

er and colleagues in the 1940s auditory researchers have attempted to determine the shape of the-

se “filters” and their effective bandwidth (frequently referred to as the critical band) through the 

use of many clever psychoacoustical experiments.    

Three distinct frequency scales have emerged from these experiments that describe the putative 

bandwidths of the auditory filters.  The Bark scale (named after Heinrich Barkhausen, who pro-

posed the first subjective measurements of loudness) is based on the results of traditional masking 

experiments  (Zwicker, 1961).  The mel scale (referring to the word “melody”) is based on pitch 

comparisons (Stevens et al., 1937).  The ERB scale (for “equivalent rectangular bandwidth”) was 

developed to describe the results of several experiments using differing procedures (Moore and 

Glasberg, 1983).  Despite the differences in how they were developed, the Bark, mel, and ERB 

scales describe a very similar dependence of auditory bandwidth on frequency, implying con-

stant-bandwidth filters at low frequencies and constant-Q filters at higher frequencies, consistent 

with the physiological data.  All common models of auditory processing begin with a bank of fil-
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ters whose center frequencies and bandwidths are based on one of these three frequency scales. 

The psychoacoustical transfer function.  The original psychoacousticians were physicists and 

philosophers of the nineteenth century who sought to develop mathematical functions that related 

sensation and perception, such as the dependence of the subjective loudness of a sound on its 

physical intensity.  Two different “psychophysical” scales for intensity have emerged over the 

years.  The first, developed by Gustav Fechner, was based on the 19th century empirical observa-

tions of Weber, who noticed that the just-noticeable increment in intensity was a constant fraction 

of the reference intensity level.  MFCCs and other common features use a logarithmic transfor-

mation that is consistent with this observation as well as the assumption that equal increments of 

perceived intensity should be marked by equal intervals along the perceptual scale.  

Many years after Weber’s observations, Stevens (1957) proposed an alternate loudness scale, 

which implicitly assumes that perceived ratios in intensity should represent equal ratios (rather 

than increments) on the perceptual scale.  This suggests a nonlinearity in which the incoming sig-

nal intensity is raised to a power to approximate the perceived loudness.  This approach is sup-

ported by psychophysical experiments in which subjects directly estimate perceived intensity in 

many sensory modalities, with an exponent of approximately 0.33 fitting the results for experi-

ments in hearing.   This compressive power-law nonlinearity has been incorporated into PLP pro-

cessing and other feature extraction schemes. 

Auditory thresholds and perceived loudness.  The human threshold of hearing varies with fre-

quency, as the auditory system achieves the greatest sensitivity between about 1 and 4 kHz with a 

minimum threshold of about –5 dB SPL (Fletcher and Munson, 1933).  The threshold of hearing 

increases for both lower and higher frequencies of stimulation. The human response to acoustical 

stimulation undergoes a transition from hearing to pain at a level of very roughly 110 dB SPL for 

most frequencies.  The frequency dependence of the threshold of hearing combined with the rela-
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tive frequency independence of the threshold of pain causes the perceived loudness of a narrow-

band sound to depend on both its intensity and frequency.   

Nonsimultaneous masking.  Nonsimultaneous masking occurs when the presence of a masker 

elevates the threshold intensity for a target that precedes or follows it.  Forward masking refers to 

inhibition of the perception of a target after the masker is switched off.  When a masker follows 

the probe in time, the effect is called backward masking.  Masking effects decrease as the time 

between masker and probe increases, but can persist for 100 ms or more (Moore 2003).  

The precedence effect.  Another important attribute of human binaural hearing is that binaural 

localization is dominated by the first-arriving components of a complex sound.  This phenome-

non, which is referred to as the precedence effect, is clearly helpful in enabling the perceived lo-

cation of a source in a reverberant environment to remain constant, as it is dominated by the char-

acteristics of the components of the sound which arrive directly from the sound source while sup-

pressing the potential impact of later-arriving reflected components from other directions.  In ad-

dition to its role in maintaining perceived constancy of direction of arrival in reverberation, the 

precedence effect is also believed by some to improve speech intelligibility in reverberant envi-

ronments, although it is difficult to separate the potential impact of the precedence effect from 

that of conventional binaural unmasking. 

Biologically-related methods in conventional feature extraction for ASR 

The overwhelming majority of speech recognition systems today make use of features that are 

based on either Mel-Frequency Cepstral Coefficients (MFCCs)  (Davis and Mermelstein, 1980) 

or features based on  perceptual linear predictive (PLP) analysis of speech (Hermansky, 1990).   

In this section we discuss how MFCC and PLP coefficients are already heavily influenced by 

knowledge of biological signal processing. Both MFCC and PLP features make explicit or im-

plicit use of the frequency warping implied by psychoacoustical experimentation (the mel scale 
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for MFCC parameters and the Bark scale for PLP analysis, as well as psychoacoustically-

motivated amplitude compression (the log scale for MFCC, and a power-law compression for 

PLP coefficients).  The PLP features include additional attributes of auditory processing includ-

ing more detailed modeling of the asymmetries in frequency response implied by psychoacousti-

cal measurements of auditory frequency selectivity (Schroeder, 1977), pre-emphasis based on the 

loudness contours of Fletcher and Munson (1933), among other phenomena.  Finally, both MFCC 

and PLP features have mechanisms to reduce the sensitivity to changes in the long-term average 

log power spectra, through the use of cepstral mean normalization or RASTA processing (Her-

mansky and Morgan, 1994).   

While the primary focus of this article is on ASR algorithms that are inspired by mammalian 

recognition (especially human), we would be remiss in not mentioning a now-standard method 

that is based on a simplified model of speech production. What is commonly called vocal tract 

length normalization (VTLN) is a further scaling of the frequency axis based on the notion that 

vocal tract resonances are higher for shorter vocal tracts. In practice vocal tract measurements are 

not available, and a true customization of the resonance structure for an individual would be quite 

complicated.  This is typically implemented using a simplified frequency scaling function, which 

is most commonly a piecewise-linear approach warping function to account for edge effects as 

suggested by Cohen et al. (1995), obtaining the best values of the free parameters statistically. 

Feature extraction based on models of the auditory system 

We review and discuss in this section the trends and results obtained over three decades involving 

feature extraction based on computational models of the auditory system.  In citing specific re-

search results we have attempted to adopt a broad perspective that includes representative work 

from most of the relevant conceptual categories.  Nevertheless, we recognize that in a brief re-
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view such as this it is necessary to omit some important contributors.  We apologize in advance to 

the many researchers whose relevant work is not included here. 

“Classical” auditory models of the 1980s.   

Much work in feature extraction based on physiology is based on three seminal auditory models 

developed in the 1980s by Seneff (1988), Ghitza (1986), and Lyon (1982).  All of these models 

included a description of processing at the cochlea and the auditory nerve that is far more physio-

logically accurate and detailed than the processing used in MFCC and PLP feature extraction, 

including more realistic auditory filtering, more realistic nonlinearities relating stimulus intensity 

to auditory response rate, synchrony extraction at low frequencies, lateral suppression (in Lyon’s 

model), and higher-order processing through the use of either cross-correlation processing or au-

to-correlation processing.  The early stages of all three models are depicted in a general sense by 

the blocks in the left panel of Fig. 2.  Specifically, Seneff’s model proposed a generalized syn-

chrony detector (GSD) that implicitly provided the autocorrelation value at lags equal to the re-

ciprocal of the center frequency of each processing channel.  Ghitza proposed ensemble-interval 

histogram (EIH) processing, which developed a spectral representation by computing times be-

tween a set of amplitude-threshold crossing of the incoming signal after peripheral processing.  

Lyon’s (1982) model included many of the same components found in the Seneff and Ghitza 

models, producing a display referred to as a cochleagram, which serves as a more physiological-

ly-accurate alternative to the familiar spectrogram.  Lyon also proposed a correlogram represen-

tation based on the running autocorrelation function at each frequency of the incoming signal, 

again after peripheral processing, as well as the use of interaural cross-correlation to provide the 

separation of incoming signals by direction of arrival (Lyon, 1983), building on earlier theories 

by Jeffress (1948) and  Licklider (1951).  

There was very little quantitative evaluation of the three auditory models in the 1980s, in part be-

cause they were computationally costly for that time.   In general, these approaches provided no 
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benefit in recognizing clean speech compared to MFCC/PLP representations, but they did im-

prove recognition accuracy when the input was degraded by noise and/or reverberation (e.g. 

Ghitza, 1986; Ohshima and Stern, 1994).   In general, work on auditory modeling in the 1980s 

failed to gain traction, not only because of the computational cost, but also because of a poor 

match between the statistics of the features and the statistical assumptions built into standard ASR 

modeling. In addition, there were more pressing fundamental shortcomings in speech recognition 

technology that first needed to be resolved. Despite this general trend, there was at least one sig-

nificant instantiation of an auditory model in a major large vocabulary system in the 1980’s, 

namely, IBM’s Tangora (Cohen, 1989). This front end incorporated, in addition to most of the 

other properties above, a form of short-term adaptation inspired by the auditory system.  Other 

important contemporary work included the auditory models of Deng and Geisler (1987), Payton 

(1988), and Patterson et al. (1992). 

 
Contemporary enabling technologies and current trends in feature extraction 

While the classical models described in the previous section are all more or less complete at-

tempts to model auditory processing at least at the auditory-nerve level to varying degrees of ab-

straction, there have been a number of other current trends that have been motivated directly or 

indirectly by auditory processing that have influenced feature extraction in a more general fash-

ion, even for features that are not characterized specifically as representing auditory models.   

Multi-stream processing.  The articulation index model of speech perception, which was sug-

gested by Fletcher (1940) and French and Steinberg (1947), and revived by Allen (1994), mod-

eled phonetic speech recognition as arising from independent estimators for critical bands.  This 

led to a great deal of interest initially in the development of multiband systems based on this view 

of independent detectors per critical band that were developed to improve robustness of speech 

recognition, particularly for narrowband noise (e.g., Hermansky et al, 1996).  This approach in 

turn can be generalized to the consideration of fusion of information from parallel detectors that 
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are presumed to provide complementary information about the incoming speech.  This infor-

mation can be combined at the input (feature) level (Morgan 2012), at the level at which the 

HMM search takes place (Ma et al, 2010), or at the output level by merging hypothesis lattices 

(Mangu et al, 2000). The incorporation of multiple streams with different modulation properties 

can be done in a number of ways, many of which requiring nonlinear processing.  This integration 

is depicted in a general sense by the right panel of Fig. 2.   

Long-time temporal evolution.  An important parallel trend has been the development of fea-

tures that are based on the temporal evolution of the envelopes of the outputs of the bandpass fil-

ters that are part of any description of the auditory system. Human sensitivity to overall temporal 

modulation has also been documented with perceptual experiments. As noted earlier, spectro-

temporal receptive fields have been observed in animal cortex, and these fields are sometimes 

much more extended in time than the typical short-term spectral analysis used in calculating 

MFCCs or PLP.  

Initially information about temporal evolution has been used to implement features based on fre-

quency components of these temporal envelopes, which is referred to as the modulation spectrum 

(Kingsbury 1998).  Subsequently, various groups have characterized these patterns using non-

parametric models as in the TRAPS and HATS methods (e.g., Hermansky and Sharma, 1999) or 

using parametric all-pole models such as frequency-domain linear prediction (FDLP) (e.g., 

Athineos and Ellis, 2003).  It is worth noting that that RASTA, mentioned earlier, was developed 

to emphasize the critical temporal modulations, and in so doing emphasize transitions (as was 

suggested in perceptual studies such as Furui, 1986), and reduce sensitivity to irrelevant steady 

state convolutional factors. More recently, temporal modulation in subbands was normalized to 

improve ASR in reverberant environments (Lu et al, 2009).   
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Spectro-temporal receptive fields.  Two-dimensional (2-D) Gabor filters are obtained by multi-

plying a 2-D sinewave by a 2-D Gaussian. Their frequency response can be used to model the 

spectro-temporal receptive fields of A1 neurons.  They also have the attractive properties of being 

self-similar, and they can be generated from a mother wavelet by dilation and rotation.  

Mesgarani et al. (2006) have used 2-D Gabor filters successfully in implementing features for 

speech/nonspeech discrimination and similar approaches have also been used to extract features 

for ASR by multiple researchers (e.g., Kleinschmidt, 2003). In many of these cases, multi-layer 

perceptrons (MLPs) were used to transform the filter outputs into a form that is more amenable to 

use by Gaussian mixture-based HMMs, typically using the Tandem approach (Hermansky et al, 

2000).  

Figure 3 compares typical analysis regions in time and frequency that are examined in (1) con-

ventional frame-based spectral analysis, (2) the long-term temporal analysis employed by TRAPS 

processing, and (3) the generalized spectro-temporal analysis that can be obtained using STRFs.  

The central column of Fig.  4 illustrates a pair of typical model STRFs obtained from 2-D Gabor 

filters.  As can be seen, each of these filters elicit responses from different aspects of the input 

spectrogram, resulting in the parallel representations seen in the column on the right. 

Feature extraction with two or more “ears”.   All of the attributes of auditory processing cited 

above are essentially single-channel in nature.  It is well known that human listeners compare 

information from the two ears to localize sources in space and separate sound sources that are 

arriving from different directions, a process generally known as binaural hearing.  Source locali-

zation and segregation is largely accomplished by estimating the interaural time difference (ITD) 

and the interaural intensity difference (IID) of the signals arriving at the two ears as reviewed in 

Stern et al. (2006).  In addition, the precedence effect, which refers to emphasis placed on the 

early-arriving components of the ITD and IID, can substantially improve sound localization and 

speech understanding in reverberant and other environments.   
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Feature extraction systems based on binaural processing have taken on several forms. The most 

common application of binaural processing is through the use of systems that provide selective 

reconstruction of spatialized signals that have been degraded by noise and/or reverberation by 

selecting those spectro-temporal components after short-time Fourier analysis that are believed to 

be dominated by the desired sound source (e.g. Roman et al., 2003;  Aarabi and Shi, 2004, Kim et 

al. (2010).  These systems typically develop binary or continuous masks in the time-frequency 

plane for separating the signals, using the ITD or interaural phase difference (IPD) of the signals 

as the basis for the separation.  Correlation-based emphasis is a second approach that is based on 

binaural hearing that operates in a fashion similar to multi-microphone beamforming, but with 

additional nonlinear enhancement of the desired signal based on interaural cross-correlation of 

signals after a model of peripheral auditory processing (Stern et al., 2007).  Finally, several 

groups have demonstrated that processing based on the precedence effect, both at the monaural 

level (e.g., Martin, 1997) and at the binaural level (e.g., Kim and Stern, 2010), typically through 

the use of enhancement of the leading edge of envelopes of the outputs of the auditory filters.  

This type of processing has been shown to be particularly effective in reverberant environments.   

Contemporary auditory models 

Auditory modeling enjoyed a renaissance during the 1990s and beyond for several reasons.  First, 

the cost of computation became much less of a factor because of continued developments in 

computer hardware and systems software.  Similarly, the development of efficient techniques to 

learn the parameters of Gaussian mixture models for observed feature distributions mitigated the 

problem of mismatch between the statistics of the incoming data and the assumptions underlying 

the stored models, and techniques for discriminative training potentially provide effective ways to 

incorporate features with very different statistical properties.  We briefly cite a small number of 

representative complete models of the peripheral auditory system as examples of how the con-

cepts discussed above can be incorporated into complete feature extraction systems.  These fea-
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ture extraction approaches were selected because they span most of the auditory processing phe-

nomena cited above; again, we remind the reader that this list is far from exhaustive. 

Tchorz and Kollmeier. Tchorz and Kollmeier (1999) developed an early “modern” physiologi-

cally-motivated feature extraction system, updating the classical auditory modeling elements. In 

addition to the basic stages of filtering and nonlinear rectification, their model also included adap-

tive compression loops that provided enhancement of transients, some forward and backward 

masking, and short-term adaptation.  These elements also had the effect of imparting a specific 

filter for the modulation spectrum, with maximal response to modulations in the spectral envelope 

occurring in the neighborhood of 6 Hz.  This model was initially evaluated using a database of 

isolated German digits with additive noise of different types, and achieved significant error rate 

reductions in comparison to MFCCs for all of the noisy conditions.  It has also maintained good 

performance in a variety of other evaluations. 

Kim, Lee, and Kil.  A number of researchers have proposed ways to obtain an improved spectral 

representation based on neural timing information.   One example is the zero-crossing peak anal-

ysis (ZCPA) proposed by Kim et al.  (1999), which can be considered to be a simplification of the 

level-crossing methods developed by Ghitza.  The ZCPA approach develops a spectral estimate 

from a histogram of the inverse time between successive zero crossings in each channel after pe-

ripheral bandpass filtering, weighted by the amplitude of the peak between those crossings.  This 

approach demonstrates improved robustness for ASR of isolated Korean words in the presence of 

various types of additive noise.  The ZCPA approach is functionally similar to aspects of the ear-

lier  model of Sheikhzadeh and Deng (1998), which also develops a histogram of the interpeak 

intervals of the putative instantaneous firing rates of auditory-nerve fibers, and weights the histo-

gram according to the amplitude of the initial peak in the interval.  The model of Sheikhzadeh and 

Deng makes use of the very detailed composite auditory model proposed by Deng and Geisler 

(1987).   
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Kim and Stern.  Kim and Stern (2012) described a feature set called Power Normalized Cepstral 

Coefficients (PNCC), incorporating relevant physiological phenomena in a computationally effi-

cient fashion. PNCC processing includes (1) traditional pre-emphasis and short-time Fourier 

transformation, (2) integration of the squared energy of the STFT outputs using gammatone fre-

quency weighting, (3) “medium-time” nonlinear processing that suppresses the effects of additive 

noise and room reverberation, (4) a power-function nonlinearity with exponent 1/15, and (5) gen-

eration of cepstral-like coefficients using a discrete cosine transform (DCT) and mean normaliza-

tion.  For the most part, noise and reverberation suppression is accomplished by a nonlinear series 

of operations that accomplish running noise suppression and temporal contrast enhancement, 

working in a “medium-time” context with analysis intervals on the order of 50 to 150 ms.  PNCC 

processing has been found by the CMU group and independent researchers to outperform base-

line processing as well as several systems developed specifically for noise robustness such as the 

ETSI Advanced Front End (AFE).  This approach with minor modifications is also quite effective 

in reverberation (Kim and Stern, 2010). 

Chi, Ru, and Shamma.  In a seminal paper, Chi et al. (2005) presented a new abstract model of 

the putative representation of sound at both the peripheral level and in the auditory cortex, based 

on the research by Shamma’s group and others.  The model describes a representation with three 

independent variables: auditory frequency, “rate” (characterizing temporal modulation) , and 

“scale” (characterizing spectral modulations), as would be performed by successive stages of 

wavelet processing.  The model relates this representation to feature extraction at the level of the 

brainstem and the cortex, including detectors based on STRFs, incorporating a cochlear filterbank 

at the input to the STRF filtering.  Chi et al. also generated speech from the model outputs.  

Ravuri. In his 2011 thesis, Ravuri describes a range of experiments incorporating over a hundred 

2-D Gabor filters, each implementing a single STRF, and each with its own discriminatively 

trained neural network to generate noise-insensitive features for ASR. The STRF parameters were 
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chosen to span a range of useful values for rate and scale, as determined by many experiments, 

and then were applied separately to each critical band. The system thus incorporated multiple 

streams comprising discriminative transformations of STRFs, many of which also were focused 

on long temporal evolution. The effectiveness of the representation was demonstrated for Auro-

ra2 noisy digits and for a noisy version of the Numbers 95 data set. 

Summary 

Feature extraction methods based on an understanding of both auditory physiology and psychoa-

coustics, have been incorporated into ASR systems for decades.  In recent years, there has been a 

renewed interest in the development of signal processing procedures based on much more de-

tailed characterization of hearing by humans and other mammals.  It is becoming increasingly 

apparent that the careful implementation of physiologically-based and perceptually-based signal 

processing can provide substantially increased robustness in situations in which speech signals 

are degraded by interfering noise of all types, channel effects, room reverberation, and other 

sources of distortion.  And the fact that humans can hear and understand speech, even under con-

ditions that confound our current machine recognizers, makes us believe that there is more to be 

gained through a greater understanding of human speech recognition – “hearing is believing.” 
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Figure 1: (Upper panels) MATLAB spectrogram of speech in the presence of additive white noise at an SNR of 10 dB.  
(Central panels) Reconstructed spectrogram of the utterance after traditional MFCC processing.  (Lower panels) Re-
constructed spectrogram of the utterance after peripheral auditory processing based on the model of Zhang et al. 
(2001).  The columns represent responses to clean speech (left) and speech in white noise at an SNR of 10 dB (right). 

 

Figure 2: (Left panel) Generalized organization of contemporary feature extraction procedures that are analogous to 
auditory periphery function.  Not all blocks are present in all feature extraction approaches, and the organization may 
vary.  (Right panel) Processing of the spectro-temporal feature extraction by spectral analysis, temporal analysis, or 
the more general case of (possibly many) STRFs. These can incorporate long temporal support, can comprise a few or 
many streams, and can be combined simply or with discriminative mechanisms incorporating labeled training data. 
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Figure 3: Comparison of the standard analysis window used in MFCC, PLP and other feature sets, which computes 
features over a vertical slice of the time-frequency plane (green box) with the horizontal analysis window used in 
TRAPS analysis (white box), and the oblique ellipse that represents a possible STRF for detecting an oblique formant 
trajectory (blue ellipse). 

 

Figure 4: Two decompositions of spectrograms using differing spectro-temporal response fields (STRFs).  The spectro-
gram at the left is correlated with STRFs of differing rate and scale, producing the parallel representations as in the 
right column.   
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