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Abstract

Spectro-temporal filtering has been shown to result in
features that can help to increase the robustness of au-
tomatic speech recognition (ASR) in the past. We re-
place the spectro-temporal representation used in previ-
ous work with spectrograms that incorporate knowledge
about the signal processing of the human auditory sys-
tem and which are derived from Power-Normalized Cep-
stral Coefficients (PNCCs). 2D-Gabor filters are applied
to these spectrograms to extract features evaluated on a
noisy digit recognition task. The filter bank is adapted to
the new representation by optimizing the spectral modu-
lation frequencies associated with each Gabor function.
A comparison of optimized parameters and the spectral
modulation of vowels shows a good match between op-
timized and expected range of frequencies. When pro-
cessed with a non-linear neural net and combined with
PNCCs, Gabor features decrease the error rate compared
to the baseline and PNCCs by at least 19%.

Index Terms: automatic speech recognition, spectro-
temporal features, power-normalized features

1. Introduction

The recognition of spoken language is a task that is eas-
ily performed by the healthy human auditory system, yet
automatic speech recognition (ASR) often fails to accu-
rately transcribe speech, especially in noisy conditions. It
is this performance gap between human speech recogni-
tion (HSR) and ASR that motivates the use of auditory
features for ASR with the aim of increasing its overall
robustness.

Kleinschmidt and Gelbart [2] proposed the use of 2-
dimensional Gabor filters to capture spectral, temporal
and spectro-temporal cues from speech signals. This was
motivated by psycho-acoustic and physiologic findings
showing that these cues are detected by the primary au-
ditory cortex of mammals, and are presumably also ex-
ploited by human listeners [4]. A challenge when de-
signing filters for this task is to determine a set of suit-

able parameters that result in a robust feature set. Klein-
schmidt and Gelbart used a machine learning approach
that started with a random set of filters that was iteratively
optimized using a simple classifier (a linear neural net)
with a small speech recognition task (the recognition of
isolated digits). In more recent work, Gabor filters have
been organized in a filter bank (Figure 1), which resulted
in relative improvements of the word error rate (WER) by
30-45% compared to a MFCC baseline for ASR [9, 5],
and 21% for speaker identification [3]. However, one
major drawback of this feature extraction scheme is that
the filtering operates on mel-spectrogram, which is eas-
ily corrupted by noise. This representation incorporates
some properties of the auditory system to a limited ex-
tent, but it also largely ignores physiological and psycho-
acoustic findings (such as the asymmetric filters for the
place-frequency mapping of the basilar membrane in the
inner ear).
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Figure 1: Real components of Gabor filters used for the
filter bank, arranged by temporal and spectral modulation
frequencies.



In this paper, we replace the mel-spectrogram that has
been used before [2, 9, 5, 3, 8] with a different represen-
tation borrowed from Power-Normalized Cepstral Coef-
ficients (PNCCs), a feature type that has been shown to
be quite robust against a large variety of noises [1], an
example being shown in Figure 2. Replacing the spectro-
temporal representation effectively changes the spectral
modulation frequencies in terms of cycles/octave, which
are associated with 2D Gabor filters. We therefore adapt
the filters used in [5] by optimizing the distribution of
these frequencies.

In the following, we first give an overview of power-
normalized spectra and the feature calculation that is
based on a Gabor filter bank. Next, the adaptation of
modulation frequencies is described, as well as the ASR
setup used to evaluate the spectro-temporal features. The
optimized spectral modulation frequencies are compared
to the modulations associated with the formant structure
of vowel phonemes.
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Figure 2: Clean and noisy mel-spectrogram and power-
normalized spectrogram. In this example, speech-shaped,
stationary noise has been added to the speech signal.

2. Feature extraction
2.1. Power-normalized spectrograms

Power-normalized spectrograms are obtained by per-
forming the steps outlined in [1] to calculate Power-
Normalized Cepstral Coefficients (PNCCs), but omitting
the final discrete cosine transform and normalization.
First, a pre-emphasis filter is applied to a time signal
and the STFT is calculated for 25 ms frames with a 10 ms
frame shift. The magnitudes of the squared spectra are
integrated via a Gammatone filter bank, which has been
shown to better approximate the place-frequency map-
ping of the basilar membrane compared to the triangular
filters used for MFCCs [7]. A power function nonlinear-
ity that mimics the dependency of the input sound level

and the perceived loudness is used to compress the output
of the Gammatone filter bank. The exponent of 0.1 was
derived from the relation of auditory-nerve firings and the
level of a presented tone. Finally, the medium-time power
bias is removed, which is motivated by the fact that the
auditory system is sensitive to changes of the incoming
signal (in contrast to low-modulated background noises,
which are largely ignored). These enhancements result in
a representation that is inherently more robust compared
to mel-spectra (Figure 2).

The calculation of the medium-power over 2M + 1
frames (cf. [1]) results in a feature output with N — 2M
time frames (/N being the number of frames for common
feature types, such as MFCCs. In this paper, we follow
[1] and use M = 2). For combination with other feature
types (e.g., in feature stream experiments), we prefer to
pad the first and last frames of the spectrogram to obtain
a representation with N frames.

2.2. Spectro-temporal features

Gabor features are calculated by processing a spectro-
temporal representation of the input signal by a number
of 2D modulation filters. Filtering is performed by cal-
culating the 2D convolution of the filter and the power-
normalized spectrogram.

Gabor filters are defined as the product of a complex
sinusoidal function s(n, k) (with n and k denoting the
time and frequency index, respectively) and an envelope
function A(n, k). In this notation, the complex sinusoid
is defined as

s(n, k) = exp [iwn(n — ng) + iwk(k — ko)) -

and the Hann function that we chose as envelope (with the
parameters W,, and W}, for the window length) is given
by

B 27t(n — no) 27 (k — ko)
h(n, k) = 0.5 —0.5-cos (Wn 1 ) oS (Wk 1

The periodicity of the carrier function is defined
by the radian frequencies wy and w,, which allow the
Gabor function to be tuned to particular directions of
spectro-temporal modulation, including diagonal modu-
lations. Experiments presented in this paper are based on
a spectro-temporal filter bank proposed in [9]. The fil-
ter bank contains a set of temporal, spectral and spectro-
temporal filters (Fig. 1) that were chosen to cover a
wide range of modulation frequencies relevant in speech
recognition. The result of the time-aligned convolution
for all filters is used as feature vector. To limit the dimen-
sionality of that vector, representative frequency channels
are selected from the convolution, which is referred to as
“critical sampling’ as described in [9, 5].



2.2.1. Optimization of spectral modulation frequencies

The parameters of the Gabor filter bank were optimized
for mel-spectrograms as underlying spectro-temporal
representation in [9], with spectral modulation frequen-
cies being defined in cycles per channel. When this rep-
resentation is replaced with power-normalized spectro-
grams, the center frequencies and hence the spectral mod-
ulation frequency of the Gabor filter bank in terms of cy-
cles per octave are changed.

We adapt the filter bank to the new representation by
optimizing the spectral distance dj, between filters. This
parameter controls the distribution of spectral modulation
frequencies wy, which are given by

; 1 +¢/2
+1 4
YT YR o

(with vy, being the number of semi-cycles of the carrier
function under the envelope) [9]. The values for w;, that
result from setting dj, to 0.2 are depicted in Figure 1.

We analyze how the adapted filter frequencies relate
to the spectral modulations associated with English vow-
els, compare this to the more intuitive unit cycles per
octave (instead of cycl./ch.), and test if the optimization
yields matched filters for the detection of specific vowels,
as illustrated in Figure 3.
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Figure 3: Schematic vowel spectra and illustration of 1D-
Gabor filter.

2.3. ASR back-end

In [5], the MFCC baseline was improved when Gabor
features were used as direct input to train and test a Hid-
den Markov Model (HMM). However, the lowest error
rates were obtained when the features were non-linearly
transformed with a multi-layer perceptron (MLP) and
concatenated with MFCCs before HMM-based classifi-
cation. In this work, we tested both approaches and
present results for both recognition architectures (with
PNCC features replacing MFCCs used before).

The performance of different realizations of Gabor
features is tested within the Aurora 2 framework [6],

which provides both speech data as well as specifications
for the HMM classifier. It defines two training condi-
tions that use either clean connected digits or a mixture of
noisy and clean data (multi-condition) for training. Test-
ing is performed with clean and noisy data using ten dif-
ferent noises. The average WERs are obtained by aver-
aging the WERs of the test data with SNRs from 0 dB to
20 dB; the HMM was configured according to [6].

For experiments that employ non-linear weighting of
features, the MLP training was carried out with phoneti-
cally labeled digit sequences from the Aurora 2 database.
The phoneme labels were obtained from forced align-
ment. The MLP used 9 frames of temporal context which
resulted in 9 x NV input units for N-dim. Gabor features.
160 and 56 units were used for the hidden and output
layer, respectively. The log-posteriors were decorrelated
with a principal component analysis in order to match the
orthogonality assumption of the HMM decoder. Mean
and variance were normalized for each utterance before
training and testing the back end. For the last set of exper-
iments, 13-dim. PNCC features with delta and accelera-
tion coefficients were appended to the MLP-transformed
Gabor features, resulting in 71-dim. feature vectors.

3. Results
3.1. ASR recognition scores

Results are compared to the MFCC baseline from Au-
rora 2, MFCCs and PNCCs with utterance-wise cepstral
mean and variance normalization (CMVN), and the best
feature set using Gabor features calculated from Mel-
spectrograms presented in [5] (Table 1). Word error rates
(WERs) for Gabor features based on power-normalized
spectra are shown in Table 2. The variation of spectral
modulation frequencies results in relatively small fluctu-
ations of the WER. The optimal performance is reached
for di, = 0.25. For the combination with PNCCs, this
optimum is shifted to di, = 0.5, presumably because the
modulation frequencies captured by these filters is com-
plementary to the frequencies covered by PNCCs.

Error rates for Gabor features with MLP-processing
(not shown in Table 2) were comparable to WERs ob-
tained with Gabors fed directly to the HMM. However,
when PNCCs are concatenated with the 32-dimensional
MLP output, the WERSs are further reduced and result in
a relative improvement of up to 46% (multi train) and
71% (clean train) compared to the MFCC baseline. The
improvements compared to the PNCC-based system are
26% and 19% for clean and multi-condition training.

3.2. Comparison with spectral modulations of vowels

To test if the filter optimization (Section 2.2.1) results in
matched filters for vowels, spectral modulation frequen-
cies (SMFs) of vowels are compared to SMFs of the Ga-
bor filter bank (Table 3). The Gabor filters with the lowest



Multi  Clean

MFCC 13.6 399
MFCC (CMVN) 95 20.7
PNCC 9.8 14.2
Gabor (IS11) 8.0 252

Table 1: Baseline word error rates for the training condi-
tions "Multi” and Clean’.

Gabor MLP(Gabor)

dy +PNCC (Dim: 71)
Dim. Multi Clean Multi Clean
0.20 787 8.3 14.5 7.6 12.1
0.22 761 84 143 7.5 11.9
0.25 644 8.0 13.2 7.5 12.0
0.30 631 8.1 14.6 74 11.6
0.40 527 8.1 14.8 7.5 11.6
0.50 462 8.3 144 7.3 11.5
0.60 436 8.3 14.3 74 12.0

Table 2: Word error rates for Gabor features based on
power-normalized spectrograms. The varied parameter
dy, controls the spectral spacing of filters. Results were
obtained by using Gabors as direct input to an HMM
or by additional MLP-processing and concatenation with
PNCCs.

and highest SMF (4.29 and 25 cyc./ch. x10~2) exhibit
very similar SMFs to /i/ and /a/ and can therefore be in-
terpreted as matched filters for the specific values listed
in Table 3. The remaining filters do not correspond di-
rectly to the SMFs of other vowels (which might even
be beneficial, since the presented vowel data is restricted
to specific formant frequencies, while formant frequen-
cies in speech signals exhibit a large variance). However,
when comparing optimized SMFs with the vowel data, it
becomes clear that the expected range of SMFs is well
captured by spectral filters.

i) Formant frequencies, octave relation of F1/F2 and spectral MFs

i e y [] € u o a a
a)F, 320 500 320 500 700 320 500 700 1000
b) F, 2500 2300 1650 1500 1800 800 1000 1150 1400
o) lw, 297 220 237 159 136 132 100 072 049
d) 1070, 455 588 588 833 909 111 143 167 25

ii) Spectral modulation fregs. of optimized filters (cycl./channel x 107)
429,7.72,13.89,25

Table 3: The table presents frequencies for the first and
second vowel formant in Hz (a and b), the number of oc-
taves between I and F5 (c) and the corresponding spec-
tral modulation frequency in cycl./channelx10~2 (d).
The latter can be compared to optimized spectral mod-
ulation frequencies (di = 0.25) of Gabor filters (ii).

4. Summary

In this paper, we presented ASR results obtained
with spectro-temporal filters combined with power-
normalized spectrograms, which are less sensitive to
noise compared to mel-spectrograms used in previous
work. The Gabor filter bank employed to extract spectro-
temporal features was adapted to this new representation
by optimizing the spectral modulation frequencies asso-
ciated with filters. The optimized parameters were com-
pared to the spectral modulation frequencies of vowel
phonemes. While only some of the filters can be inter-
preted as matched filters for specific vowels, the range of
frequencies fits well to the range observed for vowel for-
mants. ASR experiments show that Gabor filters based on
power-normalized spectrograms result in a robust feature
set (especially when used in combination with neural nets
and concatenation with PNCC features), with relative im-
provements of the WER by 19-26% compared to a PNCC
baseline.
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