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ABSTRACT

This paper presents a system that uses symbolic representa-

tions of audio concepts as words for the descriptions of au-

dio tracks, that enable it to go beyond the state of the art,

which is audio event classification of a small number of au-

dio classes in constrained settings, to large-scale classifica-

tion in the wild. These audio words might be less mean-

ingful for an annotator but they are descriptive for computer

algorithms. We devise a random-forest vocabulary learning

method with an audio word weighting scheme based on TF-

IDF and TD-IDD, so as to combine the computational sim-

plicity and accurate multi-class classification of the random

forest with the data-driven discriminative power of the TF-

IDF/TD-IDD methods. The proposed random forest cluster-

ing with text-retrieval methods significantly outperforms two

state-of-the-art methods on the dry-run set and the full set of

the TRECVID MED 2010 dataset.

Index Terms— Multimedia Event Detection, Audio Clas-

sification, Random Forests, Term Frequency, Inverse Docu-

ment Frequency

1. INTRODUCTION

The amount of electronically available multimedia content

increases on a daily basis. On YouTube alone, the amount

of video content grows by 48 hours of video every minute1.

While this huge amount of data makes different kinds of con-

tent available, it makes it harder and harder to find specific

video or audio documents due to the sheer mass of data that
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has to be searched. Effective indexing and classification tech-

niques can be used to tackle this problem and hence comprise

a currently very active research area. One research question

in this field is multimedia concept detection, which addresses

the problem of finding videos that fit a given concept such

as Batting a run or Making a cake in the TRECVID 2010

MED (Multimedia Event Detection) challenge2. The general

approach for multimedia event detection is to learn properties

of the concept to be detected by automatically training a clas-

sifier on a set of representative videos and then applying this

classifier to another set of videos.
With visual methods being the most prominent approach

[1], more semantic approaches like OCR (optical character

recognition) and ASR (automatic speech recognition) have

also been used in conjunction with vision based approaches

[2]. Recently, non-ASR audio based approaches have en-

tered the scene more widely. While most approaches focus

on detecting the presence of sub-concept sounds which de-

scribe certain kind of activities or environment such as “out-

door rural” [3], audio-holistic approaches that use a video’s

total audio information for event detection have also proven

to be effective [4]. Both classes of approaches come with

their own advantages and disadvantages. Sub-concept-based

approaches often rely on human annotation (which is highly

subjective) and use only a fraction of the information avail-

able in training video. Results obtained with these approaches

are, however, easily explainable. Holistic approaches use all

of the audio information available in a video and do not re-

quire any annotation of the audio stream. The main disadvan-

tage of audio-holistic approaches is that they disregard many

overlapping pieces of information.

The approach described in this paper combines the

strengths of both holistic and sub-concept-based approaches

by dividing the audio-holistic approach into three automatic

steps: automatic audio word learning by random forests, au-

dio word weighting according to their importance, and event

retrieval and classification by support vector machines. The

remainder of this paper is organized as follows: Section 2 will

2http://trecvid.nist.gov/



briefly describe related work. Section 3 gives an overview of

the approach. The evaluation setups, along with experimental

results on the TRECVID 2010 MED dataset, are described in

Section 4. Section 5 concludes the paper.

2. RELATED WORK

While there is a wealth of literature available on the use of

visual features for concept detection and video classification

(see [1] for an overview) this paper deals with audio-based

detection and classification methods. Of course, in a real-life

application, audio- and video-based methods can and should

be used in conjunction where available. Even back in the last

millennium, multimodal analysis was used for the semantic

characterization of video content [5]. A number of audio

based approaches have been employed for video scene seg-

mentation or video classification. These approaches can be

separated into supervised techniques that are trained for the

detection of specific sound categories like [3] or unsupervised

techniques that extract sound categories based on audio min-

ing techniques like [6, 7].

The two approaches that bear most similarities to the

approach introduced in this paper are the ones described in

[6] and in [7]. Lu and Hanjalic proposed an iterative spec-

tral clustering method to decompose an audio data stream

into audio elements, and proposed the TF-IDF and TD-IDD

approach for audio element discovery [6]. In contrast to

our approach, the approach from Lu et al. [6] does, how-

ever, use a spectral clustering method, which is a clustering

method within each audio document. Our approach, based on

random-forest clustering, learns discriminative audio clusters

from all training audio documents efficiently. The approach

from Chaudhuri et al. [7] uses audio segmentation and de-

scribes segments with Hidden Markov Models. It does,

however, not use a subsequent processing stage, such as

our methods with text-inspired techniques, that enhances the

discrimination.

3. SYSTEM OVERVIEW

The system works in three major steps shown in Figure 1:

First, we extract MFCC features and learn a random forest

dictionary using training data. We can view each leaf node in

the random forest as an audio word. Second, given a data

sample, we can use its leaf node IDs (N audio words) to

represent the data. Third, the audio words are weighted ac-

cording to their term frequency (TF), inverse document fre-

quency (IDF), term duration (TD), and inverse document du-

ration (IDD). We then use the weighted histogram as a feature

vector to represent each audio clip and then use support vector

machine for retrieval and classification.

3.1. Random Forest Vocabulary
Random forests have been used for classification and regres-

sion tasks [8]. A typical random forest consists of a set of

binary decision trees. During training stage, each non-leaf
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Fig. 1. System Overview

node in each tree is assigned a binary test that is applicable

to any data sample. Based on the result of the test, a sample

can go to one of the two children of a given non-leaf node.

In this way, a sample can be passed through each of the trees,

starting from its root and ending up in one of its leaves.

In a random forest, all the trees are trained with the same

parameters, but on the different training sets. For each train-

ing set, we randomly select the same number of data from

the original set and the data can be chosen more than once

and can be absent. At each node of each tree, only a ran-

dom subset of variables (
√

feature dimension) is used to find

best split. It has been shown that combining together several

trees trained in a randomized way can achieve better gener-

alization and stability compared with a single deterministic

decision tree [8].

In addition to classification or regression [8], random

forests have been shown to provide a flexible data-driven

framework that can provide good multi-class classification

and is hence likely to be useful for clustering [9]. In a forest,

samples end up in the same leaf node, if the subsets of their

feature dimensions are close. Hence, if two data samples are

close (similar feature vectors), then they should fall into close

leaf nodes in a random forest. In this paper, based on this

idea, our random forest clustering algorithm is as follows:

Suppose we label all the leaf nodes and use their indices as

clustering IDs. Given a data sample, it will end up at a leaf

node of each tree. We can use their clustering IDs as audio
words to represent the data sample.

3.2. Weighted Audio Words Approach
By random forest clustering, each data sample can be de-

scribed using multiple audio words. In the semantic multime-

dia events, some sounds commonly happen across all events

such as silence sounds, but some of them happen uniquely

within certain events. Inspired by the term frequency and in-



verse document frequency in text analysis [10], Lu and Han-

jalic proposed audio keyword discovery using TF-IDF frame-

work [6] to find key audio segments. Here, we further expand

this idea to random forest audio words for event retrieval and

classification.

By the analogy to text analysis, we can think of each clus-

tered ID as an audio word and each audio clip as an audio
document.

Term frequency (TF) is defined as follows:

TF(ci, Dk) =

∑
j njP (ci = cj |cj ∈ Dk)

∑
j nj

(1)

where nj is the occurrence number of audio term cj in the

audio document Dk. P (ci = cj |ck ∈ Dk) is the probability

that audio term ci equals cj in document Dk. Note that in

our experiments, this probability is a delta function: audio

terms are deterministically labeled with the term label that

maximizes the output score of the random forest.

Similarly, we can define term duration (TD) as

TD(ci, Dk) =

∑
j djP (ci = cj |cj ∈ Dk)

∑
j dj

(2)

where dj is the duration of audio term cj in the document Dk.

Similar to inverse document frequency (IDF) in text doc-

ument analysis, IDF of an audio term can be defined as the

log of the number of all documents divided by the number of

documents containing the audio element.

IDF(ci) = log
|D|

∑
k P (ci ∈ Dk)

(3)

where |D| means the total number of documents and P (ci ∈
Dk) is the probability of term ci in document Dk.

Similarity, inverse document duration (IDD) is defined as

the log of the duration of all documents divided by the dura-

tion of audio term ci in all documents.

IDD(ci) = log

∑
k dDk∑

k TD(ci, Dk)
(4)

where dDk
is the total duration of audio document Dk.

Some text analysis applications have benefited from the

use of logTF and logTD; therefore these features are also con-

sidered in our experiments [10].

Finally, for each audio document, we weight each audio

element according to the indicators mentioned above, assum-

ing indicators are independent of each other. For each audio

clip Dk, we can represent it by the feature vector

TF(Dk) = [TF(c1, Dk), . . . ,TF(cM , Dk)], (5)

and similarly for the feature vectors logTF(Dk), TFIDF(Dk),
logTFIDF(Dk), and TFIDFTDIDD(Dk), where the combi-

nation terms are the product of weights of individual indica-

tors, and M is the total number of words.

By incorporating event label information, we use a sup-

port vector machine with intersection kernel for the multi-

class event retrieval/classification problem.

4. EVALUATION

We use the TRECVID 2010 Multimedia Event Detection

dataset (MED) from NIST MED10 evaluation task. The

MED data consist of 1746 clips of training data, totaling 56

hours in length, and 1724 clips of test data, totaling 59 hours.

The recordings are multimedia content uploaded by public

users. Each video clip is labeled as one of 4 concepts: bat-
ting in a run, making a cake, assembling shelter, and other.

The class other consists of all videos that do not belong to

the first 3 classes. Participants in the NIST MED evaluation

were required to retrieve recordings from the test set. In this

paper, we only use audio in the recordings. Our framework

can potentially be combined with video. Moreover, we do

not use any annotations besides class labels. Mel-Frequency

Cepstral Coefficients (MFCCs) are extracted from the video

soundtrack. We use a frame period of 10 ms with an anal-

ysis window of 25 ms in the feature extraction. To balance

the computational complexity and the detection resolution,

a sliding window of 1s with 0.5s overlap is used to segment

the frame sequence. At each window position, the mean and

variance of the frame level features are computed and used to

represent the corresponding one-second-long audio segment

[6].

To evaluate our performance, we compare our results with

the MED10 winning team [3], that has achieved the best re-

ported results, and a recent audio unit descriptors (AUDs)-

Hidden Markov models (HMM) approach [7].

4.1. Dry-Run Evaluation

Jiang et al. used a bag-of-MFCC approach with vocabulary

of 4000 words learned by the k-means algorithm. Classifi-

cation/retrieval is performed using a soft-weighted 4-nearest

neighbor projection into the 4000 learned centers, followed

by SVM scoring using a χ2 kernel [11].

Jiang et al. reported their results in the dry-run validation

set in terms of average precision (AP) – MAP is the average

of AP, averaged over the test database [3]. The dry-run vali-

dation set consists of 473 clips from the MED training set and

the rest of MED training set is used for development. In Ta-

ble 1, we report our results in terms of MAP. We empirically

choose a vocabulary size of around 4000 words by controlling

the number of trees and the maximum depth of each tree in the

random forest. From the experimental results, we can observe

that (1) using logarithms for TF and TD helps in boosting the

performance. (2) SVM intersection kernel can slightly im-

prove the results compared with χ2 kernel. Our results show

large differences in AP across the four classes, paralleling the

results of [3] in this respect, e.g., in our RF l8 n25 logTFIDF

classifier, the average precision is 0.217, 0.810, 0.426 for the

events Assembling shelter, Batting in run, Making a cake re-

spectively. The Batting in run event have more audio struc-

ture, but Assembling shelter and Making a cake events vary

widely.



Table 1. Mean average precision on the dry-run evaluation set. The

random forest vocabulary RF li nj (X) represents a random forest

with j trees, the maximum tree depth i, and vocabulary size X.

Vocabulary Type (Size) Mean Average Precision

χ2 kernel

K-means (4000) [3] 0.404

Weighting TF logTF TFIDF logTFIDF TFIDFTDIDD

RF l8 n20 (3778) 0.446 0.452 0.451 0.452 0.414

RF l8 n25 (4669) 0.455 0.457 0.474 0.475 0.430

RF l8 n30 (5619) 0.444 0.449 0.472 0.473 0.421

intersection kernel

Weighting TF logTF TFIDF logTFIDF TFIDFTDIDD

RF l8 n20 (3778) 0.445 0.451 0.462 0.467 0.406

RF l8 n25 (4669) 0.456 0.462 0.480 0.484 0.425

RF l8 n30 (5619) 0.452 0.455 0.481 0.484 0.425

4.2. Full Set Evaluation
Chaudhuri et al. proposed AUD-HMM and reported their re-

sults using MED10 data in terms of classification accuracy

[7]. They learn language models over sequences of acoustic

units. They used the whole MED10 training set for devel-

opment and the whole testing set for evaluation. Since the

majority clips of training and testing set belong to the other
class (1580 of 1746 clips in the training set and 1559 of 1724

clips in the testing set), they reported their results for both the

3-class and 4-class classification tasks (ignoring other vs. in-

cluding other class). In Table 2, we report our results in terms

of classification accuracy using SVM intersection kernel 3.

While the results from Chaudhuri et al. are worse than

the majority guess for the other class, our results consistently

outperform the majority guess in the 4 class case. The 64 sym-
bols 2-gram achieves the best performance in the 3 class case,

but its performance deteriorates in the 4-class case because of

missed other class detections.

Table 2. Average classification accuracy on the full evaluation set.

RF li nj (X) represents a random forest with j trees, the maximum

tree depth i, and vocabulary size X. The “Majority Guess” chooses

the majority class as predicted results.

System Weighting 3-class 4-class

RF l7 n20 (2256)

TF 70.70 92.01
logTF 70.06 92.01
TFIDF 73.89 91.46

logTFIDF 75.16 91.46
TFIDFTDIDD 66.88 91.95

RF l8 n15 (3202)

TF 71.97 92.07
logTF 72.61 92.13
TFIDF 70.70 91.70

logTFIDF 72.61 91.70
TFIDFTDIDD 71.34 91.58

RF l8 n20 (4304)

TF 70.70 92.13
logTF 71.97 92.13
TFIDF 70.70 91.70

logTFIDF 71.97 91.82
TFIDFTDIDD 68.79 91.89

Majority Guess 35.15 90.43

64 symbols 2-gram [7] 81.61 73.61

200 symbols 3-gram [7] 55.63 77.08

3Note that MAP is a better metric to discriminate between different meth-

ods in the case of other class clips, of which there are many, as MAP also

considers the ranking of classification confidence.

5. CONCLUSION

This paper has introduced an approach for audio-based con-

cept detection that leverages the power of established methods

from text retrieval. In order to make audio features applicable

to text retrieval methods, we have employed random forests

as an abstraction step to cluster audio features across videos.

These more abstract representations can be used as words in

text retrieval methods.

Experiments show that our proposed approach improves

the performance significantly over two state-of-the-art meth-

ods on the dry-run set and the full set of the TRECVID MED

2010 dataset. For future work, we will try to add information

about the temporal context to the clustering algorithm and to

compare sound segments identified through clustering by hu-

man subjects in perceptual studies.
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