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Abstract

The focus of this work is to identify types of segments that are
difficult for speaker diarization systems. The diarization outputs
of five state-of-the-art systems are analyzed on short/long seg-
ments as well as segments surrounding speaker changepoints.
We found that for all five systems as the duration of the segment
decreased the diarization error rate (DER) increased. Also, seg-
ments immediately preceding and following speaker change-
points performed much worse than their respective counter-
parts. In fact, at least 40% of the DER for all five systems is
attributed to time within 0.5 seconds of a speaker changepoint.
We hope the results of this work motivate future improvements
of speaker diarization systems.

Index Terms: speaker diarization, error analysis, rich transcrip-
tion

1. Introduction

The goal of speaker diarization is to partition an audio signal
into speaker homogeneous speech regions, as shown in Figure
1, where the number of speakers as well as the speaker identities
are not known a priori. Speaker diarization has many applica-
tions, including speaker adaption for automatic speech recogni-
tion and audio indexing.
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Figure 1: Overview of speaker diarization. From an input audio
signal, segment the signal into nonspeech and speech segments,
the latter labeled by speaker (e.g., A, B, C, D).

Most of the effort in speaker diarization research is spent in-
troducing new and improved algorithms to “solve” the speaker
diarization problem, and relatively less work is on analyzing
speaker diarization performance and error patterns. The fo-
cus of this paper is to analyze speaker diarization errors for the
meeting domain. More specifically, we investigate speaker di-
arization performance for five state-of-the-art speaker diariza-
tion systems on specific types of segments (e.g., short/long seg-
ments and before/after speaker changes).

Previous analyses of speaker diarization have focused on
two main methods. The first compares performance between
systems using characteristics of the meeting, such as the num-
ber of speakers and average conversation turn duration [1, 2]. In
[1], Mirghafori and Wooters studied how characteristics of en-
tire broadcast news recordings correlated with Diarization Error

Rate (DER) derived statistics. In [2], Bozonnet et al. noted that
the top-down system better estimated the true number of speak-
ers while the bottom-up system output typically had a more sim-
ilar number of segments and average segment duration to the
speaker diarization reference.

The second method of performing speaker diarization error
analysis involves replacing components of a given system with
oracle components and calculating the effect on the DER [3, 4].
For example, Huijbregts et al. began with an oracle diarization
system, where each component (e.g., speech activity detection,
initialization, merging criterion, stopping criterion) was an or-
acle component which utilized the reference transcription. In
both a top-down and bottom-up fashion, each oracle compo-
nent was replaced with its speaker diarization system compo-
nent and the change in DER before and after the replacement
reflected the effect that component (and potentially subsequent
components) had on the DER.

The previous analysis work focused on correlating diariza-
tion performance with attributes of the recording and computing
the change in DER associated with each component of the sys-
tem. By contrast, the goal in this work is to characterize which
types of segments are difficult for five state-of-the-art speaker
diarization systems. The results of this work provide insight
into where speaker diarization researchers should focus their at-
tention in order to further improve speaker diarization as well as
understand the pitfalls of the various speaker diarization algo-
rithms.

This paper is outlined as follows: in Section 2 we describe
the experimental setup used in this analysis, in Section 3 we de-
fine the types of segments investigated, in Section 4 we provide
and discuss the results, and in Section 5 we give our conclusions
as well as areas of future work.

2. Experimental Setup
2.1. Data

This analysis is performed on the NIST Rich Transcription *09
(RT-09) evaluation dataset. The RT-09 dataset consists of seven
meetings recorded at three sites: IDIAP, Edinburgh, and NIST.
Both the multiple distant microphone (MDM) and single distant
microphone (SDM) conditions are investigated. However, due
to space constraints, only the MDM results are presented in this
paper. Note that the same trends seen for the MDM condition
also occurred for the SDM condition.

2.2. Speaker Diarization Systems

The output segmentation files from five speaker diarization sys-
tems (AMI [5], ICSI [6], IDIAP [7], IR-NTU [8], and LIA-



Eurecom [9]) are analyzed in this work. These systems repre-
sent the state-of-the-art in speaker diarization and have consis-
tently performed well in the NIST Rich Transcription evalua-
tions. The system results are anonymized since our aim is not
to identify the best performing system but instead to identify
trends among systems.

2.3. Scoring Metric

The Diarization Error Rate (DER) defined by NIST [10] is used
to evaluate each system’s performance. In order to compute the
DER, first an optimal one-to-one mapping of reference speak-
ers to system output speakers is determined. The DER is then
the sum of the per speaker false alarm time (overestimating the
number of speakers), miss time (underestimating the number of
speakers), and speaker error time (the hypothesized speaker(s)
is (are) not matched to the appropriate speaker(s) in the refer-
ence) divided by the total speech time in an audio file, as shown
in Equation (1). As done in the NIST evaluations, we scored
the DER using a no-score collar of £0.25 seconds [11] around
reference segment boundaries. Overlapping speech errors have
been a long-standing, known source of speaker diarization er-
ror [12, 13]. Therefore, each of the three types of errors (T4,
Twmirss, and Tspi r) are further split into times during over-
lapping speech and during single speaker speech.
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Note that each of the segment types studied in this work are
labeled using the reference transcription. Therefore, nonspeech
time (as transcribed in the reference) is not scored in this study.
Thus, the only way to have a false alarm error would be if a sys-
tem is able to hypothesize overlapping speech, or more than one
speaker speaking at a given instance. Only one of the five sys-
tems hypothesizes overlapping speech. The other four systems
annotate at most one speaker at a given time. In order to re-
tain the anonymity of the systems, the false alarm errors are not
shown. We feel that this does not affect the results of this paper
since the false alarm error rate during speech time is negligible.

3. Segment Types

Speaker diarization performance is evaluated for two types of
segments: segments categorized based on the segment duration
and segments categorized based on their proximity to speaker
changepoints. In this work, a segment is defined according
to the reference speaker diarization segmentation. The refer-
ence segmentation is created by first force aligning the indi-
vidual headset microphone audio to the reference transcripts
using LIMSI tools. Then the word boundaries obtained from
the forced alignment are smoothed using a 0.3 second window,
thereby grouping multiple words together into a segment [11].

3.1. Segment Duration

Speaker diarization system performance is evaluated based on
the duration of each segment. More specifically, the DER is
computed for 10 bins of segment durations, where each bin
contains segments of similar duration. For illustration, Figure
2 shows an example reference segmentation which is split into
three bins (short, intermediate, and long segments).
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Figure 2: Example reference segmentation containing three
speakers (A, B, and C). Changepoints are represented using ver-
tical dashed lines. The short, intermediate, and long segments
are filled with vertical, diagonal, and horizontal lines, respec-
tively.

3.2. Speaker Changepoints

Segments surrounding speaker changepoints are also exam-
ined. In this work, a speaker changepoint is defined as an in-
stance in which the current speaker(s) differs from the previ-
ous speaker(s). Nonspeech segments are ignored since most
speaker diarization systems similarly discard these segments
[5,6,7,8,9]. Thus, if a speaker talks for some time, pauses, and
then resumes talking there is no speaker changepoint when the
speaker resumes talking. A segment is labeled a first segment
after a speaker changepoint (FirstAfter) if any portion of the
segment immediately follows a speaker changepoint. Similarly,
a segment is labeled a last segment before a speaker change-
point (LastBefore) if any portion of the segment is contained in
the last segment prior to a changepoint. Examples of FirstAfter
and LastBefore segments are shown in Figure 3.
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Figure 3: Visualization of FirstAfter and LastBefore segments.
Segments filled with diagonal lines are FirstAfter segments.
Segments filled with horizontal lines are LastBefore segments.

4. Results

The DERs for each of the systems are computed over segments
of similar duration. The scored segments are split into 10 bins,
each containing a roughly equivalent number of segments. For
each bin, the DER is calculated for all five systems. The results
are shown in Figure 4. All five systems display the same trend:
as the duration of the reference segment increases, the DER im-
proves. Both the miss rate and the speaker error rate decrease
as the duration of the segments increase, though the miss rate
(particularly due to overlapping speech) plays a larger role in
the decreasing DER. Note that due to the £0.25 second col-
lar, the minimum scored segment duration time is 0.51 seconds.
Also, for the following plots the DER is color coded accord-
ing to the type of error it is (miss and speaker error). The miss
and speaker error rates are further split into times containing
overlapping and single speaker speech. The miss rates during
overlapping and single speaker speech are annotated as red and
light red, respectively. Similarly, the speaker error rates during
overlapping and single speaker speech are annotated as blue and
light blue, respectively.



60

Il Miss w/ Olap
50 Miss w/o Olap|
Il Il Spkr w/ Olap
40I| | Spkr w/o Olap||

Y
L 30
O
20

10

0 0.51- 0.73- 0.99- 1.23- 1.50- 1.84- 2.26- 2.85- 3.57- 4.76-
073 099 123 150 184 226 285 357 476 19.96

Segment Durations (S)

Figure 4: DERs for various segment duration bins. Each bin
contains roughly the same number of segments. Each bar rep-
resents the DER for one of the five analyzed systems. Spkr
denotes speaker error, olap denotes overlapping speech.

The errors surrounding speaker changepoints are also ex-
amined. In Figure 5, the DERs for each of the systems are
shown for segments following a changepoint (FirstAfter) and
the complement. FirstAfter segments perform significantly
worse than not FirstAfter segments both in terms of miss
rate (particularly due to misses occurring during overlapping
speech) and speaker error rate. Similar results are obtained for
the segments immediately before a changepoint (LastBefore) as
shown in Figure 6. Since a segment is classified as FirstAfter if
any portion of the segment immediately follows a changepoint
(and similarly for LastBefore segments), not FirstAfter and not
LastBefore segments did not contain overlapping speech.
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Figure 5: DERs for segments following and not following
changepoints.

Both short segments and segments preceding or following
speaker changepoints performed worse than their counterparts.
In order to verify that these are in fact two separate types of
errors (and it is not the case that segments preceding and fol-
lowing speaker changepoints are dominated by short segments)
we computed the cumulative distribution functions (CDFs) of
the segment durations for segments immediately after and pre-
ceding speaker changepoints as well as their respective comple-
ments. The distributions are shown in Figure 7. The CDFs of
the segment durations for FirstAfter and LastBefore segments
lie on top of one another. Similarly, the CDFs for not FirstAfter
and not LastBefore segments overlap. In fact, all four CDFs are
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Figure 6: DERs for segments preceding a changepoint and not
preceding a changepoint.

quite close. Thus, FirstAfter and LastBefore segments do not
contain an unusually high number of short segments.
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Figure 7: CDFs of segment durations for FirstAfter, not
FirstAfter, LastBefore, and not LastBefore segments. Note that
the CDFs are close to one another.

Next, we investigate the time surrounding speaker change-
points in more detail. Instead of grouping an entire segment
together, we split each segment into 0.25 second intervals. We
then plot the DER as a function of the time after/until the previ-
ous/next changepoint as shown in Figure 8. This figure demon-
strates that the systems have a more difficult time closer to
changepoints than farther away from changepoints. Once again
both the miss and speaker error rates decrease as the time from
the changepoint increases, with the miss rate contributing more
to the dramatic decrease in DER. Note that the last bin combines
all of the time greater than 2.5 seconds from the changepoint.
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Figure 8: DER as a function of the time since the last speaker
changepoint and until the next speaker changepoint for all five
systems.

We then analyze the results when measuring the time to
the closest changepoint, regardless of whether the changepoint
is before or after the given instance. The results are shown in




Figure 9. In this case, the DER initially decreases dramatically
and then remains for the most part steady. Then in Figure 10,
we show the percent of scored time associated with each of the
ten distances from the changepoint, as defined on the x-axis of
Figure 9, on the left. On the right is the percent of each system’s
DER for each of the distances from the changepoint. For all five
systems, at least 40% of the DER occurred between 0.25 and
0.50 seconds from the speaker changepoint.
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Figure 9: DER as a function of the distance to the closest
changepoint, which could be before or after the given instance.
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Figure 10: Percent of scored time contained in each distance
from the changepoint (as defined in the previous figure) and per-
cent of system DER contained in each distance from the change-
point.

5. Conclusions and Future Work

In conclusion, we have demonstrated two problematic types of
segments for speaker diarization systems. Both short segments
and segments surrounding speaker changepoints caused a con-
siderable amount of DER for all five state-of-the-art speaker di-
arization systems. We have further noted that DER increases
closer to the changepoint, with at least 40% of the DER occur-
ring within 0.50 seconds of the changepoint.

At initial inspection, it may not be surprising that perfor-
mance degrades for short segments and near speaker change-
points. Some systems utilize a minimum duration constraint
[6], not allowing for very short segments. With regard to the
difficulty of segments surrounding speaker changes, it is impor-
tant to note that all of the diarization systems used in this study
are offline, so it is interesting to see that performance degrades
both before and after speaker changes.

In the future, we plan to investigate these segments further
to determine the causes of this poor performance. We hypothe-
size that the causes may not be solely due to limitations of the
systems but perhaps a result of speakers not using speaker dis-
criminative words or speakers modifying speech patterns to take

the floor or allow the floor to be taken. Another area of future
work is to explore how the differences in speaker diarization al-
gorithms affect the DER, both overall and for various types of
segments. We hope that shedding light on the significance of
these particular sources of error paves the way for development
of targeted strategies to overcome them.
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