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ABSTRACT

We propose a method to improve speaker recognition
lexical model performance using acoustic-prosodic informa-
tion. More specifically, the lexical model is trained using
duration- and pronunciation-conditioned word N-grams, si-
multaneously modeling lexical information along with their
acoustic and prosodic characteristics. Support vector ma-
chines are used for modeling and scoring, with N-gram fre-
quency vectors serving as features. Experimental results us-
ing NIST Speaker Recognition Evaluation data sets show that
this method outperforms the regular word N-gram-based lexi-
cal models. Furthermore, our approach gives additional infor-
mation when combined with a high-accuracy acoustic speaker
model. We believe that this is a promising step toward in-
tegrated speaker recognition models that combine multiple
types of high-level features.

Index Terms— speaker verification, speaker recognition,
lexical modeling, SVM.

1. INTRODUCTION

Speaker verification systems aim to automatically detect
whether the person who is speaking matches the given name
on the basis of individual information included in speech
waveforms. Speaker verification is widely used for forensic
purposes and to control access to services such as voice di-
aling [1]. Speaker recognition and verification systems have
been traditionally based on acoustic features, such as cepstral
features, typically modeled using Gaussian Mixture Models
(GMMs) [2], and these systems have been evaluated using
only very short segments of speech. While such features are
proven to be extremely useful, acoustic models are known to
be sensitive to channel mismatch and environmental noise.

Recently, higher-level stylistic features have become more
popular as official evaluations have started to include longer
test conversations and higher-level features have been shown
to improve performance when combined with acoustic fea-
tures [3]. Among the higher-level features investigated are
prosodic features, such as pitch, duration, and energy char-
acteristics [4], and lexical features, such as word and phrase

(N-gram) frequencies [5]. These stylistic models are by def-
inition more robust to channel mismatch and environmental
noise, and, if based on sufficiently accurate speech recogni-
tion, can be expected to perform better under those condi-
tions. Even under clean acoustic conditions, stylistic models
can capture information that is complementary to short-term
spectral features.

Previous work on higher-level features for speaker recog-
nition typically focused on building separate models using
different types of features, followed by score-level combi-
nation. For example, in our earlier work we employed dif-
ferent models for acoustic, lexical, and prosodic features
and combined them using a neural network [4]. An alter-
native approach is to use complementary features in a sin-
gle speaker model, assuming that classifier training can find
the best way to combine them. In this paper, we focus on
the lexical N-gram model and investigate ways to integrate
it with certain kinds of acoustic and prosodic information.
More specifically, the lexical model is applied to duration-
and pronunciation-conditioned word N-grams. We see this as
a first step toward building more integrated speaker recogni-
tion models.

Earlier work is summarized in Section 2. In sections 3
and 4, we describe duration- and pronunciation-conditioned
N-gram models, respectively. Section 5 presents experiments
and results.

2. PREVIOUS WORK

Early work on using lexical information in speaker recogni-
tion is described in [6], but did not produce significant gains
presumably due to the short training and test durations used
at the time. In 2001, Doddington proposed using a model
with only word unigrams or bigrams [5] and showed it to give
promising results when applied to full conversations. The
model was based on a conventional log-likelihood test, in
which the log of the ratio of speaker and background model
likelihoods is averaged for all N-grams in an utterance, in-
dexed byj: Score = Pj log �Speaker(j)�Background(j)Pj 1



It was shown that performance improved steadily as the
amount of training data per speaker increases, and using only
a small subset of N-grams resulted in performance similar to
that of using all N-grams.

Following this study, other researchers focused on com-
bining the lexical model with existing acoustic models, as
well as improving the model. Andrewset al.applied the N-
gram frequency modeling framework to phone N-grams ob-
tained from a phone recognizer [7]. Since the phone recog-
nizer is unconstrained such an approach captures discretized
acoustic properties, as well as idiosyncratic pronunciations.
A combination of both lexical and phonetic models with a
conventional GMM-based cepstral system showed significant
improvements.

Recently, Bakeret al.showed that the lexical and phonetic
N-gram frequency models can be improved by training the
speaker model via maximum a posteriori (MAP) adaptation of
a background model [8]. They also showed the effectiveness
of this approach when smaller amounts of speaker-dependent
data are available [9].

Meanwhile, Campbellet al. proposed a way to model
phone N-gram frequencies in the support vector machine
(SVM) framework [10]. A similar approach for word N-
grams was shown to be superior to log-likelihood ratio mod-
eling and employed in SRI’s 2004 NIST evaluation system
[4], giving improvements in combination with acoustic and
prosodic speaker models. In the SVM formulation, speaker
verification is treated as a binary classification task, and rela-
tive frequencies of word N-grams (possibly scaled or normal-
ized) are used as features. All the N-grams appearing more
than twice in the background training data were included as
features, and no smoothing or boosting was employed. A
lexical SVM model combined with combined with a cepstral
GMM system reduced equal error rate (EER) on the NIST
2004 evaluation set by 11% over the cepstral system alone, in
the 1-conversation-side training condition, and by 50% in the
8-side condition.

SRI also investigated the effect of using state, phone, and
word durations for the speaker verification task, employing
GMM log-likelihood ratio models [11]. Such models gave
an additional 12% error reduction with combined with both
cepstral GMM and the Doddington word N-gram model. On
the NIST 2004 evaluation task, the word duration model was
shown to be almost as accurate as the SVM N-gram model
[4]. The cepstral, lexical, duration, and additional prosodic
models together achieved more than 60% error reduction over
a cepstral GMM by itself.

3. DURATION-CONDITIONED WORD N-GRAM
SVM SYSTEM

The duration-conditioned word N-gram-based SVM system
aims to model speaker-specific word usage patterns combined
with differences in the durations of frequent words. Following

earlier work, our approach is to treat the N-gram frequencies
of each conversation side as a feature vector that is classified
by a speaker-specific SVM. Word durations are binned and
different bins are counted separately.

The duration-conditioned word N-gram SVM system is
constructed as follows: All instances of the most frequent
5000 word types (as optimized on a development set) are
binned into two categories, “slow” and “fast”, with respect
to their duration. Durations are measured according to the
acoustic alignments of the speech recognizer (ASR) output,
and are therefore subject to ASR errors, just like the word
labels themselves. Then, each of wordw is labeled as ei-
therwslow or wfast for the purpose of computing the N-gram
frequencies. Word types outside of the top 5000 are not dif-
ferentiated according to their duration. with more than these
two bins

N-grams were chosen for inclusion in the model based on
frequency in the background training data. The background
set comprised 1971 conversation sides from the Fisher corpus,
Switchboard-2 NIST SRE 2003 data, Switchboard-2 Phase 5
data. N-gram lengths up to 3 were considered. Based on
results with Fisher and Switchboard-2 test data, we retained
all N-grams occurring at least 5 times in the background set,
for a total of about 600,000 N-gram types.

The relative frequencies of the N-grams in a conversa-
tion side form a (typically sparse) vector of feature values.
The values are then rank-normalized to the range[0; 1], us-
ing the background data as the reference distribution. The
SVM was trained using a linear kernel, with a bias of 500
against misclassification of positive examples to compen-
sate for the imbalance of positive (target speaker) and neg-
ative (background) samples. This weight is due to the big
mismatch in the number of examples for each class. The
signed distance from the SVM decision boundary was used
as the speaker verification score, and was normalized using
T-NORM [12]. Normalization statistics were obtained from
248 Fisher speaker models.1 The same set of T-NORM speak-
ers is for both 1-side and 8-sides training conditions.

4. PRONUNCIATION-CONDITIONED WORD
N-GRAM SVM SYSTEM

The pronunciation-conditioned word N-gram SVM system
aims to model speaker-specific word usage patterns, repre-
sented via pronunciations of the words instead of their surface
forms. Similar to the duration-conditioned lexical model we
treat the N-gram frequencies of each conversation side as a
feature vector that is classified by a speaker-specific SVM.

The pronunciation-conditioned word N-gram SVM sys-
tem is built in a very similar fashion to the duration-
conditioned lexical model. The only difference is that word
instances, and hence word N-grams, are differentiated by their

1Fisher test conversations were trimmed to 2.5 minutes to better match
the average amount of data in NIST SRE data.



Baseline Duration-Conditioned
EER (%) DCF (x10) EER (%) DCF (x10)

Fisher-1 23.14 0.817 19.49 0.743
Fisher-2 21.01 0.734 18.29 0.673

NIST 2004 1-side 23.19 0.787 20.52 0.779
NIST 2004 8-side 10.93 0.505 10.20 0.486

NIST 2005 1-side 24.58 0.860 21.51 0.785
NIST 2005 8-side 11.25 0.484 9.03 0.389

NIST 2006 1-side 25.63 0.842 23.46 0.815
NIST 2006 8-side 11.14 0.515 9.95 0.446

Table 1. Comparison of the baseline and duration-conditioned lexical models for various evaluation data sets.

Baseline Duration Conditioned
EER (%) DCF (x10) EER (%) DCF (x10)

NIST 2004 1-side 23.19 0.787 21.29 0.802
NIST 2004 8-side 10.93 0.505 10.49 0.568

Table 2. Comparison of the baseline and pronunciation-conditioned lexical models.

pronunciations (phone strings) in the ASR output. In our
dataset, on the average there are 1.4 pronunciation alterna-
tives per word as determined by the ASR dictionary. Every
N-gram that occurs at least five times in the same background
set is included in the N-gram vocabulary of the system, yield-
ing a total of 200,000 N-gram types. As before, the feature
values are rank-normalized to the range [0,1], and used in a
linear-kernel SVM.

5. EXPERIMENTS AND RESULTS

We performed experiments using the two Fisher test sets, as
well as NIST 2004, 2005, and 2006 SRE data sets. All SVM
training and scoring was based on a modified version of the
SVM-Light toolkit [13]. Results are presented in terms of
equal error rate (EER) and minimum detection cost function
(DCF) metrics. DCF is defined asDCF = CMD�Ptarget�PMD+CFA� (1�Ptarget)�PFA
whereCMD=10,CFA = 1, andPtarget = 0:01.

Table 1 compares the baseline lexical model with the du-
ration-conditioned lexical model. Performance can be seen
to improve for all cases. The relative error reductions are
typically larger for the 8-side condition. For the most re-
cent (2006) test set, the EER reduction is 8.5% for 1-side and
10.7% for 8-side training. The minimum DCF reduction is
small, only 3.2% for 1-side, but 13.4% for 8-side training.

Table 2 compares the baseline lexical model with the
pronunciation-conditioned lexical model for the NIST 2004
evaluation data set. We get mixed results when using

this method. The EER reduction is 8.2% for 1-side and
4.0% for 8-side training. However, DCF increases 12.5%
for the 8-side case. These results indicate that while the
duration-conditioned model is better for 8-side training,the
pronunciation-conditioned model is worth considering only
for 1-side, and prone to more missed detections for 8-side
training.

The different behavior of the two models may be due
to the data fragmentation resulting from different pronunci-
ations. Note that the fragmentation effect is limited in the
duration-conditioned model for two reasons: the number of
duration bins was set at two, and duration is modeled only for
the most frequent words. For future work we are considering
binning of pronunciations to a small number, and limiting the
pronunciation-conditioned vocabulary.

To investigate how much our new approach can add to
a state-of-the-art speaker verification system, we combined
the duration-conditioned lexical model with a maximum-
likelihood linear regression (MLLR) based speaker verifi-
cation system [14]. The MLLR system uses the speaker
adaptation transforms used in speech recognition as features
for speaker verification. The transforms are estimated us-
ing MLLR, and can be viewed as a text-independent en-
capsulation of the speaker’s acoustic properties. After rank-
normalization the MLLR features are modeled by SVMs us-
ing a linear kernel. For combining the lexical model with the
MLLR system, we employed an SVM-based combiner using
the individual system scores as features.

Table 3 presents the results using the combination of the
MLLR system with the baseline and duration-conditioned
lexical models for the NIST 2006 evaluation data set. As seen,



MLLR only + Baseline N-grams + Duration-Conditioned N-grams
EER (%) DCF (x10) EER (%) DCF (x10) EER (%) DCF (x10)

NIST 2006 1-side 4.64 0.213 4.69 0.208 4.58 0.210
NIST 2006 8-side 2.29 0.085 2.19 0.081 2.13 0.080

Table 3. Comparison of the baseline and duration-conditioned lexical models when combined with a baseline acoustic system.

the proposed method gives slightly better equal error rates
than the baseline when combined with the acoustic (MLLR)
system. The DCF is largely unaffected by the choice of lex-
ical models. The largest improvement over the acoustic-only
system is seen for 8-side training, where the equal error rate
is reduced by 7.0% relative using the duration-condition N-
grams, compared to only 4.4% relative using the baseline N-
gram model.

6. CONCLUSIONS

We have shown the effectiveness of simultaneously modeling
lexical and acoustic-prosodic features for speaker modeling,
in the form of duration- and pronunciation-condition word N-
gram SVM systems. The experimental results using NIST
SRE data sets shows that our approach improves up on stan-
dard lexical N-gram SVM model, and is effective when com-
bined with a state-of-the-art acoustic speaker model. We hope
this study will serve as motivation for an open range of pos-
sible ways to simultaneously model multiple feature types.
In future work we are planning to investigate other types of
high-level information for feature-level combination, aswell
as ways to mitigate the data fragmentation problem inherent
in conditioning.

Acknowledgments: This work was supported by NSF
IIS-0544682. The views herein are those of the authors and
do not necessarily represent the views of the funding agency.

7. REFERENCES

[1] S. Furui, Survey of the State of the Art in Human Lan-
guage Technology, chapter 1.7, pp. 36–41, Cambridge
University Press, Australia, 1998.

[2] D. A. Reynolds and R. C. Rose, “Robust text-
independent speaker identification using Gaussian mix-
ture speaker models,”IEEE Transactions on Speech and
Audio Processing, vol. 3, no. 1, pp. 72–83, 1995.

[3] Elizabeth Shriberg, “Higher-Level Features in Speaker
Recognition,” in Speaker Classification I, Christian
Müller, Ed., vol. 4343 ofLecture Notes in Computer
Science / Artificial Intelligence. Springer, Heidelberg /
Berlin / New York, 2007.

[4] S. S. Kajarekar, L. Ferrer, E. Shriberg, K. Sonmez,
A. Stolcke, A. Venkataraman, and Jing Zheng, “SRI’s
2004 NIST speaker recognition evaluation system,” in

Proceedings of the ICASSP, Philadephia, PA, March
2005.

[5] G. Doddington, “Speaker recognition based on idiolec-
tal differences between speakers,” inProceedings of the
Eurospeech, Aalborg, Denmark, September 2001.

[6] Larry Heck, “Integrating high-level in-
formation for robust speaker recognition,”
http://www.clsp.jhu.edu/ws2002/groups/supersid/071002-
High Level Info for Spkr Rec.pdf, 2002.

[7] W. D. Andrews, M. A. Kohler, J. P. Campbell, and J. J.
Godfrey, “Phonetic, idiolectal, and acoustic speaker
recognition,” inProceedings of the A Speaker Odyssey,
The Speaker Recognition Workshop, Crete, Greece, June
2001.

[8] B. Baker, R. Vogt, M. Mason, and S. Sridharan, “Im-
proved phonetic and lexical speaker recognition through
MAP adaptation,” inProceedings of the Odyssey: The
Speaker and Language Recognition Workshop, 2004.

[9] B. Baker, R. Vogt, and S. Sridharan, “Phonetic and
lexical speaker recognition in reduced training scenar-
ios,” in Proceedings of the 10th Australian International
Conference on Speech Science and Technology, Sydney,
Australia, December 2004.

[10] William M. Campbell, Joseph P. Campbell, Douglas A.
Reynolds, Douglas A. Jones, and Timothy R. Leek,
“Phonetic speaker recognition with support vector ma-
chines,” inAdvances in Neural Information Processing
Systems 16, 2004.

[11] L. Ferrer, H. Bratt, V. R. Gadde, S. Kajarekar,
E. Shriberg, K. Sonmez, A. Stolcke, and A. Venkatara-
man, “Modeling duration patterns for speaker recogni-
tion,” in Proceedings of the EUROSPEECH, Geneva,
Switzerland, September 2003.

[12] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas,
“Score normalization for text-independent speaker ver-
ification systems,” Digital Signal Processing, vol. 10,
pp. 42–54, 2000.

[13] “Svmlight support vector machine toolkit,”
http://svmlight.joachims.org.

[14] Andreas Stolcke, Luciana Ferrer, and Sachin Ka-
jarekar, “Improvements in MLLR-transform-based
speaker recognition,” inProc. IEEE Odyssey 2006
Speaker and Language Recognition Workshop, San
Juan, Puerto Rico, June 2006, pp. 1–6.


