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Abstract

Most commonly used kernels are invariant to permutations
of the feature vector components. This characteristic malyamn
machine learning methods that use such kernels suboptimal i
cases where the feature vector has an underlying struciure.
this paper we will consider one such case, where the feauees
spatially related. We show a way to modify the objective func
tion of the support vector machine (SVM) optimization pexil
to account for this structure. The new optimization probtsm
be implemented as a standard SVM using a particular smooth-
ing kernel. Results are shown on a speaker verification task
using prosodic features that are transformed using a phatic
implementation of the Fisher score. The proposed methaislea
to improvements of as much as 15% in equal error rate (EER).
Index Terms: Support Vector Machines, Kernels, Smoothing,
Speaker Recognition, Speaker Verification.

1. Introduction

Structural Risk Minimization (SRM) has proven to be a power-
ful framework for controlling model complexity while builty
powerful discriminative detectors in high dimensions. Tiest
popular application of SRM, the SVMs, produce superior per-
formance in many problems. SVMs are able to handle large
feature vectors, and result in very flexible architectures th
the use of kernel functions [1]. The most widely used kernels
the linear, polynomial, and radial basis functions, arénatri-
antto permutations of the components of the input vectdris T
is perfectly suitable for many problems in which the pattacu
ordering of the components of the input vector is not sigaific
However, there exist problems in which the feature vectareh
an underlying structure. The knowledge of this structune ca
potentially be of help if it is exploited in an effective way.

In this paper, we derive a new kernel targeted for spatially
related features. We consider feature vectors whose compo-
nents are measurements taken over regions of an underlying
spaceF. The kernel is derived by imposing a new regulariza-
tion term in the SVM objective function, related to the sniwot
ness of the SVM weight vector, where smoothness is measured
using neighborhood relationships in the extraction sp&ce
Common examples of spatially structured feature vectags ar
those corresponding to histograms as used, for example-in i
age recognition. Components of a histogram feature vector a
related to each other by the distances between the corréisgon
bins. Even though the kernel is derived using the SVM formu-
lation, it can potentially be used in any kernel method.

As a particular case in which this method can be applied,
we consider a classification task where each data sample is a
sequence of varying length. These variable-length seesenc
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are transformed into fixed-length vectors via a particutar i
plementation of the Fisher score [2] in which each component
of the transformed vector is related to a certain Gaussian in
Gaussian mixture model (GMM) [3, 4]. This transform can be
understood as soft histogram where the bins are replaced by
Gaussians and the frequencies of the bins are replaced t® pos
riors. As in the case of histogram features, the resultiragore
has a spatial structure and the smoothing kernel can besappli
We present results on a speaker verification task using
syllable-level prosodic features as input. Most featuresdu
in speaker recognition are sequential in nature, and afsigni
cant amount of work has been done in applying and developing
kernels for this task (e.g., [5, 6]). We show that the progose
smoothing procedure gives as much as 15% EER improvement
on this task, resulting in our currently best performingssiéier
for these features.

2. Support Vector Machines

Consider a training set with, sampless = {(z:,3:) € R% x
{—1,41};7 = 1,...,m}, wherez; are the features angd the
class corresponding to sampleOur goal is to find a function
f(z) = wlz 4+ b, such that sighf (¢)) is the predicted class for
feature vector:. The standard support vector machine (SVM)
formulation for classification is given by (see, e.g., [1]):

N 1
minimize  J(w,¢) = 5

subjectto y;(wTz; +5) >
€ >0

Minimizing the norm of the weight vector is equivalent to
maximizing the margin between the samples and the hyper-
plane. Theslackvariables:; allow for some samples to be at a
distance smaller than the margin to the separating hypezpa
even on the wrong side. The parametecontrols the trade-off
between the size of the margin and the total amount of ergor. B
deriving the dual form of the optimization problem above we
find that input vectors appear only as inner products wittheac
other. Hence, each inner product between input featurebean
replaced with a functiok (z;, z;) = ¢(z:)"¢(z;) called the
kernel function, where(z) is a transform of the input features.

The SVM problem can also be expressed as a maximiza-
tion of {(w,b) = — 2w w—C Y h(yi(w” z: +b)), where
h(z) is thehinge lossgiven by(1 — z)u(1 — z) with u(z) the
Heaviside step function. This can be interpreted as makigiz
a log-posterior probability for the parametersandb given the
data. The first term dfcorrespondsto a Gaussian prig0, 1)
on the weight vectow (i.e., weights are assumed a priori to be
independent). A flat prior is assumed on the bias térriihe



second term corresponds to the log-likelihood of the datarfo
appropriately defined likelihood function [7]. Hence, wa @&
terpret the SVM optimization as maximum a posteriori (MAP)
estimation of the parametessandb given the training data.

The above setup corresponds to a classification problem.

The regression problem can also be posed as a convex opti-

mization problem by choosing an appropriate distance nreasu
[1, 8] with the objective function given by the sum of the sgua
norm of the weight vector and an error term, as in the classi-
fication case. The dual of this problem again takes a form in
which features appear only in inner products with other fea-
tures. Furthermore, the interpretation of the SVM as a MAP
estimation still holds given an appropriate choice of itkebd
function [7]. Hence, even though the development in Section
3 will be done considering a classification problem for siol

ity, the method described and the interpretations givenbzan
equally applied to SVM regression problems.

3. Smoothing Kernel

Assume now that the feature vectarse R < have some kind
of spatial structure, i.e., that each componkrin this vec-

tors is somehow related to measurements taken on or around

a certain pointmy in an underlying feature spacg, which

should be a metric space. As mentioned earlier, each compo-

nent ofz could, for example, correspond to the frequency of
a certain bin in a histogram. In this case, #hg’s could be

the centers of the bins. We will classify the feature vectars
with an SVM, which means that our output will be given by
f(zi) = wlai +b = 3, wya? + b, Itis natural to think
that the SVM weights that multiply componentsaaf coming
from nearby regions irF should not vary widely from each
other. That is, the importance of the features, as measyred b
the magnitude of the weight applied to them, cannot differ to
much for nearby regions.

3.1. Reformulating the SVM problem

We wish to modify the objective function in (1) by adding a
regularization term\é(w), wherex > 0 is a tunable param-
eter ands is some function of the weight vector that takes
small values when the vector @nooth(measuring smooth-
ness in theF domain) and large values when it is not. In all
the following we will assume that we can expregs) as a
quadratic formwT Aw. The new objective function then is
J(w,e) = tw'w+ Ixw"Aw + C3 ei. Aslong as we
chooseA to be positive semidefinite](w, €) will be convex.
Furthermore, sincé(w) is a quadratic form, we can assume
to be symmetric without loss of generality. In the next setti
we will see one natural way of defining a positive semidefinite
matrix A that achieves the desired goal.

We can rewriteJ asfw” (I + AA)w + C'3. ei. Now,
by the change of variablé = Bw, with BTB = T 4+ )\A
(B is a matrix square root of + AA and can be chosento be
real and symmetric since+ AA is real, positive definite and
symmetric), we can write the new optimization problem as

—_ . 1.7 -
minimize  J (@, ) = S D + C; € "
subjectto y;(wTd; +8) > 1—¢;

€ >0

1=20,...,m
1=20,...,m

wherei; = B~ Tx,; (B is invertible sinceBTB = T + XA is
positive definite). Comparing this with (1) we see that weehav
obtained a new SVM problem where the features are now the
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Figure 1: Rowk of the matricesi/ (round markers) and® 7
(triangular markers), plotted against the.

z;s. We can then implement this as an SVM problem on the
original features using a kernel given by

K(zi,z5) = xiTB_lB_TxJ = gng(] + )\A)_lx]. (3)

We can interpret the optimization problem (2) probabilis-
tically as we did for the standard SVM problem in Section 2.
The problem (2) can be formulated as maximizinng(I +
A)w — C 37 (yi(whzi + b)). This means that the prior
distribution on the weights is now/ (0, (1 + AA)™'), as op-
posed toN(0,7). Therefore, we are now imposing a corre-
lation structure between the weights instead of assumigig th
independence.

3.2. The A matrix

Our aim is to design a matrixt such thatw” Aw is small for
smooth weight vectors and large otherwise. We will measure
the smoothness in the original feature sp#&ctby considering
the distance between the,'s to which each of the components
of the vector: are related. We define the mattito be M~ M
(which results inA being positive semidefinite for any choice
of M) where
1 if k=1

M, :{ —ype®rdmumE)  otherwise
whered is a distance defined itfF; oy is determined such
that if I(k, s) is the index of thesth closest point tomy
then My yx,1) = 100 My ik ny; and+yy is determined so that

125 Mrg = —1. This way,M w resembles a discrete deriva-
tive of w since its kth component is given byMw), =
W — Zl;ﬁk a wi, with a; = —Mkyl Z 0, for { ;é k, and

> iz, @ = 1. The value ofn determines how many's are
considered in the derivative. We choasé¢o be such that the
sum of the mixture weights for the closestpoints tom;, is
larger thanp, wherep is a tunable parameter. This way, the
derivative is computed over more points if we are in a low den-
sity region and over fewer points if we are in a high density
region.

Figure 1 shows a simple example whefe= R andd is
the Euclidean distance. The figure shows voof the matrices
M andB~T as a function of then,. Interestingly, the rows of
B~T (which is the matrix that multiplies our input featurel
resemble the impulse response of a smoothing filter. Asking f
smoothness on the SVM weights results in a smoothing trans-
formation on the input features. Nevertheless, this is tquaar
smoothing transform that optimizes the trade-off betwdas-c
sification error and regularization. In fact, all other srtining
procedures we have tried on the features have failed to give a
improvements.

4. Application to Sequential Data

We will consider the following setup as an example of a case
in which the feature vectors present an underlying spatiats
ture. Consider a classification problem in which the sangules



variable-length sequences (as is the case in most spedzh pro
lems). These sequences are realizations of an underlying ra
dom process whose characteristics depend on the class of the
sample. Specifically, each of our sampl¢s y:) consists of a
sequence of feature vectofs = {ff € R®;t = 1,...,N;}
which corresponds to a single realization of the underlyary
dom process corresponding to the class of the sampléje
wish to classify these samples using support vector mashine
To do this we need to define a transformation (which in turn
defines a kernel function) of the input features that turres th
variable-length sequencesinto fixed-length vectors.

We further assume that the featufg§ } for samplei are
generated independently for eachith the same distribution.
The empirical distribution for each sample will be paramete
ized using the vector quantization (VQ) method described in
[3]. Briefly, the feature spac& = RP? is divided into clusters
based on some held-out data. A Gaussian model is computed
for each clustek by calculating the meapn;, and the variance
3 of the data assigned to the cluster. A GMM is then formed
by those Gaussians, with mixture weightsgiven by the pro-
portion of samples assigned to each cluster. The transform i
finally composed by the posterior probabilities for eachhef t
Gaussians given the sample’s data. Explicitly, kie compo-
nent of the transform corresponding to ttle sample is given
by
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whereG is the random variable corresponding to the Gaussian
index andy;, is the Gaussian distribution corresponding to index
k. These features can be consideremfiversion of a multidi-
mensional histogram, where each cell is replaced by a Gaussi
and the frequencies of the cells are replaced by the pot@fio
the Gaussians.

For these features, the most natural way to define the point
my, that represents the region over which the feattfrés ex-
tracted is to taken, = ux, the mean of the Gaussian for which

k¥ is the posterior. Using these values and the Euclidean dis-
tance we can define the mattikas in Section 3.2.

In [2], Jaakkola and Haussler introduced a kernel spe-
cially designed for sequential features, called the Fisteer
nel. The kernelis defined ds( f;, f;) = UleI‘lUfj, where
Us = Velog P(f|8) is the Fisher score, witld being the
parameters of some generative model for the featyiresid
I = E¢[U;U/] the Fisherinformation matrix. Since the Fisher
scorel/; has expectation equal to zero, the Fisher information
matrix is simply its covariance matrix. Each elementifis
the gradient of the log-likelihood with respect to a paramet
and it describes how that parameter contributes to the psoce
of generating a certain sample.

The method described above is one instance of the Fisher
kernel where the generative mode{ f|9) is given by the VQ
trained GMM. It can be shown that, in this setup, if we define
81 such thaic, = 6x/>", 0, then thely,’s are equal to the
z;'s as defined in [4], up to a shift and a scale factor on each di-
mension. If we normalize the featuredo have zero mean and
unit variance, then our kern&l( f;, f;) = =¥ =, is identical to
the Fisher kernel if we assunieto be diagonal. Interestingly
though, we have found that more sophisticated transfoomsi
which aim to equalize the distribution of the components of
work significantly better than simple subtraction of the mea
and division by standard deviation (which only equalizes th
first and second moments).

=k|f]) = 4)

=l

5. Experiments

Experiments were conducted on a text-independent speakerv
ification task. The goal is, given a speech sample and a athime
speaker identity, to decide whether the claim is true orefals
This is a binary classification task for which SVMs were rapea
edly found to outperform other classification methods. Here
we focus on a system that uses prosodic features extracted ov
automatically extracted syllable regions. The length efdb-
qguencef for each sample is then the number of syllables in the
output of an automatic speech recognizer. For each syllable
set of 140 features is extracted, containing informatioauab
the pitch, energy, and duration characteristics of theabidl.
We call these features Syllable NERFs (nonuniform extoacti
region features). For a description of the features see [9].

The prosodic featured;, for each sample are transformed
to fixed length vectors (referred to ag) using the method de-
scribed in Section 4. Since the dimension of the vectorsggela
(140) and the length of the sample sequences is usually small
(also in the hundreds), we cannot train a single GMM for the
complete feature vector. Instead the strategy describg] ia
used. Briefly, each prosodic feature is transformed seggrat
A GMM is obtained for each feature and for sequences of fea-
tures for two and three consecutive syllables or pauses.aiVe ¢
these unigram, bigram and trigram models, respectivelys Th
allows us to model temporal dependencies, which we would ig-
nore otherwise. The transforms corresponding to eachrieatu
and each sequence are concatenated together into the final ve
tor z;. For each feature and each of its sequences, a matrix
M is computed. The\ used for each case depends linearly
on the size of the corresponding GMM. The matfix- A A is
then formed as a block diagonal matrix, with a block for each
individual GMM. Parameters were chosen so that the totaknum
ber of features for each N-gram length is approximately equa
11,000 for unigrams, 13,000 for bigrams, 14,000 for triggam
and 38,000 for the complete system.

Experiments were conducted using data from the NIST
speaker recognition evaluation (SRE) from 2005 and 2006. Th
data from 2005 were used for parameter tuning. Each speaker
verification trial consists of a test sample and a speakeemnod
The samples are one side of a telephone conversation with ap-
proximately 2.5 minutes of speech. We consider the 1- and 8-
side training conditions in which we are given 1 or 8 conver-
sation sides to train the speaker model. Each of these conver
sations corresponds to one positive example when traihiag t
SVM model for the speaker. The data used as negative exam-
ples for the SVM training are taken from 2003 and 2004 NIST
evaluations along with some FISHER data, resulting in d tota
of 2122 conversation sides. The SRE2005 and SRE2006 tasks
contain 25,887 and 24,004 trials for the 1-side trainingdton
tion and 17,216 and 15,105 trials for the 8-side trainingdion
tion, respectively. The average number of syllables pevenn
sation side is around 600. Trials involving a test or train-co
versation side with fewer than 60 syllables were removeihfro
the original list prepared by NIST, resulting in the numbér o
trials mentioned above. The data used to obtain the GMMs for
each sequence were drawn from data from the 2003 and 2004
evaluations along with some FISHER data, yielding a total of
2456 conversation sides (2 sides from each of 1228 speakers)
with little overlap with the negative example data.

The performance measures used in this paper are the equal
error rate (EER), and NIST’s minimum detection cost functio
(DCF), which is defined as the Bayesian risk with probabdity
target equal to 0.01, cost of false alarm equal to 1, and dost o



| Method | none | mean/std] Gaussian] uniform |

Not smoothed| 14.89 | 13.78 13.82 13.33
Smoothed 14.77| 12.38 12.30 11.97
Table 1: Comparison of EER for different normalization

methods on SRE2005 1-side

miss equal to 10. SVMIlight [10] is used to perform regression
on the class labels with a cost for errors on positive samples
equal to the ratio of negative samples to positive samples.

As mentioned earlier, the resulting vectarsare normal-
ized on a per-component basis using the statistics obtained
the set of negative examples. We tried three different tyffes
normalization: subtraction of mean and division by staddar
deviation (mean/std), conversion to normal, and convar&io
uniform. The last two methods correspond to transformation
designed to turn the distribution of each feature into a-stan
dard Gaussian and uniform distributions, respectivelyblda
1 shows the results on SRE2005 for the different normadinati
methods, with and without smoothing. We see that perform-
ing no normalization is suboptimal. We can understand this b
considering the interpretation of the SVM as MAP estimation
with a prior on the weights with equal variance on all compo-
nents. This means that large weights are penalized equally f
all components. This assumption implies that we expect fea-
tures with smaller ranges to be less important, since, aiprio
they would have a smaller contribution fi{z). The fact that
normalization is necessary in our experiments implies feseat
tures with smaller range are as important as features wije la
range, that is, regions with low probability are as impotrtas
regions with high probability. Interestingly, althoughtneet
understood, uniform normalization outperforms the oty t
normalization methods. Furthermore, smoothing gives an im
provement only on normalized features. This means that we

can assume smoothness on the weights only after the ranges of

the input features have been normalized.

Table 2 shows the results for SRE2006. The first and last
lines (VQ and VQS) correspond to the system described in this
paper, without and with smoothing kernel, respectivelyngis
uniform normalization. The second and third lines show a-com
parison with two alternative systems. The VQB method uses
two GMMs for each GMM in the VQ system, a large one and a
smaller one, keeping the total number of Gaussians equato t
of the VQ system. The smaller GMM results in more robust fea-
tures, which compensate in part for the noisiness of theetarg
GMM. EM refers to a system for which the original GMMs are
obtained using the EM algorithm instead of simple VQ. Using
EM results in a GMM where Gaussians overlap each other sig-
nificantly, resulting in more robust but less sensitive deas
(for more details on this, see [3]). Applying the smoothirmrg-k
nel to the EM system does not lead to improvement, arguably
because there is less noise present in these features. iatee
when only one positive sample is available VQS performsbett
than the other three methods, although the difference lestwe
EM and VQS is not significant (significance is measured here
by a McNemar test at level 0.05). When more positive examples
are available, smoothing still helps over the simple VQ exyst
although the difference is not significant.

Figure 2 shows the EER for each N-gram length separately
and the overall system. Clearly, the improvement achiengad f
smoothing is relatively larger for shorter N-grams, beisg/dl
for unigrams on both training conditions. We can see that, fo
N-gram lengths of 1 and 2, VQS significantly outperforms all
three other systems in both conditions. For N-gram lengttakq
to 3 there is a significantimprovement only over the simple VQ

1-side 8-sides
Method | cee [ ber | EER | DCF
VQ 13.65| 0.601| 4.91 | 0.241
VOB 13.28 | 0.575| 4.91 | 0.228
EM 12.25| 0.553| 4.85 | 0.224
VQS 12.09| 0.544| 4.79 | 0.214
Table 2: System comparison for SRE2006
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Figure 2: EER for each N-gram length and the overall system
for SRE2006, for 1-side (left) and 8-side (right) training.

6. Conclusions

We presented a smoothing kernel derived from adding a regu-
larization term to the SVM objective function for the case in
which the input features are spatially related. We showltesu

in a speaker verification task, where the original sylldbies]
prosodic features are transformed into a fixed-length verto

ing a particular implementation of the Fisher kernel. Rissul
show that the smoothing kernel leads to 10% improvement in
the overall system and 15% in the unigram-only system.
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