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Abstract 

 
Pitch determination algorithm (PDA) performance typically degrades in the presence of 
interfering speakers and other periodic sources. We propose a multi-pitch determination 
algorithm (MPDA) that will detect and estimate two pitch tracks, a dominant and an interferer. 
Our method aims at being robust to various levels of combination of two speakers. Similar to 
the Subband Autocorrelation Classification (SAcC) method, we present a classifier based 
approach trained on compressed correlogram features. In contrast we train our classifier to 
detect all periodic sources, allowing for multiple speakers to be present. Viterbi decoding over a 
Markov chain of possible pitch and multiple speaker states is used to generate significant and 
continuous pitch tracks. We will compare our proposed algorithm against another MPDA and 
evaluate the performance of the methods with metrics extended from traditional PDAs. 



 
 
 
Introduction	
	
Speech’s	pitch	track	information	has	a	variety	of	applications	in	the	areas	of	speech	
compression	and	speaker	identification.	Knowledge	of	multiple	pitch	tracks	present	
in	a	single	channel	signal	can	aid	in	the	speech	separation	problem.	Most	
Computational	Auditory	Scene	Analysis	(CASA)	systems	exploit	the	information	of	
pitch	and	periodicity	to	perform	speech	separation	and	recognition	(Wang	et	al,	
2006).	The	performance	of	these	CASA	systems	are	tightly	tied	to	the	reliability	of	
their	input	features,	motivating	the	research	of	reliable	and	robust	methods	for	
extraction	of	pitch	tracks.	
	
In	the	presence	of	interfering	speech	sources	the	performance	of	traditional	single	
pitch	tracking	algorithms	is	greatly	degraded.	We	present	a	method	for	the	tracking	
the	pitch	of	both	the	dominant	and	interfering	source.	In	the	situation	where	the	
interfering	speaker’s	contribution	to	the	mixture	is	insignificant,	determination	of	
the	dominant	speaker’s	pitch	track	simplifies	to	the	single	pitch	tracking	problem.	
When	the	dominant	and	interfering	speaker	contribute	equally	to	the	mixture,	the	
concept	of	having	a	single	dominant	speaker	is	ill-defined	and	it	is	much	more	
difficult	to	extract	either	pitch	track.	We	are	interested	in	this	degenerate	case	as	it	
is	a	difficult	case	for	pitch	tracking	algorithms.	
 
Related Works 
 
Autocorrelation-based	pitch	tracking	methods	have	shown	much	success.	Wu	et	al.	
(2003)	have	developed	a	robust	MPDA	that	is	evaluated	on	clean	and	noisy	speech	
(Wu	algorithm).	The	Wu	algorithm	combines	pitch	peak	information	from	the	
subband	autocorrelation	domain	to	form	an	estimate	of	the	pitch	posterior	
distribution	at	a	discrete	time	step.	They	then	perform	Viterbi	decoding	over	a	
Hidden	Markov	model	(HMM)	to	generate	continuous	pitch	tracks.	
	
Lee	et	al.	(2012)	present	a	PDA,	Subband	Autocorrelation	Classification	(SAcC),	that	
uses	a	compressed	subband	autocorrelation	representation	to	train	a	multi-layer	
perceptron	(MLP)	that	estimates	the	pitch	state	posteriors.	Viterbi	decoding	is	then	
performed	over	the	pitch	state	space	to	generate	continuous	pitch	tracks.	
	
Both	of	the	related	work’s	methods	and	the	proposed	method	follow	a	similar	
sequence	of	computational	blocks	to	achieve	their	goals,	listed	as	follows:	a	feature	
extraction	component,	a	pitch	state	estimation	component,	followed	by	a	Viterbi	
decoding	component.	All	three	methods	use	a	similar	feature	representation	
referred	to	as	the	subband	autocorrelation.	The	pitch	state	estimation	component’s	
goal	is	to	estimate	the	likelihood	of	a	pitch	being	present	from	the	observed	speech’s	
features	at	each	time	point.	Finally,	the	decoding	component’s	goal	is	to	interpret	



the	distributions	across	time	points	to	form	continuous	pitch	tracks.	These	
components	will	be	discussed	in	the	following	sections.	
	
In	the	analysis	of	the	Wu	algorithm	they	report	solely	on	their	ability	to	estimate	the	
dominant	pitch	track	and	disregard	the	performance	of	the	interfering	pitch	track.	
In	the	degenerate	case,	when	two	speakers	contribute	equally	to	the	mixture,	the	
performance	of	the	algorithm	will	be	degraded	due	to	the	ambiguity	of	which	
speaker	is	dominant.	Our	proposed	method	aims	to	build	on	this	by	reliably	
extracting	two	pitch	tracks	present	in	the	speech	mixtures	and	will	be	evaluated	
based	off	of	the	integrity	of	both.	We	aim	to	achieve	this	goal	by	expanding	and	
improving	upon	the	SAcC	method,	due	to	the	high	quality	of	its	performance	in	
single	pitch	tracking	setting.	Our	modifications	to	the	SAcC	method	are	highlighted	
in	the	second	and	third	outlined	components:	a	restructuring	of	the	neural	network	
outputs	to	allow	for	an	intuitive	labelling	of	all	of	the	pitch	tracks	present	and	the	
development	of	a	multiple	speaker	Markov	model	to	allow	for	the	tracking	of	
multiple	pitch	tracks.		
	
Subband	Autocorrelation	Features	
	
For	both	of	these	methods	the	input	speech,	![#],	goes	through	a	similar	pipeline	to	
extract	subband	autocorrelation	features.	Speech	is	decomposed	into	a	set	
frequency	subbands,	!%[#]	for	& = 1	*+	,,	using	a	cochlear	filter	bank.	The	traditional	
model	for	a	cochlear	filter	bank	is	a	set	of	fourth-order	gammatone	filters	with	
center	frequencies	uniformly	distributed	from	80	Hz	to	5kHz	and	bandwidths	set	
according	to	the	Equivalent	Rectangular	Bandwidth	scale.	At	this	point	the	!% # 	is	
discretized	into	10ms	chunks	and	a	N-point	normalized	autocorrelation	is	computed	
(n	is	indexing	time,	k	indexing	in	correlation	lag,	and	l	is	indexing	the	subband).	
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Pitch	State	Estimation	and	Decoding	
	
The	Wu	algorithm	then	performs	peak	detection	within	each	of	these	subbands	to	
localize	periodic	energy.	The	resulting	pitch	peak	energy	is	spread	along	the	
periodicity	dimension	according	to	an	empirical	Laplacian	fit	and	summed	across	
the	frequency	subband	dimension.	They	interpret	the	merged	results	as	an	estimate	
of	the	probability	distribution	over	possible	pitches.	Viterbi	decoding	is	then	
performed	over	an	HMM	to	enforce	sequential	consistency	to	obtain	continuous	
pitch	tracks.	
	
The	SAcC	algorithm	generates	probability	distributions	from	the	output	of	a	MLP	
classifier.	To	make	the	training	of	the	classifier	feasible	the	raw	subband	
autocorrelation	features	are	reduced	in	dimension	by	representing	each	subband	at	
each	time	point	as	its	top	K	principal	components.	This	reduces	the	input	feature	



dimensionality	from	S	by	N	to	S	by	K.	The	ground-truth	pitch	data	from	the	speech	
corpus	is	used	to	label	the	training	data,	more	on	this	later.	The	pitch	state	space	is	
discretized	into	67	logarithmically	spaced	frequency	bins	with	the	addition	of	a	`too	
high',	`too	low',	and	`unvoiced'	bins.	The	ground-truth	pitch	is	mapped	to	its	closest	
quantized	bin	for	each	time	frame.	These	70	bins	are	used	as	the	output	units	of	the	
MLP.	Similar	Viterbi	decoding	is	performed	to	form	continuous	pitch	tracks. 
 
Methods	
	
Below	we	will	discuss	how	our	MLP	classifier	is	structured	and	trained,	as	well	as	
how	the	multiple	speaker	Markov	model	is	generated	and	used	to	decode	the	
posterior	pitch	states.	
	
MLP	Classifier	
	
Our	method	classifies	the	reduced	dimension	subband	autocorrelation	features	into	
all	the	pitch	states	that	apply.	This	allows	for	multiple	pitch	labels	to	be	assigned	to	
a	particular	time	frame.	The	architecture	consists	of	a	single	hidden	layer	with	1000	
hidden	units.	There	are	S	by	K	input	units,	representing	the	dimensionality	of	our	
input	features,	and	70	output	units	representing	the	number	of	states	in	our	
quantized	pitch	space.	
	
We	train	our	MLP	on	the	features	extracted	from	mixed	speaker	speech.	Our	
training	data	is	labeled	so	that	the	MLP	classifies	all	periodicities	present	in	each	
time	frame.	When	neither	of	the	speakers	is	voiced	then	the	‘unvoiced’	bin	is	labeled.	
When	one	speaker	is	voiced,	that	respective	speakers’	pitch	bin	is	labeled.	When	
both	speakers	are	voiced	then	both	speakers’	pitch	bins	are	labeled.	The	label	
vectors	are	normalized	at	every	time	frame,	so	that	the	MLP	estimates	valid	
posterior	distributions.	Figure	1	is	the	output	of	the	trained	MLP	on	a	mixed	speaker	
speech.	
	

 
Figure 1: Resultant MLP posterior pitch state distributions for 356 consecutive 10 ms time 
frames on a mixture of 2 speakers. 
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Multi	Speaker	Markov	Model	
	
The	MLP	classifier	estimates	the	posterior	pitch	state	distribution	at	each	discrete	
time	step.	We	then	divide	our	resulting	distributions	at	each	time	frame	by	the	pitch		
state	prior	to	extract	the	likelihood	of	the	observation	given	the	current	pitch	state.	
We	empirically	estimate	the	prior	of	unvoiced	and	voiced	frames	and	use	a	uniform	
prior	on	all	voiced	pitch	states.	These	distributions	can	be	decoded	to	give	final	
continuous	pitch	tracks.	
	
We	have	constructed	a	Markov	chain	that	allows	for	multiple	fundamental	
frequencies	to	be	tracked.	The	Markov	chain	is	constructed	from	the	cross	of	two	
identical	Markov	chains	that	each	span	the	single	speaker	pitch	space.	These	single	
speaker	Markov	chains	are	constructed	in	a	similar	manner	as	in	Lee	and	Ellis.	The	
resulting	state	space	allows	for	two	speaker’s	pitch	tracks	to	be	simultaneously	
decoded	and	to	form	a	maximum	likelihood	estimate	of	a	pair	of	continuous	pitch	
tracks.	The	top	pane	of	Figure	2	visualizes	the	results	of	our	decoding.		
	

 
Figure 2: Comparison of results for artificially mixed TIMIT utterances. Our method’s pitch 
track estimates of monaural mixed speaker speech plotted against ground-truth labels (top pane).  
Wu et al. method’s pitch track estimates of monaural mixed speaker speech plotted against 
ground-truth labels (bottom pane). 
	
Error	Metric	
	
PDA	evaluation	metrics	have	been	established	in	previous	publication	by	Rabiner	et	
al.	(1976).	These	have	been	improved	upon	in	Lee	et	al.	(2012)	and	expanded	upon	
to	evaluate	MPDAs	in	Wu	et	al.	(2003).	Defined	below	are	several	metrics	that	
quantify	the	ability	of	a	MPDA	to	correctly	determine	the	pitch	tracks	of	multiple	
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speakers.		These	metrics	can	be	divided	into	two	categories:	speaker	error	and	pitch	
tracking	error.	Speaker	error	accounts	for	the	improper	number	speaker	pitch	
tracks	in	a	particular	frame.	For	example	<=→?	is	the	percentage	of	unvoiced	frames	
being	misclassified	as	single	speaker	voiced	frames.	This	is	expanded	on	for	all	
plausible	cases	of	speaker	error,	with	the	notation	of	<@→A,	the	percentage	of	frames	
with	n	number	of	speakers	being	misclassified	as	a	frame	with	m	number	of		
speakers.	
	 	
Pitch	tracking	error	accounts	for	error	in	the	value	of	pitch	estimated	and	this	is	
evaluated	on	the	frames	that	have	the	correctly	classified	number	of	speakers.	This	
is	further	divided	into	two	categories	of	Fine	Error	(FE)	and	gross	error	(GE).	GE	is	
the	percentage	of	pitch	estimates	that	deviate	by	more	than	20%	from	their	ground-
truth	label.	FE	is	the	standard	deviation	of	pitch	estimates	from	the	ground-truth	
labels.	These	two	metrics	are	evaluated	separately	in	the	single	and	multiple	
speaker	cases.	The	single	speaker	case	occurring	when	one	of	speakers	is	
temporarily	silent	and	the	multiple	speaker	case	occurring	when	neither	speaker	is	
silent.	
	
	
Experiments	
	
The	KEELE	(Plante	et	al,	1995)	and	FDA	(Bagshaw	et	al,	1993)	corpora	are	used	for	
training	purposes.	Both	provide	laryngeal	frequency	contours	that	we	extract	
ground-truth	pitch	labels	from.	The	KEELE	corpus	contains	the	speech	of	10	
speakers	each	with	30	seconds	of	pitch-labeled	data	and	the	FDA	contains	2	
speakers	each	with	50	three	second	chunks	of	pitch-labeled	data.	We	generate	our	
training	and	cross	validation	data	from	the	FDA	and	KEELE	corpora	by	artificially	
mixing	chunks	of	audio	files	to	form	2000	two	speaker	utterances,	each	roughly	5	
seconds	in	duration.	Each	speaker	contributes	equally	in	each	training	mixture,	so	
that	neither	speaker	is	dominant.		
	
Testing	data	is	derived	in	a	similar	fashion	from	the	TIMIT	corpus	(Garofolo	et	al,	
1993).	We	extracted	ground-truth	pitch	labels	from	our	single	speaker	data	prior	to	
mixing	with	the	SAcC	algorithm.	Lee	et	al.	(2012)	reported	the	SAcC	algorithm	
performed	highly	in	the	presence	of	noise	and	was	in	agreement	with	other	PDAs	
and	therefore	should	act	suitably	as	our	ground	truth.	We	generated	20	two	speaker	
utterances	each	roughly	5	seconds	in	duration	and	ran	several	experiments	varying	
the	weight	of	each	speaker’s	speech	in	the	mixture.	We	ran	experiments	with	equal	
contribution	(0	dB),	5	dB,	10	dB,	and	15	dB	contribution.	We	evaluated	our	method	
side	by	side	with	the	Wu	algorithm,	implementation	provided	by	the	author.	
	
We	use	QuickNet3	to	train	our	MLP.	The	final	version	of	the	method	used	48	
subbands	and	only	retained	the	top	10	principle	components	of	each	subband.	This	
                                                

3	http://www.icsi.berkeley.edu/Speech/qn.html	



resulted	in	the	final	architecture	of	the	MLP	with	480	input	units,	one	hidden	layer	
with	1000	hidden	units,	and	an	output	layer	with	70	units.	The	training	data	was	
split	70%	for	the	training	and	30%	cross	validation	of	the	MLP.	
 

 
 
Figure 3: Experimental Results computed over all testing data, Single Speaker Fine Error (plot 
A), Single Speaker Gross Error (plot B), Multiple Speaker Fine Error (plot C), Multiple Speaker 
Gross Error (plot D), <=→?(plot E),	<?→=(plot F),	<?→4(plot G),	<4→?(plot H).Our algorithm is 
plotted in red and the Wu algorithm in blue. 
 
Results	
	
Our	results	indicate	an	increase	in	performance	over	the	Wu	algorithm	in	a	few	of	
the	error	metrics	we	have	defined	above.	We	have	improved	performance	in	our	
ability	to	classify	unvoiced	and	voiced	frames	(plots	E	and	F)	and	our	pitch	state	
estimate	within	correctly	classified	frames	deviates	less	from	the	ground	truth	in	
both	single	and	multiple	speaker	cases	(plot	A	through	D).	In	addition,	the	amount	of	
fine	and	gross	error	(plots	A	through	D)	resulting	from	our	method	remain	fairly	
consistent	as	one	speaker	becomes	more	dominant	over	the	other	in	the	mixture,	
suggesting	that	our	method	is	robust	to	the	degenerate	case	we	have	outlined.	
	
The	boost	in	performance	our	method	received	over	the	Wu	algorithm	could	be	in	
part	attributed	to	the	neural	net’s	ability	to	learn	features	that	aided	in	the	
estimation	of	multiple	pitch	tracks	that	the	peak	selection	process	could	not	access.	
We	speculate	that	by	training	the	neural	net	to	estimate	multiple	pitch	tracks	
simultaneously,	we	more	accurately	estimated	the	interferer’s	pitch	track	and	thus	
reduced	the	overall	error.	
	



Discussion	
	
It	is	often	ambiguous	as	to	where	the	boundaries	of	voiced	and	unvoiced	segments	
are	in	an	utterance	and	this	makes	it	difficult	to	correctly	label	frames	on	the	
boundary.	The	mislabeling	of	the	data	contributes	to	the	error	in	a	two-fold	manner.	
First,	mislabeling	causes	error	in	the	training	of	our	classifier,	making	the	classifier	
weaker.	Second,	mislabeling	causes	the	number	of	speakers	to	be	incorrectly	
counted	in	the	grading	of	MPDAs	being	tested.	Speaker	error	is	very	susceptible	to	
mislabeled	ground-truth	pitch	tracks.	This	effect	can	be	observed	in	the	top	pane	of	
Figure	2	on	the	starts	and	ends	of	voiced	track	segments.	
	
There	are	ambiguous	situations	that	represent	a	large	source	of	multiple	speaker	
error.	The	two	main	situations	include	overlapping	pitch	tracks	from	different	
sources	and	the	situation	in	which	pitch	tracks	from	different	sources	interleave	or	
pass	through	each	other.	It	has	been	observed	that	when	the	pitch	tracks	overlap	the	
classifier	will	misclassify	two	speakers	as	one	speaker.	In	the	case	where	the	
speaker’s	pitch	tracks	interleave,	the	decoding	is	ambiguous	as	to	which	track	
belongs	to	which	speaker.	These	sources	influence	both	speaker	error	and	pitch	
track	error.	
	
Concluding	Remarks 
 
This research experiments with the ability of neural networks to perform multi pitch 
tracking. They provide a succinct framework for the determination of pitch tracks. Future 
work would include more complex Markov models to handle more than two speakers and 
to resolve the pass through ambiguity. Different network architectures could also be used 
to integrate the presence of temporal information into estimating the pitch posterior state 
distributions to aid the formation of continuous pitch tracks. 
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