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Summary. This chapter describes the English-language SMARTKOM-Mobile system and re-
lated research. We explain the work required to support a second language in SMARTKOM

and the design of the English speech recognizer. We then discuss research carried out on sig-
nal processing methods for robust speech recognition and on language analysis using the Em-
bodied Construction Grammar formalism. Finally, the results of human-subject experiments
using a novel Wizard and Operator model are analyzed with an eye to creating more felicitous
interaction in dialogue systems.

1 Introduction

The SMARTKOM-Mobile application provides navigation and tourism information
using either a handheld personal digital assistant (PDA) interface or an in-car inter-
face. Some images from the application’s display are shown in Fig. 1. A user com-
municates with SMARTKOM-Mobile using pointing gestures and natural speech, and
the system responds with speech (from an animated agent, displayed on-screen) and
the display of images and text. The natural and reliable conversational interaction
that this calls for provided motivation for a range of research. In this section and in
Sect. 2 we describe the work required to port SMARTKOM-Mobile to the English
language and the design of the English speech recognizer. In the following sections,
we describe research on robust speech recognition, language analysis, and human–
computer interaction carried out by the SMARTKOM-English team.

The development of an English-language SMARTKOM-Mobile verified the lan-
guage portability of the SMARTKOM architecture and facilitated the demonstration
of SMARTKOM at international conferences. Staff and visiting researchers at ICSI
and staff at DFKI took the lead roles in the creation of the English-language system,
and important contributions came from several other SMARTKOM partner sites.

The English speech recognizer was developed completely independently from
the German one; it is a hybrid connectionist system descended from the one used in
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Fig. 1. SMARTKOM-Mobile screen shots showing pedestrian navigation (left) and tourist site
information (right)

the BERP dialogue system project (Jurafsky et al., 1994). All other modules in the
English SMARTKOM-Mobile system were based on, or identical to, modules in the
German-language SMARTKOM-Mobile.

The modular architecture of SMARTKOM greatly eased porting to English by en-
capsulating language dependencies in specific modules. Most SMARTKOM modules
required no modification to support English. Of the modules requiring modification,
only speech recognition and speech synthesis required significant changes to soft-
ware source code. The speech analyzer (which parses the recognized speech) and
text generator (which creates the system’s output sentences) required only a change
in their template (grammar) files and otherwise used the same software engines for
both German and English. The lexicon module had to be aware of the current lan-
guage in order to provide the correct word pronunciations. Some displayed text pro-
vided by the pedestrian and vehicle navigation modules (such as tourist site informa-
tion and map labels) was translated to English. If dynamic help had been included in
the English system, some additional displayed text would have required translation.
The speech analyzer outputs a language-independent semantic representation of the
user input, and so modules which tracked dialogue state and user intention did not
need to be language-aware.

2 The SmartKom-English Speech Recognizer

2.1 Overview

The recognizer uses the hidden Markov model (HMM) approach to speech recogni-
tion illustrated in Fig. 2. This approach models speech as a sequence of observations
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sampled from different possible probability distributions, with a distinct distribution
corresponding to each member of a finite set of possible hidden states. In our rec-
ognizer the hidden states represent phones, and the observations are assumed to be
acoustic realizations of those phones. Each observation represents a single frame of
time. The time step from the start of one frame to the start of the next frame is 16 ms
and the length of each frame is 32 ms; the resulting overlap between frames is useful
since the frame boundaries are not necessarily aligned with phone boundaries. The
observations being modeled are not the original audio but rather are the output of a
feature extraction process intended to reduce dimensionality and discard irrelevant
variation. We used perceptual linear prediction (PLP) feature extraction (Hermansky,
1990), which captures the envelope of the frame power spectrum but discards some
spectral detail. The probability of a particular observation for each possible hidden
state is determined by an acoustic modeling stage, which we carry out using a mul-
tilayer perceptron (MLP), following the hybrid connectionist approach of Bourlard
and Morgan (1993). The probabilities determined by the acoustic modeling stage for
all frames are used by a decoding stage that searches for the most likely sentence,
taking into account a dictionary of word pronunciations and a language model (tables
of word transition probabilities).

Fig. 2. Speech recognizer architecture

The English speech recognizer was built as a chain of small tools used in a
pipeline, communicating with each other using Unix pipes. This simple, modular de-
sign makes adding or upgrading speech recognizer components easy. A wrapper pro-
gram starts the pipeline and handles communication with other SMARTKOM mod-
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ules. Feature extraction is performed by ICSI’s RASTA tool. Utterance-level mean
and variance normalization of the features and MLP output calculation is performed
by ICSI’s FFWD-NORM tool. Decoding was performed by the NOWAY tool (Re-
nals and Hochberg, 1996); changes made to the NOWAY tool to support the needs
of the SMARTKOM project are described below. Source code for all these tools is
available free for research use.

2.2 Language Modeling and Decoding

The speech recognizer uses a trigram language model with backoff to bigrams and
unigrams. The SRI language modeling toolkit (Stolcke, 2002) was used to estimate
the language model from training data that consisted of sample dialogues, partly
edited by hand to achieve good coverage of what were perceived to be natural user
inputs. Since no naturally collected English data was available, we relied on English
translations of German dialogues, taking care to produce idiomatic, rather than literal
translations.

To meet the needs of SMARTKOM, we modified the NOWAY decoder to use the
C++ libraries associated with the SRI LM toolkit to access language models. This
modification allowed NOWAY to be used with class-based language models. Class-
based LMs can include class labels as part of N-grams, which are then expanded
by a list of class member words. Class-based models have two key advantages for
SMARTKOM. First, by using classes the LM generalizes better to novel word se-
quences, which is especially important given the scarcity of training data. For exam-
ple, a DIRECTION class was used to stand for possible map directions (e.g., left,
right, up, down, east, west, north, and south) in training sentences. To achieve gen-
eralization, the word classes are defined by hand based on task knowledge, and the
appropriate words are replaced by class labels in the training data.

The second key function of word classes is that they allow new class members
to be added on the fly while SMARTKOM is running, without reestimating the entire
language model. In the English Mobile application this occurs with parking garage
names, which are retrieved from the car navigation module. Parking garage names
can occur any time the class name GARAGE occurs in the language model, thereby
covering sentences such as

• Can you tell me more about GARAGE
• I would like to know more about GARAGE
• I’d like to know more about GARAGE

3 Signal Processing for Robust Speech Recognition

3.1 Introduction

Compared to recordings made using a close-talking microphone placed near the
user’s mouth (e.g., a headset microphone), recordings from more distant micro-
phones have higher levels of background noise relative to the speech level (since
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the speech level is lower) and are subject to reverberation and other effects due to
the longer and sometimes indirect paths taken by the traveling sound waves. While
these degradations affect human speech recognition performance as well, current
automatic speech recognition systems are much more sensitive to them. However,
close-talking microphones are often inconvenient, and improvements in the recogni-
tion accuracy that can be achieved without them are very likely to increase adoption
of speech recognition technology.

The SMARTKOM-Mobile application can be used inside a car (using an installed
display and microphones) or on foot (using the microphone and display on a hand-
held computer or PDA).3 Of these two circumstances, ICSI research focused on
the in-car case, making use of the SpeechDatCar (Moreno et al., 2000) corpus. The
SpeechDatCar corpus is available in several languages; in this article we will only
describe results for SpeechDatCar-German. This contains in-car recordings of Ger-
man connected digit strings made simultaneously with close-talking and hands-free
microphones, in various noise conditions: “Stop Motor Running,” “Town Traffic,”
“Low-Speed Rough Road,” and “High-Speed Good Road.” Our speech recognition
experiments with this corpus were performed for three cases: the well-matched case
used all microphone types and noise conditions in both training and test data, the
medium-matched case used only the hands-free microphone and tests using only the
“High-Speed Good Road” noise condition (which is excluded from the training data
in this case), and the highly mismatched case used close-talking microphone training
data and hands-free microphone test data.

3.2 Noise Reduction and Deconvolution

Figure 3 shows a model of how acoustic degradation is caused by reverberation and
background noise. Reverberation and other acoustic effects related to the transmis-
sion of speech from talker to microphone, together with the frequency response of
the microphone itself, are modeled as a linear time-invariant system with impulse
response c(n) and frequency response C(ω). Background noise (including noise in-
ternal to the microphone itself) is additive after this system. We investigated the
effectiveness of some signal processing techniques based on this model.

Fig. 3. Model of acoustic degradation

3 In in-car applications, non–close-talking microphones are sometimes referred to as hands-
free microphones, as in hands-free mobile phone operation.
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3.2.1 Noise Reduction

We used a noise reduction implementation developed for an Aurora (Hirsch and
Pearce, 2000) front-end proposal, a joint effort between ICSI, OGI, and Qualcomm
engineers, described in Adami et al. (2002). The algorithm performs Wiener filter-
ing with modifications such as a noise overestimation factor, smoothing of the filter
response, and a spectral floor. It calculates an instantaneous noise power spectral
estimate |Ń(m,k)|2 (where k is the frequency bin and m is the frame index) by aver-
aging the noisy power spectra |X(m,k)|2 over an initial period before speech starts
as well as later frames, which are judged to be nonspeech because their energy level
falls below a threshold. This estimate is used to calculate a filter

|H(m,k)| = max

(
|X(m,k)|2 −α|Ń(m,k)|2

|X(m,k)|2 ,β

)
,

where α is an SNR-dependent oversubtraction factor and the spectral floor parameter
β is used to avoid negative and very small filter values. This filter |H(m,k)| varies
from frame to frame. To reduce artifacts in the noise-reduced output, the filter is
smoothed over time and frequency. Then the smoothed filter is applied to the noisy
power spectra X to obtain an estimate of the noise-free power spectra Y :

|Ý (m,k)|2 = max(|X(m,k)|2 ∗ |H(m,k)|2,β f inal ∗ |Ń(m,k)|2),
where β f inal is a second spectral floor parameter, which specifies the floor as a frac-
tion of the estimated noise power.

This Wiener filtering approach is based on the assumption that the noise power
spectrum is steady. This is probably a fairly good assumption for engine and wind
noise during unchanging driving conditions.

Table 1 shows word error rates (WER) on SpeechDatCar-German using the Au-
rora baseline speech recognizer described in Hirsch and Pearce (2000), with and
without noise reduction preprocessing. The noise reduction is very effective in the
medium-mismatch condition. In the high mismatch condition it is counterproductive;
perhaps the application of noise reduction to the close-talking microphone training
data makes that data an even worse match for the hands-free microphone test data.
For these experiments, the noise estimation was performed independently for each
utterance, and we used overlap-add resynthesis to create noise-reduced output wave-
forms. This allowed the noise reduction to be used with existing feature extraction
code without modifying that code. This noise reduction approach was added to the
SMARTKOM-English system as a new pipeline stage preceding the RASTA feature
extraction tool.

3.2.2 Deconvolution by Mean Subtraction

Deconvolution by mean subtraction is commonly employed in speech recognition
systems, most often via the cepstral mean subtraction (CMS) algorithm. The reason-
ing behind it is as follows. Consider a discrete-time speech signal s(n) (the origin
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Table 1. SpeechDatCar-German word error rates (WER) with and without noise reduction.
The well-matched test data contain 5009 words, the medium-matched test data contain 1366
words, and the highly mismatched test data contain 2162 words.

WER (%) Without noise reduction With noise reduction
Well-matched 8.0 7.0
Medium-matched 20.6 14.9
Highly mismatched 15.4 17.5

of speech as a continuous-time signal is ignored here for simplicity) sent over a lin-
ear time-invariant channel with impulse response c(n), producing a filtered signal
y(n). Then the product property holds for the spectra of s and c: Y (ω) = S(ω)C(ω).
Assume that the filtered signal is processed using a windowed discrete Fourier trans-
form, giving Y (m,ω), where m is the frame index determining around which sam-
ple the window function was centered. If the window function is long and smooth
enough relative to c(n), then the product property approximately still holds (Aven-
dano, 1997): X(m,ω) ≈ S(m,ω)C(ω). Note that the channel is assumed not to vary
over time. Taking the logs of the magnitudes of both sides of the previous equa-
tion, we find that log|X(m,ω)| ≈ log|S(m,ω)|+ log|C(ω)|. Therefore, by subtract-
ing the mean over m (i.e., over time) of log|X(m,ω)| from log|X(m,ω)|, we remove
log|C(ω)| and the mean over time of log|S(m,ω)|. If s(n) is speech, and the mean
is calculated over a large enough number of frames, then we expect the mean of
log|S(m,ω)| to contain little linguistic information, and therefore its removal need
not be detrimental to speech recognition performance. Thus the subtraction can be
used to compensate for the magnitude response of the channel (for various reasons,
there is usually no attempt to compensate the phase response). Speech recognition
feature extraction is usually essentially based on windowed discrete Fourier trans-
forms. However, following the transform it is typical to do further processing like
Mel/Bark-scale filter bank integration and cepstral transformation, and most often
the mean subtraction is done after that processing. The cepstral transformation, be-
ing linear, does not affect the reasoning above, but the filter bank integration implies
an additional assumption that the channel frequency response is close to constant
across the frequency bins that are being integrated.

Table 2 shows WER on SpeechDatCar-German with and without mean subtrac-
tion methods added to the Aurora baseline speech recognizer described in Hirsch
and Pearce (2000), which uses Mel-frequency cepstral coefficient (MFCC) feature
extraction and by default does not perform mean subtraction.

Cepstral mean subtraction (CMS) removes the mean across frames from the
MFCCs. The table shows CMS was most helpful in the well-matched and highly mis-
matched cases, where both close-talking and hands-free recordings are used. This is
not surprising because there is a channel mismatch between close-talking and hands-
free recordings. The reasoning behind mean subtraction assumes that all frames con-
tain speech, while in fact the data is a mix of speech and pauses. Calculating the mean
only over frames judged by a multilayer perceptron classifier to contain speech re-
sulted in a significant performance improvement, which is consistent with the results
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for speech recognition over telephone connections in Mokbel et al. (1996). We also
tried the log-DFT mean normalization (LDMN) proposed in Neumeyer et al. (1994).
In this method the mean subtraction occurs midway through the MFCC computation,
before the filter bank integration, so the assumption of channel constancy across bins
being integrated is not required. At ICSI, we have sometimes found this to be more
effective than CMS, but on this task it does not perform better (in fact, there is a
slight, though not statistically significant, drop in performance).

Table 2. SpeechDatCar-German word error rates (WER)

WER (%) Baseline Noise re-
duction
alone

Noise red.
and CMS

Noise red.
and CMS;
mean taken
over speech
frames

Noise red.
and LDMN;
mean taken
over speech
frames

Well-matched 8.0 7.0 6.7 6.1 6.1
Medium-matched 20.6 14.9 15.7 14.6 15.2
Highly mismatched 15.4 17.5 14.7 11.3 11.0

For further results, including other mean subtraction methods and other data sets,
see Gelbart (2004).

3.3 Gabor Filtering

The noise reduction and mean subtraction approaches described above are intended
to increase the robustness of existing feature extraction methods by adding additional
processing. Another approach, which can be complementary, is to create new feature
extraction methods which have desirable properties. We collaborated with Michael
Kleinschmidt of the Universität Oldenburg on his project on Gabor filter feature ex-
traction for automatic speech recognition (Kleinschmidt and Gelbart, 2002; Klein-
schmidt, 2002). Gabor filters are a family of two-dimensional filters, which Klein-
schmidt proposed to use for feature extraction by convolving Gabor filters with a
time-frequency representation such as a mel-band spectrogram (see Fig. 4). Depend-
ing on what Gabor filters are used, this can behave similarly to short-term spectral
envelope-based feature extraction approaches like the popular MFCC and PLP meth-
ods, or to the TRAPS (Jain and Hermansky, 2003) approach of long-term analysis in
narrow frequency bands, or it can look for patterns at an oblique angle to the time
and frequency axes. In Kleinschmidt’s approach the Gabor filters used are chosen by
a data-driven selection procedure which searches for Gabor filters that appear likely
to give good classification performance.

The second column of Table 3 gives WER on SpeechDatCar-German using the
back end of the Aurora baseline speech recognizer (Hirsch and Pearce, 2000) with
the QIO-NoTRAPS feature extraction module developed by Qualcomm, ICSI, and
OGI (Adami et al., 2002), which calculates robust MFCC features using techniques
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such as noise reduction by Wiener filtering and mean subtraction. When features
derived from Gabor analysis were concatenated to the robust MFCC features to form
a longer feature vector, the error rate decreased, as shown in the third column. We
found that for good performance with the Gabor filters it was necessary to pass them
through a stage of nonlinear discriminant analysis by MLP (the back end used a
different acoustic modeling approach). For source code for Gabor feature extraction,
and additional information about this approach, please refer to our website. 4

Table 3. SpeechDatCar-German word error rates (WER)

WER (%) QIO-NoTRAPS With Gabor analysis
Well-matched 5.8 5.4
Medium-matched 12.1 11.7
Highly mismatched 12.0 11.6

4 Robust, Semantically Rich Language Analysis

The approach to analysis (parsing and semantic analysis) of recognized speech nor-
mally used in the SMARTKOM system was Ralf Engel’s SPINmodule (Engel, 2002).
The SMARTKOM project also funded investigation into an alternative approach,
aimed at robust and semantically rich language analysis. The alternative approach,
described here, makes use of a linguistically sophisticated language formalism called
Embodied Construction Grammar (ECG (Bergen and Chang, 2002; Chang et al.,
2002). ECG is a construction-based grammar formalism (Goldberg, 1995) that uses
embodied primitives like frames (Fillmore, 1982), image schemas (Lakoff, 1987)
and executing schemas (Narayanan, 1997) as its semantic representation. In addition
to supporting these cognitive primitives, ECG is an extension of unification-based
formalisms like HPSG (Pollard and Sag, 1994), and as a consequence, it is precise
enough for computational models of language analysis.

ECG is an extremely expressive grammar formalism, and as such new algorithms
needed to be designed that could take advantage of the wealth of semantic informa-
tion contained in an ECG grammar, and yet still efficiently and robustly process each
utterance. These algorithms are implemented within the so-called constructional an-
alyzer (Bryant, 2003).

The first key innovation employed in the design of the constructional analyzer
is how it combines linguistic knowledge with process. Instead of treating each con-
struction as a passive piece of grammatical knowledge, the analyzer compiles each
construction into an active unit called a construction recognizer. Each construction
recognizer is responsible for applying both the form and the semantic constraints
associated with its construction. The recognizer then generates an instance of the
construction if an acceptable set of constituents is found.

4 http://www.icsi.berkeley.edu/Speech/papers/icslp02-gabor/
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Fig. 4. Upper left: A log mel-band spectrogram for the spoken word “nine”. Lower left: The
real part of a Gabor filter. The Gabor filters are complex-valued. Rather than doing acoustic
modeling with complex-valued features, Kleinschmidt chose to use the real part, imaginary
part, or magnitude of the results of correlation as features. Upper right: The real part of the
log mel-band spectrogram after correlation with the Gabor filter. Lower right: The values of
the filtered log mel-band spectrogram at the center frequency of the Gabor filter (it is those
that would be used as features for speech recognition)

The analyzer itself must manage the interaction between each of the recogniz-
ers, while looking for semantically and formally complete analyses of the whole
utterance. The analyzer also has the responsibility for robustly responding when an
analysis of the whole utterance cannot be found because of an unforeseen syntactic
pattern. This scenario leads us to the second key conceptual innovation employed in
the constructional analyzer: leveraging semantics for robust analysis.

Given the rich semantics found in an ECG grammar, the strategy for robust be-
havior is twofold. First, the analyzer needs a way to infer likely identifications be-
tween frames. Such a strategy is specified by the Parsimony Principle (Kay, 1987).
It states that the ideal reader unifies compatible frames whenever possible. Applying
this principle to a collection of frames and schemas simulates the identifications that
were likely to result had a complete analysis been found.

Second, the analyzer needs a mechanism for choosing between the competing
analyses that result from application of the Parsimony Principle. The heuristic used
for this task is called semantic density (Bryant, 2003). Semantic density defines the
completeness of an analysis as the ratio of filled frame roles to total frame roles.
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Analyses that are more semantically dense specify more of the frame roles in the
utterance than those that are less semantically dense, and the analyzer thus prefers
denser analyses.

The constructional analyzer was tested by integrating it with the SMARTKOM do-
main and context model (Porzel et al., 2006), taking semantic information from that
module’s ontology. Not only did it successfully analyze questions from the tourist
domain, but it also capitalized on the structure found with the ontology to perform
linguistic type-coercion known as construal (Porzel and Bryant, 2003).

5 Wizard and Operator Study of Felicitous Human Computer
Interaction5

5.1 Introduction

End-to-end evaluations of conversational dialogue systems with naive users are cur-
rently uncovering severe usability problems that result in low task completion rates.
Preliminary analyses suggest that these problems are related to the system’s dia-
logue management and turn-taking behavior. We present the results of experiments
designed to take a detailed look at the effects of that behavior. Based on the resulting
findings, we spell out a set of criteria which lie orthogonal to dialogue quality, but
nevertheless constitute an integral part of a more comprehensive view on dialogue
felicity as a function of dialogue quality and efficiency.

Research on dialogue systems in the past has focused on engineering the various
processing stages involved in dialogical human–computer interaction (HCI), e.g.,
robust automatic speech recognition, intention recognition, natural language gener-
ation, or speech synthesis (Allen et al., 1996; Cox et al., 2000; Bailly et al., 2003).
Alongside these efforts, the characteristics of computer-directed language have also
been examined as a general phenomenon (Zoeppritz, 1985; Wooffitt et al., 1997;
Fraser, 1993; Darves and Oviatt, 2002). The flip side, i.e., computer–human interac-
tion (CHI), has received very little attention as a research question by itself.

The intuitive usability of such conversational dialogue systems can be demon-
strated by usability experiments with real users that employ the PROMISE evaluation
framework (Beringer et al., 2002), which offers some multimodal extensions over the
PARADISE framework (Walker et al., 2000). The work described herein constitutes
a starting point for a scientific examination of the “whys” and “wherefores” of the
challenging results stemming from such end-to-end evaluations of conversational di-
alogue systems.

One of the potential reasons for the problems thwarting task completion stems
from the problem of turn overtaking, which occurs when users rephrase questions or
make a second remark to the system while it is still processing the first one. After
such occurrences a dialogue becomes asynchronous, meaning that the system re-
sponds to the second-last user utterance while in the user’s mind that response con-

5 Robert Porzel and Manja Baudis were the principal authors of this section.
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cerns the last. Given the state of the art regarding the dialogue handling capabilities
of HCI systems, this inevitably causes dialogues to fail completely.

5.2 Wizard and Operator Study

Here, we describe a new experimental paradigm and the first corresponding exper-
iments tailored toward examining the effects of the computer’s communicative be-
havior on its human partner. More specifically, we will analyze the differences in
human–human interaction (HHI) and HCI/CHI turn-taking and dialogue manage-
ment strategies, which constitutes a promising starting point for an examination of
the effects of the computer’s communicative behavior on the felicity and intuitive-
ness of dialogue systems. The overall goal of analyzing these effects is for systems
to become usable by exhibiting a more felicitous communicative behavior. After re-
porting on the results of the experiments in Sect. 5.3, we highlight a set of hypotheses
that can be drawn from them and finally point toward future experiments that need
to be conducted to verify these hypotheses in Sect. 5.4.

For conducting the experiments we developed a new paradigm for collecting
telephone-based dialogue data, called Wizard and Operator Test (WOT), which con-
tains elements of both Wizard-of-Oz (WOZ) experiments (Francony et al., 1992) as
well as Hidden Operator Tests (HOT (Rapp and Strube, 2002)). This procedure also
represents a simplification of classical end-to-end experiments, as it is much like
WOZ and HOT experiments conductable without the technically very complex use
of a real conversational system. As postexperimental interviews showed, this did not
limit the feeling of authenticity regarding the simulated conversational system by the
human subjects. The WOT setup is described in detail by Porzel and Baudis (2004)
and Gurevych and Porzel (2006). It consists of two major phases that begin after the
subject has been given a set of tasks to be solved with the telephone-based dialogue
system. In the first phase the human assistant is acting as a wizard who is simulating
the dialogue system by operating a speech synthesis interface. In the second phase,
which starts immediately after a system breakdown has been simulated by means
of beeping noises transmitted via the telephone, the human assistant is acting as a
human operator asking the subject to continue. In our experiments, subjects used
the simulated dialogue system to gather information related to tourism in the city of
Heidelberg. Simulating a telephone-based dialogue system (rather than a local mul-
timodal dialogue system such as the SMARTKOM-Mobile demonstrator) allowed a
natural-seeming switchover from computer–human interaction to human–human in-
teraction.

The experiments were conducted in the English language at ICSI in California.
A total of 25 sessions were recorded. At the beginning of the WOT, a person acting
as test manager told the subject that they were testing a novel, telephone-based dia-
logue system that supplies tourist information on the city of Heidelberg. In order to
avoid the usual paraphrases of tasks worded too specifically, the manager gave the
subjects an overall list of 20 very general tourist activities, such as visit museum or
eat out, from which each subject had to pick 6 tasks that were to be solved in the ex-
periment. The manager then removed the original list, dialed the system’s number on
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the phone, and exited from the room after handing over the telephone receiver. The
subject was always greeted by the system’s standard opening ply: Welcome to the
Heidelberger tourist information system. How I can help you? After three tasks were
finished (some successful, some not) the assistant simulated the system’s breakdown
and came onto the telephone line saying Excuse me, something seems to have hap-
pened with our system, may I assist you from here on, and finishing the remaining
three tasks with the subjects.

5.3 Experimental Results

The PARADISE framework (Walker et al., 1997, 2000) proposes distinct measure-
ments for dialogue quality, dialogue efficiency, and task success metrics. The re-
maining criterion, i.e., user satisfaction, is based on questionnaires and interviews
with subjects and cannot be extracted (sub)automatically from log-files. The mea-
surements described here mainly revolve around dialogue efficency metrics in the
sense of Walker et al. (2000). As we will show below, our findings show that a fe-
licitous dialogue is not only a function of dialogue quality, but critically hinges on
a minimal threshold of efficiency and overall dialogue management as well. While
these criteria lie orthogonal to the Walker et al. (2000) criteria for measuring dia-
logue quality (such as recognition rates), we regard them to constitute an integral
part of an aggregate view on dialogue quality and efficiency, here referred to as di-
alogue felicity. For examining dialogue felicity we will provide detailed analyses
of efficiency metrics per se as well as additional metrics for examining the number
and effect of pauses, the employment of feedback and turn-taking signals, and the
amount of overlaps.

First of all, we apply the classic Walker et al. (2000) metric for measuring dia-
logue efficiency, by calculating the number of turns over dialogue length on the col-
lected data. (The average length of a dialogue was 6 minutes. The subjects featured
approximately uniform distributions of gender, age (12–71), and computer exper-
tise.) As the discrepancy between the dialogue efficiency in phase 1 (HHI) versus
phase 2 (HCI) of the experiment might be accounted for by latency times alone, we
calculated the same metric with and without pauses. For these analyses, pauses are
very conservatively defined as silences during the conversation that exceeded one
second.

The overall comparison, given by Porzel and Baudis (2004), shows that naturally
latency times severely decrease dialogue efficiency, but also that they alone do not ac-
count for the difference in efficiency between human–human and human–computer
interaction. This means that even if latency times were to vanish completely, yielding
actual real-time performance, we would still observe less efficient dialogues in HCI.
While it is obvious that the existing latency times increase the number and length
of pauses of the computer interactions as compared to the human operator’s interac-
tions, there are no such obvious reasons why the number and length of pauses in the
human subjects’ interactions should differ in the two phases. However, they do differ
substantially.
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Next to this pause effect, which contributes greatly to dialogue efficiency met-
rics by increasing dialogue length, we have to take a closer look at the individ-
ual turns and their nature. While some turns carry propositional information and
constitute utterances proper, a significant number solely consist of specific parti-
cles used to exchange signals between the communicative partners, or combina-
tions of such communicative signals with propositional information. We differenti-
ate between dialogue-structuring signals and feedback signals in the sense of Yngve
(1970). Dialogue-structuring signals — such as hesitations like hmm or ah as well
as expressions like well, yes, so — mark the intent to begin or end an utterance, or
to make corrections or insertions. Feedback signals, while sometimes phonetically
alike — such as right, yes or hmm — do not express the intent to take over or give
up the speaking role, but serve as a means to stay in contact, which is why they are
sometimes referred to as contact signals. All dialogues were annotated manually for
dialogue structuring and feedback particles.

The data show that feedback particles almost vanish from the human–computer
dialogues — a finding that corresponds to those described above. This linguistic be-
havior, in turn, constitutes an adaptation to the employment of such particles by the
respective interlocutor. Striking, however, is that the human subjects still attempted to
send dialogue structuring signals to the computer, which — unfortunately — would
have been ignored by today’s “conversational” dialogue systems. (In the data the sub-
ject’s employment of dialogue structuring particles in HCI even slightly surpassed
that of HHI.)

Most overlaps in human–human conversation occur during turn changes, with the
remainder being feedback signals that are uttered during the other interlocutor’s turn
(Jefferson, 1983). In the collected data the HHI dialogues featured significantly more
overlap than the HCI ones, which is partly due to the respective presence and absence
of feedback signals as well as to the fact that in HCI turn-taking is accompanied by
pauses rather than immediate overlapping handovers.

Lastly, our experiments yielded negative findings concerning the type-token ratio
and syntax. This means that there was no statistically significant difference in the
linguistic behavior with respect to these factors. We regard this finding to strengthen
our conclusions, that emulating human syntactic and semantic behavior does not
suffice to guarantee effective and therefore felicitous human–computer interaction.

5.4 Analysis of the Results

The results presented above enable a closer look at dialogue efficiency as one of
the key factors influencing overall dialogue felicity. As our experiments show, the
difference between the human–human efficiency and that of the human–computer
dialogues is not solely due to the computer’s response times. There is a significant
amount of white noise, for example, as users wait after the computer has finished
responding. We see these behaviors as a result of a mismanaged dialogue. In many
cases users are simple unsure whether the system’s turn has ended or not and conse-
quently wait much longer than necessary.
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The situation is equally bad at the other end of the turn-taking spectrum, i.e.,
after a user has handed over the turn to the computer, there is no signal or acknowl-
edgment that the computer has taken the baton and is running with it — regardless
of whether the user’s utterance is understood or not. Insecurities regarding the main
question, i.e., whose turn is it anyways, become very notable when users try to estab-
lish contact, e.g., by saying hello —pause— hello. This kind of behavior certainly
does not happen in HHI, even when we find long silences.

Examining why silences in human–human interaction are unproblematic, we find
that such silences are being announced, e.g., by the human operator employing lin-
guistic signals, such as just a moment please or well, I’ll have to have a look in our
database in order to communicate that he is holding on to the turn and finishing his
round.

To push the relay analogy even further, we can look at the differences in overlap
as another indication of crucial dialogue inefficiency. Since most overlaps occur at
the turn boundaries, thereby ensuring a smooth (and fast) handover, their absence
constitutes another indication why we are far from having winning systems. As the
primary effects of the human-directed language exhibited by today’s conversational
dialogue systems, the experiments showed that dialogue efficiency decreased signif-
icantly even beyond the effects caused by latency times. Additionally, human inter-
locutors ceased in the production of feedback signals, but still attempted to use his
or her turn signals for marking turn boundaries, which, however, go ignored by the
system. Last, an increase in pausing is observable, caused by waiting and uncertainty
effects, which are also manifested by missing overlaps at turn boundaries.

Generally, we can conclude that a felicitous dialogue needs some amount of ex-
trapropositional exchange between the interlocutors. The complete absence of such
dialogue controlling mechanisms by the nonhuman interlocutors alone literally
causes the dialogical situation to get out of control, as observable in turn-taking
and turn-overtaking phenomena. As evaluations show, this way of behaving does
not serve the intended end, i.e., efficient, intuitive, and felicitous human–computer
interaction.

Acknowledgments

The English Mobile team at ICSI was Johno Bryant, David Gelbart, Eric Lussier,
Bhaskara Marthi, Robert Porzel (visiting from EML), Thilo Pfau, Andreas Stolcke,
and Chuck Wooters. Contributions to the development, integration, and testing of the
English Mobile system also came from Tilman Becker, Ralf Engel, Gerd Herzog,
Norbert Reithinger, Heinz Kirchmann, Markus Loeckelt, Stefan Merten, Christian
Pietsch, and Hans-Joerg Kroner at DKFI; Antje Schweizter at IMS; Silke Goronzy,
Juergen Schimanowski, and Marion Freese at Sony; Hidir Aras at EML; and Andre
Berton at DaimlerChrysler. Funding for ICSI and EML participation in the SMART-
KOM project was provided by the German Federal Ministry for Education and Re-
search (BMBF). Some of the work described in this chapter received additional sup-
port from other sources, including the Canadian Natural Sciences and Engineering
Research Council, the Klaus Tschira Foundation, and Qualcomm.



468 David Gelbart et al.

References

A. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl, H. Hermansky, P. Jain,
S. Kajarekar, N. Morgan, and S. Sivadas. Qualcomm-ICSI-OGI Features for ASR.
In: Proc. ICSLP-2002, Denver, CO, 2002.

J.F. Allen, B. Miller, E. Ringger, and T. Sikorski. A Robust System for Natural Spo-
ken Dialogue. In: Proc. 34th Annual Meeting of the Association for Computational
Linguistics, pp. 62–70, Santa Cruz, CA , June 1996.

C. Avendano. Temporal Processing of Speech in a Time-Feature Space. PhD thesis,
Oregon Graduate Institute, 1997.

G. Bailly, N. Campbell, and B. Mobius. ISCA Special Session: Hot Topics in Speech
Synthesis. In: Proc. EUROSPEECH-03, pp. 37–40, Geneva, Switzerland, 2003.

B. Bergen and N. Chang. Embodied Construction Grammar in Simulation Based
Language Understanding. Technical Report TR-02-004, ICSI, 2002.

N. Beringer, U. Kartal, K. Louka, F. Schiel, and U. Türk. PROMISE: A Procedure
for Multimodal Interactive System Evaluation. In: Proc. Workshop “Multimodal
Resources and Multimodal Systems Evaluation”, pp. 77–80, Las Palmas, Spain,
2002.

H. Bourlard and N. Morgan. Connectionist Speech Recognition: A Hybrid Approach.
Kluwer Academic, Dordrecht, The Netherlands, 1993.

J. Bryant. Constructional Analysis. Master’s thesis, University of California Berke-
ley, 2003.

N. Chang, S. Narayanan, and M. Petruck. From Frames to Inference. In: Proc. Scal-
able Natural Language Understanding(SCANALU), Heidelberg, Germany, 2002.

R.V. Cox, C.A. Kamm, L.R. Rabiner, J. Schroeter, and J.G. Wilpon. Speech and
Language Processing for Next-Millenium Communications Services. Proc. IEEE-
2000, 88(8):1314–1337, 2000.

C. Darves and S. Oviatt. Adaptation of Users’ Spoken Dialogue Patterns in a Con-
versational Interface. In: Proc. ICSLP-2002, Denver, CO, 2002.

R. Engel. SPIN: Language Understanding for Spoken Dialogue Systems Using a
Production System Approach. In: Proc. ICSLP-2002, pp. 2717–2720, Denver,
CO, 2002.

C. Fillmore. Frame Semantics. In: Linguistics Society of Korea (ed.), Linguistics in
the Morning Calm, Seoul, Korea, 1982. Hanshin.

J.M. Francony, E. Kuijpers, and Y. Polity. Towards a Methodology for Wizard of
Oz Experiments. In: Proc. 3rd Conf. on Applied Natural Language Processing -
ANLP-92, Trento, Italy, 1992.

N. Fraser. Sublanguage, Register and Natural Language Interfaces. Interacting with
Computers, 5, 1993.

D. Gelbart. Mean Subtraction for Automatic Speech Recognition in Reverberation.
Technical Report TR-04-003, ICSI, 2004.

A. Goldberg. Constructions: A Construction Grammar Approach to Argument Struc-
ture. University of Chicago Press, Chicago, IL, 1995.

I. Gurevych and R. Porzel. Empirical Studies for Intuitive Interaction, 2006. In this
volume.



SmartKom-English: From Robust Recognition to Felicitous Interaction 469

H. Hermansky. Perceptual Linear Predictive (PLP) Analysis of Speech. Journal of
the Acoustical Society of America, 87(4), 1990.

H.G. Hirsch and D. Pearce. The AURORA Experimental Framework for the Perfor-
mance Evaluations of Speech Recognition Systems Under Noisy Conditions. In:
Proc. ISCA ITRW ASR2000, Paris, France, 2000.

P. Jain and H. Hermansky. Beyond a Single Critical-Band in TRAP Based ASR. In:
Proc. EUROSPEECH-03, Geneva, Switzerland, 2003.

G. Jefferson. Two Explorations of the Organisation of Overlapping Talk in Conver-
sation. Tilburg Papers in Language and Literature, 28, 1983.

D. Jurafsky, C. Wooters, G. Tajchman, J. Segal, A. Stolcke, E. Fosler, and N. Morgan.
The Berkeley Restaurant Project. In: Proc. ICSLP-94, Yokohama, Japan, 1994.

P. Kay. Three Porperties of the Ideal Reader. In: R.O. Freedle and R.P. Durán (eds.),
Cognitive and Linguistic Analyses of Test Performance, pp. 208–224, Norwood,
NJ, 1987. Ablex.

M. Kleinschmidt. Robust Speech Recognition Based on Spectro-Temporal Process-
ing. PhD thesis, Carl von Ossietzky-Universität, Oldenburg, Germany, 2002.

M. Kleinschmidt and D. Gelbart. Improving Word Accuracy With Gabor Feature
Extraction. In: Proc. ICSLP-2002, Denver, CO, 2002.

G. Lakoff. Women, Fire, and Dangerous Things. University of Chicago Press,
Chicago, IL, 1987.
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