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Abstract— We summarize recent progress in automatic speech-
to-text transcription at SRI, ICSI, and the University of Washing-
ton. The work encompasses all components of speech modeling
found in a state-of-the-art recognition system, from acoustic fea-
tures, to acoustic modeling and adaptation, to language modeling.
In the front end, we experimented with nonstandard features,
including various measures of voicing, discriminative phone
posterior features estimated by multilayer perceptrons, and a
novel phone-level macro-averaging for cepstral normalization.
Acoustic modeling was improved with combinations of front ends
operating at multiple frame rates, as well as by modifications to
the standard methods for discriminative Gaussian estimation. We
show that acoustic adaptation can be improved by predicting
the optimal regression class complexity for a given speaker.
Language modeling innovations include the use of a syntax-
motivated almost-parsing language model, as well as principled
vocabulary-selection techniques. Finally, we address portability
issues, such as the use of imperfect training transcripts, and
language-specific adjustments required for recognition of Arabic
and Mandarin.
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broadcast news

I. I NTRODUCTION

A CCURATE transcription of speech into text (speech-to-
text, or STT) is a prerequisite for virtually all other

natural language applications operating on audio sources. Sup-
ported by the DARPA EARS program, a team of researchers at
SRI International, the International Computer Science Institute
(ICSI), and the University of Washington (UW) developed
a system to produce “rich transcripts” from conversational
telephone speech (CTS) and broadcast news (BN) sources, that
is, transcripts containing not just streams of words, but also
structural information corresponding to sentence boundaries
and disfluencies. The methods used to recover information
“beyond the words” are described in a companion paper for
this special issue [1]. This article focuses on the prerequisite
for rich transcription, namely, accurate word recognition. We
describe a series of new techniques that were developed and
tested on CTS and BN data, spanning the major trainable
components of a speech recognition system: feature extrac-
tion front end, acoustic models, and language models. In
the front end, we experimented with nonstandard features,
including various measures of voicing, discriminative phone
posterior features estimated by multilayer perceptrons, and a
novel phone-level macro-averaging for cepstral normalization.
Acoustic modeling was improved with combinations of front
ends operating at multiple frame rates, as well as by modi-
fications to the standard methods for discriminative Gaussian
estimation. We show that acoustic adaptation can be improved
by predicting the optimal regression class complexity for a
given speaker. Language modeling innovations include the
use of a syntax-motivated almost-parsing language model, as
well as principled vocabulary selection techniques. Finally,
we address portability issues, such as the use of imperfect
training transcripts, and language-specific changes required for
recognition of Arabic and Mandarin.

II. RECOGNITION SYSTEM

To provide the necessary background, we give a brief
description of SRI’s CTS recognition system, which served
as the basis of most of the work described here. It is depicted
in Fig. 1. An “upper” (in the figure) tier of decoding steps is
based on Mel-frequency cepstral coefficient (MFCC) features;
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Fig. 1. SRI CTS recognition system. Rectangles represent decoding steps. Parallelograms represent decoding output (lattices or 1-best hypotheses). Solid
arrows denote passing of hypotheses for adaptation or output. Dashed lines denote generation or use of word lattices for decoding. Crossed ovals denote
confusion network system combination. The two decoding steps in light gray can be run by themselves to obtain a “fast” system using about 3xRT runtime.

a parallel “lower” tier of decoding steps uses perceptual linear
prediction (PLP) features [2]. The outputs from these two tiers
are combined twice using word confusion networks (denoted
by crossed ovals in the figure). Except for the initial decodings,
the acoustic models are “cross-adapted” to the output of a
previous step from the respective other tier using maximum-
likelihood linear regression (MLLR) [3]. The initial decoding
steps in each tier also use MLLR, though with a phone-loop
model as reference.

Lattices are generated initially to speed up subsequent
decoding steps. The lattices are regenerated once later to
improve their accuracy, after adapting to the outputs of the first
combination step. The lattice generation steps use noncross-
word (nonCW) triphone models, while decoding from lattices
uses crossword (CW) models. The final output is the result of a
three-way system combination of MFCC-nonCW, MFCC-CW,
and PLP-CW models. Each box in the diagram corresponds
to a complex recognition step involving a decoding run to
generate either lattices orN -best lists, followed by a rescoring
of these outputs with higher-order language models, duration
models, and a pause language model [4].

The acoustic models used in decoding use standard normal-
ization techniques: cepstral mean and variance normalization,
vocal tract length normalization (VTLN) [5], heteroscedastic
linear discriminant analysis (HLDA) [6], [7], and speaker-
adaptive training based on constrained MLLR [8]. All acoustic
models are trained discriminatively using the minimum phone
error (MPE) criterion [9] or variants thereof (as described
below). The baseline language models (LMs) are bigrams (for
lattice generation), trigrams (for lattice decoding), and 4-gram
LMs (for lattice andN -best rescoring). The CTS in-domain
training materials are augmented with data harvested from the
web, using a search engine to select data that is matched for
both style and content [10].

The entire system runs in under 20 times real time (20xRT)
on a 3.4 GHz Intel Xeon processor. For many scenarios it is
useful to use a “fast” subset of the full system consisting of
just two decoding steps (the light-shaded boxes in Fig. 1); this
fast system runs in 3xRT and exercises all the key elements
of the full system except for confusion network combination.
The baseline system structure is the result of a heuristic
optimization (which took place over several years) that aims
to obtain maximal benefit from system combination and cross-
adaptation, while staying within the 20xRT runtime constraint
imposed by the DARPA CTS STT evaluation.

For BN recognition the system was further simplified to run
in under 10xRT. In this case only two recognition stages are
used (nonCW and CW), and both are based on a PLP front
end. Final LM rescoring uses 5-gram LMs.

III. F EATURE EXTRACTION FRONT END

A. Voicing Features

Our first strategy to improve the front end is to augment
the cepstral feature representation with phonetic features com-
puted using independent front ends. The parameters from each
front end specific to a phonetic feature are optimized to im-
prove recognition accuracy. While this is a general framework
for multiple phonetic features, our present approach explores
the use of just voicing features, since voicing is highly relevant
for phone discrimination.

The first voicing feature used in this paper is the traditional
normalized peak autocorrelation. The second voicing feature
used is a newly defined entropy of the high-order cepstrum.
For the time-windowed signalx(t) of durationT the high-
order cepstrum is defined as

C = IDFT(log(jDFT(w(t) � x(t))j
2
)) (1)
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where w(t) is the Hamming window of durationT . Zero
padding is used prior to the computation of the DFT. The
entropy of the high-order cepstrum is computed as follows:

H(C) = �
X

r
P (C(r)) log(P (C(r))) (2)

P (C(r)) =
C(r)P
r0 C(r0)

(3)

where the indicesr andr0 correspond to a pitch region from
80 Hz to 450 Hz. For robust voicing detection, both voicing
features are used together, since they have complementary
strengths at different pitch values [11]

We explored several alternatives for integrating the voicing
features into the CTS recognition system [11]. In an initial
system, we first concatenated the voicing features with the
standard Mel cepstral features and optimized the temporal win-
dow duration for the voicing feature front end. We extended
the window duration beyond the traditional 25 ms, and found
that the voicing activity was captured more reliably with a
longer time span.

We then explored the integration of the voicing features in
a more complex recognition system with Mel cepstral fea-
tures augmented with third differential features, reducing the
dimensionality with HLDA. Different integration approaches
were evaluated in this system, revealing the usefulness of a
multiframe window of voicing features. We found a five-frame
window to be optimal in recognition.

A two-stage system similar to the “fast” version of the
system in Fig. 1 was designed to evaluate the effect of voicing
features on word error rate (WER). Both stages used nonCW
gender-dependent triphone models trained with maximum like-
lihood on approximately 400 h of the Switchboard, CallHome
English, and Switchboard Cellular databases. We then tested
this system on the NIST RT-02 CTS database, which contains
approximately five hours of speech from 120 speakers. The
WER results after key decoding steps pass, with and without
voicing features, are presented in Table I. We see that voicing
features give a relative gain of around 2%, and a similar gain
is preserved after rescoring and MLLR.

In another experiment, we used the complete CTS evalua-
tion system and tested the effect of voicing features just prior
to the finalN -best rescoring stage. The acoustic models in
this case are CW-word triphone models trained with maximum
mutual information estimation (MMIE). The relative WER
reduction using the voicing features, from 25.6% to 25.1%,
was again around 2%.

B. Discriminative Features Estimated by Multilayer Percep-
trons

Many researchers have found that incorporating certain
types of acoustic information from longer time ranges than
the typical short-time (25 ms or so) analysis window can be
helpful for automatic speech recognition; examples include
cepstral mean subtraction [12] or RASTA [13]. It was shown
that the incorporation of long-time (as long as 1 s) acoustic
information directly as observed features for a hidden Markov
model (HMM) could lead to substantial improvements on
speech recognition for small vocabulary tasks [14], where the

multilayer perceptron (MLP) was the key workhorse method-
ology, performing nonlinear discriminant transformations of
the time-frequency plane. In the work reported here, we
extended these approaches to large-vocabulary speech recog-
nition. Here we found that we could also achieve substantial
gains with these features, despite potential overlap with other
techniques incorporated in the full system, such as linear
discriminative transformations and discriminative training of
the HMMs.

Our intent was to do system combination at the feature level
(in addition to another system combination being done at the
word level later in the process). We have found that, in contrast
to the requirements for high-level system combination, feature
combination can benefit from comparatively weak components
if they are sufficiently complementary. For the purpose of this
system, then, we incorporated three feature components:

1) a temporally oriented set of long-time (500 ms) MLP-
based features, derived from log critical band energies;

2) a set of moderate-time (100 ms) MLP-based features,
derived from 9 frames of PLP cepstra and 2 derivatives;

3) PLP or MFCC features and 3 derivatives, transformed
and dimensionally reduced by HLDA.

The first two features were combined at the level of the
MLP outputs, which could be interpreted as posteriors due
to their training with 1/0 targets indicating the phonetic
labels that were obtained from a previous forced alignment
[15]. The posteriors were combined additively, with weights
derived from the inverse of the entropy function computed
from the posteriors themselves; thus, MLP “decisions” with
strong certainty were more heavily weighted [16]. During our
development, we found this method to be roughly comparable
to more straightforward approaches (e.g., summing weighted
log probabilities with empirically determined weights), but it
was both automatic and more reliable in cases where one of the
feature streams was badly damaged. The logs of the combined
posteriors were then processed with principal component anal-
ysis (PCA) for orthogonalization and dimensionality reduction,
and then appended to the more traditional PLP or MFCC
features.

The 500 ms features used techniques based on the original
development called TempoRal Patterns (TRAPs) [14]. In the
original approach, MLPs were trained on log critical energies
with phonetic targets, and then further combined with a larger
MLP that was also trained on phonetic targets. In the variant
developed for our task, we used the critical band training
to derive input-to-hidden weights for the MLPs, and then
combined the hidden layer outputs with the broadband MLP
as before. We named this modified version of the features
Hidden Activation TRAPs, or HATs. The motivation for this
modification was that the individual critical bands were only
marginally effective in 46-category phonetic discrimination;
on the other hand, we noted that the input-hidden connections
appeared to be learning common temporal patterns as part of
each full MLP’s attempt to discriminate between the phones
[17]. We further determined that the critical band networks
could work well with relatively small hidden layers (40 to
60 hidden units), while the combining networks benefited
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TABLE I

RECOGNITIONWERS WITH AND WITHOUT VOICING FEATURES, TESTED ON EVAL2002 CTS TEST SET. RELATIVE PERCENTAGEREDUCTIONSARE

GIVEN IN PARENTHESES.

Step No voicing features With voicing features
Phone-loop adapted, bigram LM 38.6% 37.8% (-2.1%)

4-gram and duration rescored 33.6% 32.5% (-3.3%)
MLLR to first recognition output 30.6% 30.0% (-2.0%)

TABLE II

RESULTS WITH MLP FEATURES ONRT-04F CTS DEVELOPMENT AND

EVALUATION SETS

RT-04F Dev RT-04F Eval
System Male Female All Male Female All
Baseline 18.1 16.2 17.2 20.2 20.4 20.3

w/MLP feats. 16.8 14.2 15.5 19.0 17.7 18.3
Rel. change (%) -7.2 -12.3 -9.9 -5.9 -13.2 -9.9

from a large number of parameters, particularly for the task
incorporating 2000 h of speech.

For the larger task, four full-band MLPs needed to be
trained: for each gender, there was a HATs combining network,
and a 9-frame network incorporating PLP-based inputs. Each
of these nets had roughly 8 million weights (with a large
hidden layer, typically 10,000 to 20,000 units wide, where
each hidden unit incorporated a sigmoidal nonlinearity). Given
the large number (360 million) of frames used for each
training, the computational load presented a huge practical
problem. Straightforward extrapolation from previous smaller
experiments suggested a runtime of 18 months for the full
training. This results from an almost quadratic complexity,
since it requires a roughly linear growth in the number of
parameters to optimally benefit from the increase in the size of
the training set. The complexity is not quite quadratic because
there is a modest decrease in the number of training epochs
required for convergence (as assessed on an independent cross-
validation set). Fortunately, we were able to significantly
reduce training time by a combination of software speedup
and algorithm heuristics. The most important heuristic was to
do early training epochs with fewer patterns and fairly large
learning rates. The learning rates were gradually decreased,
while the amount of data used was gradually increased.

After solving the practical issues with MLP training, we
tested the features in the full CTS system. We investigated
various options for augmenting the various models used by
the system with MLP features. A detailed account of these
investigations can be found in [18]. The outcome was that
the best strategy is to add MLP features only to the MFCC-
based models used in the architecture depicted in Fig. 1, and
to leave the PLP-based stages unchanged. This makes sense
in that the resulting subsystems are more differentiated, and
therefore give better results upon combination.

Table II summarizes the results with and without MLP
features on the RT-04F CTS development and evaluation test
sets. (The system including MLP features represented the
official submission by the SRI/ICSI/UW team to the RT-04F
CTS evaluations.) The overall relative WER reduction on both

testsets is identical, 9.9% (2.0% absolute on the evaluation
set). However, we also observe that the improvement is almost
twice as big for female speakers as for males. This imbalance
needs further investigation and points to a possible improve-
ment of the system (by improving accuracy specifically on
male speakers).

C. Macro Normalization of Features

Current recognition systems perform a variety of feature
normalizations to reduce the variations in speech due to differ-
ences in channel, speaker, and environment. Examples of these
normalizations include feature mean removal [19], feature
variance normalization [20], vocal tract length normalization
[5], and model-based normalizations like HLDA [6], [7] and
speaker-adaptive training (SAT) [8]. While these normalization
techniques produce significant gains in recognition accuracy,
they suffer from one weakness: the estimates of the normal-
ization parameters are affected by the relative distribution
of the speech frames among phone classes. To redress this,
we investigated a new approach to feature normalization that
estimates the parameters independent of the distribution of the
speech among the phone classes.

1) Algorithm: Consider an utterance from a speaker rep-
resented by a sequence of feature vectorsxi. Let N be the
total number of such features extracted from the utterance(s).
Assume that we have an alignment for the utterance asso-
ciating the features and phone classes (produced by a first
recognition pass). LetC be the number of phone classes. We
then estimate the feature mean and variance (for the purposes
of normalization) as

�c = 1
Nc

NcP
i=1

xic; �c
2 = 1

Nc

NcP
i=1

(xic � �c)
2

� = 1
C

CP
c=1

�c; �2 = 1
C

CP
c=1

(�c
2 + (�c � �)2):

It can be seen that our technique results in estimates that
are independent of the distribution of the features among
the different phone classes. The traditional (micro-averaging)
estimation corresponds to the case of a single class.

One problem with our technique is that if a class has no
frames assigned to it, it is not used in the estimation. In
other words, the estimates are not robust to missing classes
(classes with no frames). To overcome this, we compute
global estimates on the training data for each class and use
these estimates to smooth the speaker-level estimates for the
same class. We use linear interpolation to smooth the speaker
estimates with the global estimate for the same class.
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TABLE III

WER RESULTSWITH AND WITHOUT MACRO-NORMALIZATION

Word Error Rate
Step Baseline Macro-normed models

Unsmoothed Smoothed
Unadapted Recog 34.3 33.7 33.5
HYP Adapt+Recog 32.2 31.7 31.9

2) Experiments:To evaluate the performance of our new
feature mean/variance normalization technique, we performed
speech recognition experiments using the SPINE (Speech in
Noisy Environments) databases and the Fisher CTS corpus
available from the Linguistic Data Consortium (LDC). The
SPINE corpus experiments were focused on finding the op-
timal phone classes to use for estimating the normalization
parameters. To find the optimal phone classes, we computed
feature mean and variance normalizations using 1, 2, 3, 7, 11,
and 47 phone classes. We then trained acoustic models and
tested on the SPINE 2001 evaluation set. We used the same
setup as used in the first recognition step in our 2001 SPINE
evaluation system [21]. For both training and testing, we used
the same number of phone classes. We observed that the best
performance improvements were obtained for the 47-phone
class case (which corresponds to a single phone per class).

The Fisher corpus is substantially larger than the SPINE
corpus and has over 2000 h of acoustic CTS data. To train
acoustic models, we used a subset of approximately 180 h
of the data containing about 203 K utterances for 2589 male
speakers. For testing, we used the male portion of the RT-
04F development testset, containing 1474 utterances from 37
speakers. MFCC features augmented with voicing features (as
described above) and reduced by HLDA to 39 dimensions
were used. A bigram LM was used in recognition.

3) Results:Table III compares the baseline, macro-normed,
and smoothed macro-normed models. We show the results for
the first recognition pass with unadapted models, and recog-
nition results after adaptation with MLLR. For all models,
the recognition hypotheses from the first recognition pass
with baseline models were used as adaptation references.
We observe that our normalization technique outperforms the
baseline before and after adaptation. We find that the improve-
ment from smoothing with global estimates is small. This
may be because the Fisher corpus has more data per speaker,
resulting in less smoothing. We also find that adaptation
reduced the performance gains from macro-normalization.

The results of our experiments show that our new approach
based on estimating feature normalization parameters from
macro-averages results in a reduction in WER. Smoothing
the class estimates for a speaker with global estimates for
that class reduces the WER further. We also find that this
WER reduction drops significantly after adaptation. As cur-
rent speech recognition systems employ multiple adaptation
steps, one can argue that the technique may produce only
marginal improvement in the overall system performance. We
believe that the performance loss occurs primarily because the
adaptation algorithms rely on statistics that weight all frames
equally (micro statistics), thereby negating the compensation

done in our feature mean and variance estimation (using macro
statistics). In line with our approach, we are modifying the
adaptation algorithms to utilize macro statistics (instead of
micro statistics). Preliminary results with macro-normalized
HLDA support this.

IV. A COUSTIC MODELING

A. Multirate Recognition Models for Phone-Class-Dependent
N -best List Rescoring

Modeling of speech with fixed-rate front ends and HMMs
implies a constant rate of information accumulation. In this
framework, frames of a fixed length are scored uniformly to
compute the likelihood that a given sequence of feature vectors
is produced by the model. The common fixed frame length of
25 to 30 ms represents a fundamental time-frequency tradeoff
in the speech representation. For example, vowels can result in
a relatively stationary harmonic structure that can be sustained
for hundreds of milliseconds, whereas stop consonants can
have landmark transients that last no more than 10 ms. In
a constant frame length front end, transient phenomena are
blended with the context, decreasing the sharpness of the
models that account for information-bearing discontinuities.
Therefore, frame scores with particularly relevant information,
such as those of stops, are washed out in the statistics of phone
scores that span many more frames, such as those of vowels.
Incorporation of information from acoustical phenomena tak-
ing place at different rates has received significant attention
in the speech recognition literature; a brief overview can be
found in [22].

We present a method that aims to incorporate information
from multiple time-frequency tradeoffs by projecting the vari-
able frame problem at the front end to the back end through
rescoring ofN -best lists generated by a fixed-rate recognizer
with a normalized rate-dependent score. In our approach, the
hypotheses generated by the fixed-rate recognition engine are
in effect used to parse the incoming speech into phones, which
subsequently determine the most likely rate model through the
definition of a mapping from phone classes to the available
set of multiple rate models. The final scores are obtained
through rescoring ofN -best lists by phone-dependent multiple
rate model scores, a common way of incorporating other
information sources. The scoring has two important aspects
that differentiate our approach: (i) the normalization with
respect to dynamic range of scores of models at different rates,
which is carried out by normalizing with the likelihood of all
the phones in the same phone context at the same resolution,
and (ii) averaging of the frame-level scores to produce a
single score for each phone state in the hypotheses. Resulting
phone-class-dependent scores are treated as knowledge sources
and combined into a linear model, parameters of which are
optimized to minimize the WER.

1) Approach: Our technique involves choosing a small set
of rates and training acoustic models at those rates. After
generatingN -best lists using a standard rate model, we
score theN -best hypotheses using different rate models and
combine the scores to minimize the WER.
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The likelihoods computed using different acoustic models
cannot be combined, as they use different features. The solu-
tion we propose is to use a normalized phone class likelihood
ratio for frame-level scores. Specifically, the normalized score
for feature vectorxi at triphone-state(p�1pp+1) is computed
by

Ŝ(xi; p) = log
P (xijp�1pp+1)P
k P (xijp�1pkp+1)

(4)

wherep represents the center phone andp�1 and p+1 rep-
resent the preceding and succeeding phone contexts. Given
the normalization in Eq. 4, each frame score can now be
regarded as independent of the rate of the model by which
it was generated. With the normalized scores, we compute
sentence-level scores for each phone class,Pk, using Eq. 5.

~S(Pk) =
X
i

Ŝ(xi; p)I [p 2 Pk]: (5)

Finally, we combine the phone-class dependent scores with
the baseline acoustic and language model scores through a
linear combiner and optimize the linear combination weights
to directly minimize the WER. Details may be found in [22].

2) Experiments: In our experiments, we used the three
models:

1) a baseline model at standard rate (100 fps, 25.6-ms
window)l

2) a slower rate model at2=3 of the baseline (15 ms shift,
38.4-ms window);

3) a faster rate model at twice the baseline (5 ms shift, 12.8-
ms window).

The acoustic training data were the male subset of our RT-02
CTS training set (about 140 h). The features were 13 MFCCs
(including C0) and their first and second time derivatives.
We trained nonCW triphone models containing 2400 genones
(state clusters) with 64 Gaussians per genone. As in the first
stage of our full system, the models were adapted to a phone-
loop (using MLLR) before recognition.

3) Results: We used the NIST RT-02 male testset (3083
utterances) in our experiments. This set was partitioned into
two parts; a tuning set containing about 1400 utterances and
a heldout set containing the rest. The tuning set was used to
optimize the weights for different scores. These weights were
then applied to the heldout set and the WER was computed.
Table IV shows the results from different model combinations.

The results on RT-02 confirm that our rescoring approach
results in a significant reduction in the WER, with the best re-
duction of 1.0% absolute for the slower rate model. Increasing
the number of classes reduces the WER for the tuning set but
not on the heldout set. For finer phone sets, it seems that we
may need a larger tuning set to properly estimate the weights.

B. Improved Discriminative Training

Discriminative training criteria, such as maximum mutual
information (MMI) [23] and minimum phone error (MPE)
[24], have shown great advantage over the traditional max-
imum likelihood (ML) training in large-vocabulary speech
recognition. Our contribution to this work addresses the chal-
lenge brought by vast amounts of training data, and to obtain
accuracy gains over the standard MPE and MMI training.

TABLE IV

RESULTSWITH MULTIRATE PHONE-CLASS-BASED RESCORING ON THE

NIST RT-02 CTS TEST SET

WER(%) for #Phone Class
Model 1 3 7

Tune Held Tune Held Tune Held
Baseline 39.9 39.9 39.9 39.9 39.9 39.9
+2.0 rate 39.2 39.4 38.8 39.1 38.6 39.2
+0.67 rate 39.3 39.1 38.9 39.0 38.9 38.9
+0.67 +2.0 39.3 39.4 38.7 39.1 38.6 38.9

1) Phone-Lattice-Based Discriminative Training:The stan-
dard MMI and MPE training procedures use word lattices to
represent competing hypotheses. Phone boundaries are marked
in the word hypotheses to constrain and speed up search during
training. Alternatively, in animplicit-lattice method for MMI
training [25], lattices are generated on the fly by decoding a
highly compact decoding graph compiled from a pronunciation
dictionary. This approach can save a lot of disk space for lattice
storage at the cost of increased computation.

In this work, we aim to speed up both the lattice generation
and statistics collection procedures, and therefore propose
phone-lattice-based discriminative training, which is applica-
ble to both MMI and MPE. Similar to implicit-lattice MMI,
we compile all dictionary pronunciations into a determinized
and minimized [26] finite-state phone network, with both
pronunciation and unigram language model probabilities em-
bedded. Using this finite-state network, we generate phone
lattices in a very fast decoding pass, using an algorithm similar
to that described in [27]. In a phone lattice, each real arc
represents a phone, with start and end time information. Null
arcs are introduced to reduce the number of real arcs, and thus
size and computation. With a forward-backward search pass
constrained by the timing of the phone arcs, statistics for both
MMI and MPE can be collected in the standard manner [9].
Compared to word lattices, phone lattices are much faster to
generate, as the decoding graph is much more compact without
word information. Phone lattices are also more efficient in
representing hypotheses with different phones (which is all
that matters in phone-based HMM training), and as a result
need less storage space.

Based on the phone lattices, we can easily apply both MMI
and MPE training. Recent research showed that I-smoothing
with different prior models can help boost the effectiveness
of discriminative training [9]. We found that alternating MMI
and MPE criteria during discriminative training can help to
reach the best model accuracy with the least number of
training iterations. For odd-numbered iterations, estimate the
MPE model with MMI prior; for even-numbered iterations,
estimate the MMI model with MPE prior. The prior models
themselves are I-smoothed with ML models. We call this
approach MPE+MMI.

2) Minimum Phone Frame Error (MPFE) Criterion:
In the standard MPE criterion, the correctness measure,
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TABLE V

EFFECT OFDIFFERENTDISCRIMINATIVE TRAINING CRITERIA ON

VARIOUS CTS EVALUATION TEST SETS (WER%)

RT-04F (Eval) RT-03 RT-02 Hub-5 2001
MLE 24.5 25.3 26.7 26.1
MPE+MMI 22.6 23.7 24.9 24.4
MPFE+MMI 22.4 23.1 24.5 24.0

PhoneAcc(q), of a phone hypothesisq is defined as

PhoneAcc(q) =

�
�1 + 2e if q is correct in label
�1 + e otherwise

(6)

wheree is the overlap ratio betweenq and its corresponding
phone in the reference transcription. We propose a different
phone accuracy definitionPhoneFrameAcc(q):

PhoneFrameAcc(q) =

end(q)X
t=start(q)

P (St 2 S(q)jW;O) (7)

where q is the phone hypothesis under study;S(q) denotes
the set of HMM states associated with this phone;start(q)
and end(q) represent the start and end times ofq in frame
units; P (St 2 S(q)jW;O) is the posterior probability of the
HMM state belonging toS(q) at timet given observationsO
and transcriptionW , which can be obtained with the standard
forward-backward algorithm that is widely used in HMM
training.

Substituting thePhoneFrameAcc(q) for PhoneAcc(q) in
the MPE criterion, we obtain the MPFE criterion. Because of
the similarity in definition, MPFE can use the same algorithm
as MPE except for the difference of measuring the hypothesis
accuracy. Since all the competing hypotheses in a lattice have
the same number of frames, MPFE does not have a systematic
bias favoring deletion error. We also observed that the MPFE
occupancies have values similar to those of MMI occupancies.
This may make MPFE more robust than MPE when dealing
with a small amount of data.

Table V compares two English CTS crossword gender-
dependent models trained on about 1400 h of Switchboard and
Fisher data, with MPE+MMI and MPFE+MMI, respectively.
A 39-dimensional feature vector obtained from MFCCs and
voicing features by HLDA projection and SAT transformation
was used for training. A bigram language model was first used
to generate, and then a 4-gram language model to rescore
lattices. Final hypotheses were generated from consensus de-
coding [28], [29]. LM weight, word penalties, and so on were
optimized in the RT-04F development test set, and applied to
the NIST 2001 Hub-5, RT-02, RT-03, and RT-04F evaluation
test sets. As can be seen, the MPFE+MMI approach has a
small but consistent advantage over MPE+MMI on different
test sets, ranging from 0.2% to 0.6% absolute.

C. Speaker-Dependent Variation of Adaptation

Next we describe an automatic procedure for online com-
plexity control of the acoustic adaptation parameters. The idea
is to choose the best number of MLLR regression classes

TABLE VI

RESULTS(WER) FOR SPEAKER-DEPENDENTMLLR REGRESSIONCLASS

PREDICTION, ON NIST RT-04F CTS EVALUATION TEST SET

Default Rec. independent Rec. dependent All Oracle
18.6 18.3 18.2 18.3 17.4

to use for a speaker by using speaker-level acoustic and
recognizer attributes [30]. This procedure improved system
performance compared to the popular approach where only
the amount of adaptation data is used to control adaptation
complexity [31], [3], [32].

The motivation for this approach is based on analysis of
system performance in offline experiments for six different
sizes of regression class trees that included the possibility of
using unadapted speaker-independent models. By choosing the
oracle regression class tree size for each speaker, we observed
that for the recent NIST CTS test sets (from 1998 through
2004), we could achieve a 1% absolute improvement in WER
on average.

1) Prediction of Tree Sizes:To capitalize on this obser-
vation, we developed an automatic procedure that classified
each speaker into one of six possible regression class tree
sizes using standard statistical learners that were trained on
acoustic and speaker-level information observed in adaptation
data. Speaker-level features that were investigated include
both recognizer-independent features (seconds of adaptation
speech, VTLN factor, a normalized energy measure, and rate
of speech) and features that would depend on the recognition
output (pre-adaptation acoustic scores and average word-based
confidence scores). Using ann-fold cross-validation training
paradigm and these speaker-level features, an ensemble of
classifiers was designed and combined by averaging their class
posteriors to form a stacked learner. Decision trees were found
to perform best, though not significantly better compared to
support vector machines, k-nearest neighbor and multinomial
neural network classifiers. The overall classification error
obtained was in the range of 55% to 64%.

2) Recognition Experiments:Various system configurations
and feature subset combinations were evaluated in predict-
ing the regression class tree size for individual speakers in
the NIST RT-04F test set. The main results, using the full
CTS recognition system, are shown in Table VI, with more
detailed results and analysis in [30]. Recognizer-dependent
and recognizer-independent feature subsets gave similar per-
formance gains, but no additional gain was observed by
combining them. The result for the oracle case shows that
there is still much room for improvement.

V. L ANGUAGE MODELING

A. SuperARV LM

Structured language models (LMs) have recently been
shown to give significant improvements in large-vocabulary
recognition relative to traditional wordN -gram models. In
[33], we developed an almost-parsing language model based
on the constraint dependency grammar (CDG) formalism.
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Here we summarize the basics of the LM and the approach we
developed for adapting and applying the LM in SRI’s English
BN and CTS STT systems.

The SuperARV LM [33] is a highly lexicalized probabilistic
LM based on syntactic information expressed in CDGs [34].
It tightly integrates multiple knowledge sources, such as word
identity, morphological features, lexical features that have syn-
ergy with syntactic analyses (e.g., gap, mood), and syntactic
and semantic constraints at both theknowledge representation
level andmodel level.

At the knowledge representation level, integration was
achieved by introducing a linguistic structure, called a super
abstract role value (SuperARV), to encode multiple knowl-
edge sources in a uniform representation that is much more
fine grained than parts-of-speech (POS). A SuperARV is an
abstraction of the joint assignment of dependencies for a
word, which provides a mechanism for lexicalizing CDG
parse rules. A SuperARV is formally defined as a four-tuple
for a word, hC;F , (R;L;UC;MC)+; DCi, where C is the
lexical category of the word,F = fFname1 = Fvalue1,
: : : ; Fnamef = Fvaluefg is a feature vector (Fnamei is
the name of a feature andFvaluei is its corresponding value),
(R;L;UC;MC)+ is a list of one or more four-tuples, each
representing an abstraction of a role value assignment, where
R is a role variable (e.g., governor),L is a functionality label
(e.g., np),UC represents the relative position relation of a
word and its dependent (i.e., modifiee),MC is the lexical
category of the modifiee for this dependency relation, and
DC represents the relative ordering of the positions of a
word and all of its modifiees. Hence, the SuperARV structure
for a word provides an explicit way to combine information
about its lexical features with one consistent set of dependency
links for the word that can be directly derived from its parse
assignments, providing admissibility constraints on syntactic
and lexical environments in which a word may be used.

Model-level integration was accomplished by jointly esti-
mating the probabilities of a sequence of wordswN

1 and their
SuperARV membershipstN1 :

P (wN
1 t

N
1 ) =

NY
i=1

P (witijw
i�1
1 ti�1

1 )

=

NY
i=1

P (tijw
i�1
1 ti�1

1 ) � P (wijw
i�1
1 ti1):

Note that the SuperARV LM is fundamentally a class-based
LM using SuperARVs as classes. Because the SuperARV
LM models the joint distribution of classes and words, data
sparseness is an important issue just as for standard wordN -
gram LMs. In [35], we evaluated several smoothing algorithms
and how to interpolate with, or backoff to, lower-orderN -gram
probability estimates using a combination of heuristics and
mutual information criteria to globally determine the lower-
orderN -grams to include in the interpolation, as well as their
ordering [35].

In the process of adapting the SuperARV LM technique
originally developed on newswire text to the BN and CTS
STT tasks, we explored three major research issues. First, the
SuperARV LM must be trained on a corpus of CDG parses.

Due to the lack of large CDG treebanks, we have developed a
methodology to automatically transform context-free grammar
(CFG) constituent bracketing into CDG annotations [35]. In
addition to generating dependency structures by headword
percolation, our transformer utilizes rule-based methods to
determine lexical features and need role values for the words
in a parse. Although these procedures are effective, they
cannot guarantee that the CDG annotations generated are
completely correct. In [36], the impact of errorful training
data on the SuperARV LM was investigated on the Hub4 BN
STT task. Two state-of-the-art parsers were chosen based on
accuracy, robustness, and mutual consistency to generate CFG
parses [36]. The resulting CFG treebank was then transformed
to CDG parses for training the SuperARV LM. We found
that the SuperARV LM was effective even when trained on
inconsistent and errorful training data. In spite of these results,
we improved the CFG parser accuracy and investigated the
effect that had on SuperARV LM performance.

The second research issue for SuperARVs was the tradeoff
between generality and selectivity. To this end, we investigated
the effect of tightening the constraints by adding lexical
features related to the dependents, so-called “modifiee con-
straints” (which are in addition to the SuperARV structure
shown in [33]).

The third research issue is the implementation of an effi-
cient approach for integrating the SuperARV LM into SRI’s
multipass BN and CTS decoding systems. Full evaluation
of the SuperARV would be computationally expensive and
difficult for lattice rescoring purposes, given that a dynamic
programming algorithm has to be carried out from the start of
the sentence.

We therefore opted for an approximation whereby Super-
ARV probabilities are only computed over the span of a
standardN -gram LM, and the conditional SuperARV proba-
bilities for a limited set ofN -grams are encoded in a standard
LM, and used in the standard manner in lattice andN -best
rescoring. For this approximation to be effective the selection
of theN -gram set is critical. Initially, we experimented with a
static selection method, whereby a large number ofN -grams
selected based on training data is included in the approximate
SuperARVN -gram LM [37]. However, we found that this
approach does not always generalize well; for example, we
found that it worked quite well on the RT-04F CTS devel-
opment test set, but gave no improvement on the evaluation
set. Consequently, we adopted a dynamicN -gram selection
method for the results reported here. After generating the first
set of lattices (see Fig. 1),N -grams with the highest posterior
expected counts are extracted, and an approximate SuperARV
N -gram LM is constructed specifically for the given test set.
That LM is then used just as a standard LM in all subsequent
decoding steps.

Tables VII and VIII show recognition results with dynam-
ically approximated SuperARV LMs on CTS and BN data,
respectively. The baseline results correspond to a standard
backoff LM with modified Kneser-Ney smoothing [38]. For
CTS (Table VII) the effects of improved parse quality and
added modifiee constraints are also demonstrated. Both factors
translate into WER reductions, and are partly additive. Overall,
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we observe between 3% and 8% relative error reduction with
dynamic SuperARV approximation.1

B. Vocabulary Selection

The vocabulary of a speech recognition system is a signif-
icant factor in determining its performance. We thus investi-
gated the problem of finding an optimal way to select theright
words. The problem can be briefly summarized as follows.
We wish to estimate the true vocabulary counts of a partially
visible corpus of in-domain text (which we call the heldout
set) when a number of other fully visible corpora, possibly
from different domains, are available on which to train. The
reason for learning the in-domain countsxi of wordswi is
that the words may be ranked in order of priority, enabling us
to plot a curve relating a given vocabulary size to its out-of-
vocabulary (OOV) rate on the heldout corpus. Therefore, it is
sufficient to learn some monotonic function ofxi in place of
the actualxi. Let xi be some function� of the known counts
ni;j of wordswi, for 1 � j � m for each ofm corpora. Then,
the problem can be restated as one of learning� from a set
of examples where

xi = �(ni;1; � � � ; ni;m):

For simplicity, let � be a linear function of theni;j and
independent of the particular word,wi. Then, we can write

�(ni;1; � � � ; ni;m) =
X
j

�jnij : (8)

The problem transforms into one of learning the�j . Our
investigations showed that a maximum likelihood based count
estimation procedure was optimal in terms of selecting the
best vocabulary for a domain given limited visibility into its
test corpora. In ML count estimation, we simply interpret the
normalized countsnij as probability estimates ofwi given
corpus j and the �j as mixture coefficients for a linear
interpolation. We try to choose the�j that maximize the
probability of the in-domain corpus. The iterative procedure
used to compute the�j is shown below.

�j  
1

m
(9)

�0j  
�j
QjV j

i=1 P (wijj)
C(wi)P

k �k
QjV j

i=1 P (wijk)C(wi)
(10)

�  �0j � �j (11)

�j  �0j (12)

Repeat from (10) if� > some threshold. (13)

The �j are reestimated at each iteration until a convergence
criterion determined by some threshold of incremental change
is met. The likelihood of the heldout corpus increases mono-
tonically until a local minimum has been reached. The iterative

1The mechanics of the parse processing, SuperARV extraction,
model training and evaluation are quite complex and nontrivial
to reproduce. We have therefore made a software toolkit and
documentation for these steps available for download; see
http://www.speech.sri.com/people/wwang/html/software.html.

procedure is effective in rapidly computing the values of the
�j .

We compared the ML vocabulary selection technique
against the baseline of counting each word occurrence equally
regardless of source, as well as several other more sophis-
ticated techniques, as described in [39]. We evaluated the
OOV rates on heldout BN and CTS data sets as a function of
vocabulary size. A pilot study was conducted on the English
BN task, where a small amount of hand-corrected closed-
captioned data, amounting to just under 3 h (about 25,000
words), drawn from six half-hour broadcast news segments
from January 2001, was used as thepartially visible heldout
data to estimate the two mixture weights�1 and �2. This
heldout data is part of the corpus released by the LDC for
the DARPA-sponsored English topic detection and tracking
(TDT-4) task. There are two distinct corpora for training: an
18.5-million-word corpus of English newswire data covering
the period of July 1994 through July 1995, and a 2.5-million-
word corpus of closed captioned transcripts from the period
of November through December 2000 from segments of the
TDT-4 dataset released by the LDC, a closer match to the
target domain. On testing, we found that for small vocabularies
there exist obvious differences in the performance of a number
of different vocabulary selection methods including the one
introduced herein. But for large vocabularies, all methods yield
about the same OOV rates.

On the English CTS task, we conducted a full evaluation,
by using all the available LM training data resources and an
unseen heldout data set, the RT-04F English CTS development
test set. We observed that the ML method outperformed all
other methods with a prominent margin, for vocabularies of
size 1,000 to 90,000 words.

VI. PORTABILITY ISSUES

A. Flexible Alignment for Broadcast News

The majority of the English BN acoustic training data con-
sisted of quickly transcribed (QT) speech. QT speech, typically
closed captioned data from television broadcasts, usually has
a significant number of deletions and misspellings, and has
a characteristic absence of disfluencies such as filled pauses
(such asumanduh). Errors of these kinds lead to inaccurate or
failed alignments. At best, the erroneous utterance is discarded
and does not benefit the training procedure. At worst, it could
misalign and end up sabotaging the models. We developed
a procedure called flexible alignment that aims tocleanse
quick transcriptions so that they align better with the acoustic
evidence and thus yield better acoustic models.

Our approach is characterized by a rapid alignment of the
acoustic signal to specially designed word lattices that allow
for the possibility of either skipping erroneously transcribed
or untranscribed words in either the transcript or the acoustic
signal, and/or the insertion of an optional disfluency before the
onset of every word. During the flexible alignment, we process
every transcript to generate a hypothesis search graph that has
the following properties: every word is made optional; every
word is preceded by either an optionalgarbageword, which
we call the @reject@ word, or one of a certain number of
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TABLE VII

WER (%)ON THE RT-04F CTS DEVELOPMENT AND EVALUATION TEST SETS FORBASELINE SYSTEM AND DYNAMICALLY APPROXIMATED

SUPERARV LM S. THE VALUES IN PARENTHESES ARE THEABSOLUTEWER REDUCTIONSOVER THE BASELINE.

WER (%)(absolute reduction)
dev04 eval04

SARV factors Baseline SARV Baseline SARV

standard 15.5 14.6 (-0.9) 18.4 17.8 (-0.6)
+ better CFG trees - 14.5 (-1.0) - 17.6 (-0.8)
+ modifiee constraints - 14.6 (-0.9) - 17.8 (-0.6)
+ better CFG trees + modifiee constraints - 14.3 (-1.2) - 17.5 (-0.9)

TABLE VIII

WER (%)ON THE RT-04F BNDEV04, LDC-DEV04,AND EVAL 04 TESTSETS FORBASELINE AND DYNAMICALLY APPROXIMATEDSUPERARV LM S.

THE VALUES IN PARENTHESES ARE THEABSOLUTEWER REDUCTIONS OVER THE BASELINE.

WER (%)(absolute reduction)
dev04 ldc-dev04 eval04

factors Baseline SARV Baseline SARV Baseline SARV

standard 13.0 12.3 (-0.7) 18.4 17.7 (-0.7) 15.2 14.8 (-0.4)
standard + better CFG trees - 12.1 (-0.9) - 17.6 (-0.8) - 14.7 (-0.5)
+ modifiee constraints

TABLE IX

COMPARISON OFWERS WITH DIFFERENTMETHODS FORTRAINING ON

QUICKLY TRANSCRIBEDBN SPEECH

Method TDT data (h) dev2003 eval2003 dev2004
Baseline 0 17.8 14.9
LDC-raw 249 16.8 14.7 18.9
LDC-hand-corrected 184 15.9 13.9 18.1
CUED-recognized 245 15.9 14.0 18.2
Flexalign 248 15.8 14.4 18.0

Baseline: only Hub4 transcripts (no TDT-4 data); LDC-Raw: closed-captioned
transcripts as is, with unalignable portions discarded; LDC-hand-corrected:
transcripts corrected by human transcribers CUED-recognized: transcripts
from biased recognizer developed at Cambridge University.

disfluencies; and every word is followed by an optional pause
of variable length.

Our experiments were based on BN data from the TDT-
4 collection released by LDC. The LDC baseline transcripts
came from closed-captioned television shows. More recently,
the LDC has released a manually corrected subset of these
transcripts. These were used to gauge the improvement that
can be obtained with automatic QT cleanup procedures, in
spite of the fact that only about 73% of the TDT had been hand
corrected. As a further point of reference, we also tested TDT-
4 transcripts that were automatically generated by Cambridge
University’s BN recognition system using a biased LM trained
on the closed captions. These automatic transcriptions were
generated by a fast, stripped-down version of the regular
Cambridge STT system that had the best performance in the
NIST RT-03 BN STT evaluations [40].

To measure the quality of these four sets of transcripts,
we trained acoustic models (of identical size) with them
and evaluated the performance of resulting models on three
different evaluation data sets, namely, the 2003 and 2004 TDT-
4 development test sets defined by the DARPA EARS program

participants (denoted dev2003 and dev2004) and the NIST RT-
03 BN STT evaluation data (denoted eval2003). Besides the
TDT-4 reference and acoustic data, the data used for acoustic
model training includes 1996 and 1997 Hub-4 English BN
speech (146 h). The recognition system used was the first stage
of the full BN system (decode and LM rescore). Details of the
experiment can be found in [41].

As Table IX shows, the flexible alignment model produced
the lowest WER after first-pass decoding on both the Hub4
Broadcast News 2003 and 2004 TDT-4 development test set
and the lowest WER on all test sets. On the eval2003 test set,
the performance of the Flexalign model is still competitive
with the performance of the two best models. Considering
that the flexible alignment approach represents the fastest of
the methods for generating suitable training transcripts (short
of using the original QT transcripts), these results make our
method quite attractive for large-scale use.

B. Porting the CTS System to Levantine Arabic

We found that most of the techniques developed for English
could be ported to the development of a Levantine Conversa-
tional Arabic (LCA) system. We used, with few changes, the
same architecture as the English system. However, because the
training transcripts were in Arabic script and the amount of
data was limited, some techniques did not have the expected
effect. Here we describe the language-specific issues for this
task and the effects these had on our modeling techniques.

1) Data: We used a corpus of LCA data provided by the
LDC, consisting of 440 conversations (70 h of speech with
about 500 K words). The training corpus vocabulary consists
of 37.5 K words including 2.5 K word fragments and 8
nonspeech tokens. About 20 K words were singletons. The
development (dev04) testset consists of 24 conversations (3
h of speech, about 16 K words). The OOV token rate for
this set based on the training set vocabulary was 5.6%. The
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test set used for the RT-04 evaluations (eval04) consists of 12
conversations (1.5 h of speech, 8 K words).

The data was transcribed in Arabic script orthography,
which is phonetically deficient in that it omits short vowels and
other pronunciation information. The pronunciation lexicon
was obtained by directly mapping the graphemes to phones
and applying certain pronunciation rules such as assimilation
of the “sun” letters and insertion of the appropriate short
vowel in the presence of hamzas. All the rest of the short
vowels were missing from the resulting pronunciations. We
also experimented with techniques to automatically insert
the missing vowels in the transcription and train vowelized
acoustic models, as described below.

2) Acoustic Modeling:Due to the lack of short vowels in
the grapheme-based lexicon, each acoustic model implicitly
models a long vowel or a consonant with optional adjacent
short vowels. NonCW and CW MFCC and PLP models (using
HLDA, but without MLP features) were trained with decision-
tree-based state clustering [42], resulting in 650 state clusters
with 128 Gaussians for each cluster.

3) Discriminative Training:We found that the effect of the
discriminative training procedure MPFE (described in Section
IV-B) was smaller than in English. MPFE training for this
task produced only a 2% relative improvement in the first
iteration, while subsequent iterations increased WER. It is
likely that grapheme models cannot substantially benefit from
the discriminative training procedure since each grapheme
represents a class of heterogeneous acoustic models rather
than one single model. Also, the high WER and the numerous
inconsistencies in the transcriptions can limit the effect of the
MPFE procedure, especially since it relies on accurate phone
alignments for discrimination.

4) Crossword Grapheme-Based Models:We found that
the performance of CW models was worse than that of
nonCW models, unless the word-boundary information was
used during state clustering [43]. In English, word-boundary
information improves the CW models, but in conversational
Arabic it turns out to be critical. This could be attributed to
the fact that the nature of the hidden short vowels is different
at word boundaries compared to the within-word location.

5) Modeling of Short Vowels:Since previous work on
Egyptian Colloquial Arabic (ECA) [44] has shown a signif-
icant benefit from using vowelized models versus grapheme-
based ones, we attempted to do the same for the LCA system.
Unlike in our previous work, no vowelized data or lexicon was
available for this task.

In our first effort to use vowels in the LCA system we
generated word pronunciation networks that included one
optional generic vowel phone in all possible positions in
the pronunciation. The possible positions were determined
using the Buckwalter analyzer from LDC. For the words
where it failed (24 K out of 37 K vocabulary), we included
pronunciations that allowed an optional vowel between every
consonant pair.

In our second approach we manually added the vowels on
a small subset of the training data (about 40 K words), which
was selected to have high vocabulary coverage. We trained a
4-gram character-based language model on this data, which

was used as a hidden tag model to predict the missing vowels
in all training data transcripts. That produced a vowelized text
with about 7% character error rate.

When compared with the baseline grapheme models, the
vowelized models did not show any significant improvement,
possibly because of the inaccuracy in the vowelization pro-
cedure. Nevertheless, these systems contribute to significant
improvements when combined with grapheme-based models
as we will show in Section VI-B.7.

6) Language Modeling:We used two different types of
language models in our system: standard word-based LMs and
factored language models (FLMs) [45]. FLMs are based on a
representation of words as feature vectors and a generalized
parallel backoff scheme that utilizes the word features for more
robust probability estimation. The word features can be the
stem, root, affixes, or a tag that represents the morphological
properties of the word. The structure of the model, that
is, the set of features to be used and the combination of
partial probability estimates from features, is optimized using a
genetic algorithm [46]. By leveraging morphological structure,
FLMs improve generalization over standard word-based LMs,
which is especially important given the scarcity of in-domain
training data, and the general lack of written LM training
material in dialectal Arabic.

In our previous work on ECA, where the morphological
features of each word were hand-annotated, factored language
models yielded an improvement of as much as 2% absolute,
for a baseline with approximately 40% word error rate [47].
For our present LCA system, word morphological information
was not available and had to be inferred by other means. Since
automatic morphological analyzers do not currently exist for
dialectal Arabic, we used a simple script and knowledge of
Levantine Arabic morphology to identify affixes and subsets
of the parts of speech from the surface script forms. We also
applied a morphological analyzer developed for Modern Stan-
dard Arabic [48] to obtain the roots of the script forms. Those
forms that could not be analyzed retained the original script
form as factors. It was found that this type of decomposition,
although error-prone, yielded better results than using data-
driven word classes. On the development set the perplexity
was reduced from 223 to 212.

7) Evaluation System:The processing stages of the full
system submitted for the RT-04 evaluation follow the setup of
the English 20xRT CTS system describe in Section II, except
that we used the PLP models for the lattice generation stages,
and no SuperARV LM was used. Instead, an FLM was used for
lattice rescoring (at the second lattice generation stage only).
The N -best lists generated from these lattices used adapted
PLP and MFCC graphemic models.

In Table X we show the contribution of vowelized models in
this system. First we replaced the nonCW graphemic MFCC
model with one that used the generic vowel approach, getting
0.6% to 0.4% WER improvements. Then we added the MFCC
phonemic models that used the automatically vowelized data.
We generated a third set of lattices using the vowelized LM,
which were used to obtain the vowelized MFCCN -best lists
with nonCW and CW models. These models improve the final
performance by 0.8% to 1.0% absolute over the grapheme-
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TABLE X

EFFECT OF THEVOWELIZED MODELS ON THELEVANTINE ARABIC CTS

SYSTEM WER

dev04 eval04
grapheme 43.1 47.3
+ generic-vowel non-cw MFCC 42.5 (-0.6) 46.9 (-0.4)
+ auto-vowel MFCC models 42.1 (-1.0) 46.5 (-0.8)

TABLE XI

EFFECT OF THEFACTOREDLM ON THE LEVANTINE ARABIC CTS

SYSTEM WER

dev04 eval04
No FLM 42.7 47.0
N -best rescoring FLM1 42.5 46.9
lattice rescoring FLM2 42.1 (-0.6) 46.7 (-0.3)

based system.
Table XI shows the contribution of the FLM to the final

system’s performance. To keep the runtime within 20xRT
we used only the generic vowel MFCC model for these
experiments. We see that including a bigram FLM only for
final N -best rescoring improves the result by 0.2% and 0.1%
on the two testsets. Using a trigram FLM for all lattice
rescoring steps, we obtained improvements of 0.6% and 0.3%
absolute, respectively.

C. Porting the CTS System to Mandarin

Porting to Mandarin required again very minor changes to
the CTS system [49]. The core engine (the acoustic and lan-
guage training paradigms and the decoding structure) remained
the same. The main differences were in the addition of tone
modeling with a tonal phone set, pitch extraction as part of the
feature representation, word tokenization, and in the details of
the web data collection.

1) Data: Three speech corpora were used for training
acoustic models, all from LDC: Mandarin CallHome (CH),
Mandarin CallFriend (CF), and the 58 h collected by Hong
Kong University of Science and Technology (HKUST) in
2004. CH and CF together comprise 46 h (479 K words),
including silence.

The transcriptions associated with these three corpora were
all used to train word-basedN -gram LMs. Because of the
small size of the corpora, we also harvested web data as
supplemental LM training data.

2) Language Modeling:As there are no spaces between
written Chinese characters, there is no clear definition of words
in Chinese and thus character error rate (CER) is usually
measured when evaluating systems. Using single-character
words in the vocabulary is not a good idea because of the
short acoustic context and the high perplexity. Therefore, most
Chinese STT systems define words as their vocabulary. We
used the word tokenizer from New Mexico State University
[50] to segment our text data into word units, resulting in
22.5 K unique words in CH+CF+HKUST training data. The
HKUST corpus consisted of 251 phone calls. We randomly
selected 25 phone calls as a heldout set to tune parameters

TABLE XII

WORD PERPLEXITY AND CERON RT-04 CTS DATA (AUTOMATICALLY

TOKENIZED)

LM Weight
subHKUST CH+CF Webc Webt PPL CER

LM0 0.87 0.13 - - 269.3 38.8%
LM1 0.65 0.05 0.30 - 202.2 36.4%
LM2 0.64 0.04 0.16 0.16 192.6 36.1%
LM3 0.66 0.05 - 0.29 193.5 36.1%

in N -gram modeling. The rest of 226 phone calls (398 K
words) were named subHKUST. CH+CF were used to train
one trigram LM, subHKUST another. They were interpolated
to create the baseline LM,LM0, with interpolation weights
to maximize the probability of generating the heldout set. No
higher-orderN -gram LMs were trained.

In addition, we harvested two separate corpora from the
World Wide Web to augment LM training. Key differences
relative to our English web text collection method are in the
text cleaning and normalization, and in the method for topic-
dependent text collection [51]. The first batch was to fetch data
in the style of general conversations by submitting the 8800
most frequent 4-grams from HKUST data to the Google search
engine. The fetched data were then cleaned by removing pages
with corrupted codes, removing HTML markers, converting
Arabic digits into spoken words, and so on. Finally, pages
with high perplexity computed by the baseline LM were
filtered such that 60% (100 M) of the total number of words
of the entire retrieved documents were retained.LM1 was
created by three-way interpolation of CH+CF, subHKUST,
and conversational web data (Webc), again maximizing the
probability of the heldout set.

The second batch of web data collection focused on the 40
topics given in the HKUST collection. We defined 3-word key
phrases for each particular topic,t, as word sequencew1w2w3

if

C(w1w2w3jt)=�t
�40
j=1C(w1w2w3jj)=�j

> 0:3

and if there are enough training data in subHKUST in topic
t. For rare topics, we manually designed key phrases based
on the brief descriptions that were provided to the subjects
as part of the data collection protocol. After the key phrases
were defined for all 40 topics, we then queried Google for 40
collections of web pages. These 40 collections (a total of 244
M words),Webt, were cleaned and filtered in the same way
asWebc and were combined to train a word-basedN -gram,
to be used in the 4-way interpolation.

The LM interpolation weights for these training corpora are
indicated in Table XII. As one can see easily, subHKUST
matched the heldout set strongly as they were from the same
data collection effort. Additionally, the significant weights
given to web data and the perplexity reduction show that our
web query algorithm was effective, and that the web collection
better matches the target task than other conversational speech
that is not topically matched. Due to the lack of a Mandarin
treebank and other resources, we did not build a Chinese
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TABLE XIII

MANDARIN CERS ON THEMANUALLY SEGMENTED DEV04 CTS TEST

SET

Acoustic Model SI SA
(1) PLP nonCW MLE, no pitch 41.5% 36.4%
(2) PLP nonCW MLE 40.4% 35.5%
(3) PLP CW MLE 39.5% 34.5%
(4) PLP CW SAT MLE 36.8% 34.0%
(5) PLP CW SAT MPFE 35.3% 32.9%
(6) MFCC CW SAT MPFE 36.2% 33.4%
(7) MFCC nonCW MPFE 40.0% 33.6%
Rover (5)+(6)+(7) - 31.7%

SuperARV language model.
Recognition experiments were conducted on the 2-hour

Dev04 set, collected again by HKUST. For fast turnaround,
these experiments were conducted using simpler acoustic
models and the 3xRT decoding architecture shown in Fig. 1.
From Table XII, we chose the 4-way interpolated model,LM2

as our final model for evaluation.
3) Acoustic Modeling:We obtained our initial pronunci-

ation lexicon from BBN and reduced the phone set to 62,
plus additional phones for silence, noise, and laughter. The
phone set is similar to IBM’s main vowel idea [52]. Tones are
associated only with vowels and the /ng/ phone.

Similar to the English system, the front end features include
both fixed frame rate MFCC and PLP static, delta, and double
delta, with cepstra mean and variance removal, and VTLN. We
did not find HLDA helpful in our early systems and therefore
decided not to incorporate it into the final Mandarin CTS
system. In addition, we used the Entropicget f0 program to
compute pitch features, reduced pitch halving and doubling
with lognormal tied mixture modeling [53], and then smoothed
pitch values for unvoiced sections in a way similar to [52].
Along with pitch delta and double delta, our Mandarin feature
vector was 42 dimensional. Neither voicing features nor any
MLP related features were incorporated because of time con-
straints. Both nonCW and CW triphones with decision-tree
clustered states were trained with MLE and MMIE+MPFE
training. Questions for the decision tree clustering included
those related to tone. Different state locations of the same
phone and different tones of the same toneless phone were
allowed to be clustered. CW models were further SAT trans-
formed in the feature domain using 1-class constrained MLLR.
The model size was 3500 clustered states with 32 Gaussians
per cluster.

4) Results: To understand the incremental improvement
with various technologies, we ran 1-pass decoding on top
of the thick lattices in Fig. 1, which containedLM2 trigram
scores. We tested both speaker-independent (SI) models and
MLLR unsupervised speaker-adapted (SA) performance. The
results are shown in Table XIII.

The final evaluation made use of the full 20xRT decoding
architecture, using MMIE+MPFE trained nonCW and CW
triphone models with decision tree based state clustering,
and trigramLM2. The final CER was 29.7% on the RT-04

evaluation set.

VII. CONCLUSIONS

We surveyed a number of recent innovations in feature
extraction, acoustic modeling, and language modeling, as used
in the speech-to-text component of the SRI-ICSI-UW Rich
Transcription system. Substantial improvements were obtained
through trainable, discriminative phone-posterior features es-
timated by multilayer perceptrons, and modeling of syntactic
word relationships in the SuperARV almost-parsing language
model framework. Smaller gains were achieved by adding a
novel combination of voicing features to the front end, by im-
proving MPE-based discriminative training, and by predicting
the speaker-dependent optimal number of regression classes in
adaptation. Other techniques, while yet to be incorporated into
our full system, show promise, such as the macro-averaging
of frame-level statistics for more robust normalization, and the
combination of multiple front ends at different frame rates.

We also developed an efficient flexible alignment tech-
nique for correcting and filtering imperfect, close-caption-
style speech transcripts, for acoustic training purposes. Finally,
we gained experience in porting STT technologies first de-
veloped for English to other languages, specifically, Arabic
and Mandarin. We found that most techniques carry over,
although language-specific issues have to be dealt with. In
Arabic, the lack of detailed phonetic information encoded in
the script form of the language has to be overcome, and the
morphological complexity can be accounted for with factored
language modeling. Mandarin Chinese, on the other hand,
requires automatic word segmentation, and modifications to
both feature extraction and dictionary to enable effective
recognition of lexical tone.
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