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Abstract

When performing speaker diarization, it is common prac-
tice to use an agglomerative clustering approach where the
acoustic data is first split in small segments and then pairs of
these segments are merged until a particular stopping point
is reached. The diarization performance can be greatly im-

proved by the use of a speech/non-speech detector. The use of a
speech/non-speech detector helps the diarization system by pre-

venting non-speech frames from “confusing” both the merging

and the stopping processes. Over the years there has been ex-

tensive research on speech/non-speech detectors. Often times

speech/non-speech detectors require training data and their ac-

curacy is strongly dependent on setting various thresholds cor-
rectly. In this work we present a hybrid speech/non-speech de-
tector for use in our speaker diarization system within the meet-
ings domain. Our proposed speech/non-speech system runs in
two stages. The first stage performs an energy-based detection.

The second stage performs a model-based decoding using the
previous stage’s data as a bootstrap for the acoustic models, thus

avoiding the need for any outside training data. We show an im-
provement of 14% and 10% relative on a development and test
set.

1. Introduction

The goal of speaker diarization is to segment an audio recording
into speaker-homogeneous regions [1]. Typically, this segmen-
tation must be performed with little knowledge of the character-
istics of the recording or of the talkers in the recording. For ex-
ample, we may know the source and date of the audio recording
(e.g. CNN Nightly News or a NIST meeting), but we typically
do not know how many speakers occur in the recording, how
many speakers are male vs. female, whether there are commer-
cials, music, or other noises, etc. The more that the system can
automatically detect, the better the result will be.

It has been shown in [2] that the speaker diarization per-
formance can be improved by the use of a speech/non-speech
detector as a first step to the agglomerative clustering process.
The speech/non-speech system used in this previous work was

based on acoustic models that needed to be trained on data as

similar as possible to test data. This poses a robustness problem
when we intend to use the diarization system on "unseen” data,
and slows down the portability of the system to new environ-
ments, where new training data needs to be labelled/located and
new speech/non-speech models need to be trained. Among the

systems that do not use acoustic models for speech/non-speech

detection, the most widely used always include energy as a fea-

ture. The performance of such systems is dependent on setting
appropriate thresholds and these thresholds are typically tuned
using some development data.

In this paper we present a novel system to perform
speech/non-speech detection, and its application to speaker di-
arization in the meetings environment. Such system takes ad-
vantage of the fact that most non-speech in meetings is silence.
It first performs an energy-based detection of the silence por-
tions in the input data using energy derivative filtering based
on [3]. This system only needs a coarse setting of a threshold,
which is then iteratively modified until obtaining a reasonable
amount of silence data. The second stage of the system mod-
els speech and silence given the output from the first stage, and
creates a final speech/non-speech segmentation to be used in
the diarization system. By running this two-stage system, we
avoid using any external training data to obtain an initial set of
acoustic models. From these initial models we can iterate be-
tween segmenting the data and retraining the models to obtain
the final speech/non-speech segmentation.

In section 2 we present the speaker diarization system used
when evaluating the speech/non-speech system. In section 3
the energy-based decoder is introduced, and in 4 the model-
based decoding and the hybrid system are explained. In section
6 we show the experiments performed and finally we present
the conclusions of this work.

2. Agglomerative Speaker Diarization

The speaker clustering system used in this paper is based on
[2] and [4]; it follows an agglomerative clustering approach.
The data is initially split intaX clusters (wherd{ > estimated
number of speakers which is computed automatically), and then
iteratively merges the clusters (according to a merge metric
based omMABIC) until a stopping criterion is met. The acous-
tic data is modelled using an ergodic hidden Markov model
(HMM), where the initial number of states is equal to the initial
number of clustersK). Upon completion of the algorithm’s
execution, each remaining state is taken to represent a different
speaker. Each state contains a sebhb sub-states, imposing
a minimum duration on the model (we udép = 3 seconds).
Within the state, each one of the sub-states share a probability
density function (PDF) modelled via a Gaussian mixture model
(GMM).

Our clustering algorithm for the meetings domain, consists
of the following steps:

1. Run speech/non-speech detection on the input data to be
evaluated.
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Figure 1:Energy-based detector blocks diagram

. Extract acoustic features from the data and remove non-
speech frames from the diarization processing.

. Create models foK initial clusters via linear initializa-
tion.

4. Perform iterative merging using the following steps:

(@) Run a Viterbi decode to resegment the data.

(b) Retrain the models via an Expectation-
Maximization (EM) algorithm using the seg-
mentation from step (a).

(c) Select the cluster pair with the largest merge score
(based omABIC) that is> 0.0.

(d) If nosuch pair of clusters is found, stop and output
the current clustering.

(e) Merge the pair of clusters found in step (c). The
models for the individual clusters in the pair are
replaced by a single, combined model.

(f) Goto step (a).

For the merging and clustering stopping criteria, we use a
variation of the commonly used Bayesian Information Criterion
(BIC) [5]. The ABIC compares two possible models: two clus-
ters belonging to the same speaker or to different speakers. The
variation used was introduced by Ajmera et al. [4], [6], and con-
sists of the elimination of the tunable parametdsy ensuring
that, for any givenABIC comparison, the difference between
the number of free parameters in both models is zero.

The use of a speech/non-speech detector is an important
part of the system. The inclusion of non-speech frames into
the clustering process makes it difficult to correctly differenti-

below. First of all, the data is preprocessed using common engi-
neering techniques (see 3.1 below) with the purpose of increas-
ing the quality of the speech signal. Then a derivative filter is
applied over the energy signal (see 3.2 below). Finally we use
a thresholding method together with a minimum duration en-
forcement via a Finite State Machine (FSM) to detect silences
(see 3.3 below.)

3.1. Data Preprocessing

A Wiener filtering is applied over the waveforms in order to
reduce noise effects and reverberations. This is done using a
noise reduction algorithm developed for the Aurora 2 front-end
proposed by ICSI, OGI, and Qualcomm [8]. The algorithm per-
forms Wiener filtering with typical engineering modifications,
such as a noise over-estimation factor, smoothing of the filter
response, and a spectral floor.

Due to the different sources and recording setups the av-
erage amplitude of the signal to be processed can vary over a
large range. Therefore it needs to be normalized to be able to
bring consistency in the follow-on processing. A standard en-
ergy average over all the recording would not be plausible due
to the existence of extended silence regions and of sudden noise
bursts. We chose a way to compute the normalization constant
w1 which is more robust to these effects as shown in equation 1.

p=p S mac(s TR slp+1) - TE]) (1)

whereP is the total amount of non overlapped blocks of du-
rationTF; (with Fs being the sampling rate in samples/second,
and T in seconds) in the recording. Each block of samples
ranges fronp - TF;to (p+ 1) - TF,

Finally a low-pass Butterworth filter deletes all high band
noises leaving only information of the signal beldiH z. This
is done because the major part of the energy of the signal is
contained in this band and we need no information but energy
in this part of the detection. This Butterworth filter has been
implemented using its IIR form.

3.2. DerivativeFiltering

ate between two models because the non-speech frames tendGiven the normalized and filtered energy sigrigh{) we use

to make the two models appear more similar than they really

a derivative filter in order to enhance the speech/non-speech

are. Even though there has been extensive use of model-based change-points. This processing helps prevent degradation due

speech/non-speech detectors in the literature (including [2], [7])
and of energy-based detectors, we present an alternative hy-
brid system that attempts to solve some of the problems from
both approaches. On one hand, we avoid accurate tuning of
the energy threshold by using an iterative search of a rough
speech/non-speech segmentation used to initialize the model-
based decoder. On the other hand, by using such initialization
on the model-based decoder, we avoid having to train its mod-
els with pre-labelled data, resulting in a system that is free of
trianing data.

In the following sections we present the energy-based de-

tector and the model-based decoder that have been used, and

how they are combined to obtain the hybrid system.

3. Energy Detection

The first stage of the process consists on an energy-based
speech/non-speech detector which can be divided into three ma-
jor blocks as seenin figure 1. Each of these blocks are explained

to low signal-to-noise ratios or nonstationary environments and
was first introduced by [3]. Such filter is defined via the follow-
ing impulse response,

hin] ={-f[-W<n <0 fl<n<W[}} (2
Where,
fln] = e [Kisin(An) + Kscos(An)]
+e A" [K3 sin(An) + K4 cos(An)]
+K5 + Kee™ (3)
And,
A = 04ls
s 7
W
W = Half of the window length. 4)
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Figure 2: Left, filter over[n]. Decision of silence in red after
the thresholding.

And the values of the coefficient$K ... Ks]
[1.583,1.468, —0.078, —0.036, —0.872, —0.56], for a chosen
window lengthiW = 31. The selection of an appropriate value
for the W parameter is important as it sets the temporal resolu-
tion of the detector.

As shown in fig. 2 the result of the convolution &f:] and
h[n], é[n] is thresholded and labelled, each samplespesch
or non-speech.

3.3. Time Constraints on Speech/non-Speech

After the energy is filtered the third time we need to impose
some time constraints to avoid changing too quickly between
speech andnon-speech. A finite state machine(FSM) has been
implemented for this purpose. In this FSM described in fig-
ure 3 the time constraints are forced throuagiter times and
leave times according to the values @éfrn] using two thresholds
(enter thrld, ©cnierr andleave thrld, ©;cq,c) ON each sample.
The selection of the right thresholds is crucial to the correct-
ness of the detector and, although the energies have been ini-
tially normalized, might differ from meeting to meeting. We
define theenter thrld to be an order of magnitude bigger than
leavethrld and its value is iteratively defined by the hybrid sys-
tem described below. As for the appropriate minimum time of
either speech or non-speech states we estimate it using the de-
velopment data.

Inside the FSM, the conditions to go fronen-speech to
speech are the same to go frospeech to non speech. This way
to go from speech to non-speech, é[n] has to be higher than
enter thrld, and vice versa:

é[n1] 2 eente'l* & Statet = NSP — Stat€t+1 =SSP
é[nz2] < Ocgir & State, = SP — States+1 = NSP
®)

where NSP is a non-speech state and SP is a speech state.

4. Model-based Speech/Non-Speech
decoder
The second stage of the process consists of a model-based

speech/non-speech detector which obtains an initial segmenta-
tion (used for training its models) from the output of the energy-
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Figure 3: State machine used to apply time constraints.

Diarization system), where one state models silence using a sin-
gle gaussian model, and the speech state uses a GMMWith
mixtures (M ¢1). In each state we impose a minimum duration
M D. We use EM-ML to train the models and Viterbi to decode
the acoustic data. We iteratively segment and train both models
until the overall meeting likelihood stops increasing, then we
output the speech/non-speech labels.

In order for the speech and silence models to represent well
the acoustic information, there needs to be enough frames of
data in the input segmentation for each model. As seenin [9] the
silence data can be modelled with a single gaussian with a very
narrow variance. On the other hand, the speech information is
much “broader” and dependant on the speakers present in the
meeting. It is therefore important for the data used in training
the silence model to contain as little speech data as possible.
This translates into a very small “missed speech” rate in the
energy based detector.

5. Hybrid Speech/non-Speech Detection

The hybrid Speech/non-Speech detector introduced here is
composed of a 2 step process, as seen in figure 4, combining
the energy-based detector and the model-based decoder. The
output of the energy detector is used exclusively to initialize
the model-based decoder, whose output is used as the speaker
diarization speech/non-speech input.

As described above, the functioning of the energy detector
depends on setting a threshold value properly. In an exclusively
energy-based system such threshold has to be defined using a
development set as close as possible to the test set to obtain op-
timum results. By using a model-based decoding as a second
step we can relax the need for a perfectly tuned threshold since
the aim now is to obtain a rough distinction between speech
and non-speech. The Energy detector is initially run with a very
low threshold pair (1e-5/1e-6). While the number of non-speech
segments foundX,;;) is smaller than 10 we raise both thresh-
olds by an order of magnitude and rerun the system. This is
done iteratively untilV,;; > 10). At that point, if Ng;; > 100
we consider that there are too many silence segments and we

based detector. It then produces the speech/non-speech labelsgo back to a smaller threshold step size until obtaining between

that are used for the speaker diarization task. By training the
models from the output of the energy-based detector, we avoid
the need for any external training data (or pretrained models).
The model-based decoder is composed of a two states er-
godic HMM (following the same architecture as the speaker

10 and 100 non-speech segments. The selection of the range
(10,100) is defined grosso modo in order to obtain a suffi-
cient amount of silence frames to train the silence model in the
model-based decoder with a low percentage of speech labelled
as silence.
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Figure 4:Hybrid Speech/non-speech detector blocks diagram

Such speech/non-speech segments are used to train the two
models in the model-based decoder, which performs iterative
viterbi decodings and EM-ML training on the data until reach-
ing likelihood convergence.

The use of two well known speech/non-speech detection
technigues back-to-back allows for the creation of a more ro-
bust system than using either of them alone. On one hand, on
a system totally energy-based we will encounter that the opti-
mum thresholds defining the speech and non-speech segments
are different from one recording type to another (as it depends
on the room, microphones used, distance of the people to them,
etc.) and therefore they need to be optimized using data from
the same source, becoming very dependent on it. On the other
hand, in a totally cluster-based system, we need pre-labelled
data in order to train the models (or somehow generated initial
models), which is also very dependent on the type of recording.
By using both systems we can process any type of data we ob-
tain on its own, without the burden of similar data collection or
annotation.

There are three main parameters that need to be deter-
mined in this hybrid system in order to obtain optimum results.
These are the minimum duration of the speech/non-speech in
the energy-based detector, the number of gaussian mixtures as-
signed to speech in the model-based decoder and the minimum
duration of speech and non-speech in such decoder.

6. Experimentsand Results

Both speech/non-speech and speaker diarization experiments
were conducted using the acoustic data distributed for the NIST
Rich Transcription 2004 and 2005 Spring Meeting Recognition
Evaluation, RT04s and RTO05s ([10]). This consists of excerpts
from multi-party meetings in English collected at six different
sites on various time periods. From each meeting only an ex-
cerpt of 10 to 12 minutes is evaluated. Although a number of
distant microphones is available for each meeting, only the most
centrally located microphone (as defined by NIST as the SDM
channel) was used to test the algorithms presented here. We
merged the RT04s development and evaluation data to create
a development set (to a total of 16 meeting excerpts) to adjust
the parameters, and the evaluation data from the NIST RT05s
evaluation is used as an evaluation set to validate the chosen
parameters.

To evaluate the system we used a total of three metrics. To
evaluate the speech/non-speech accuracy we used two metrics
which correspond to the possible errors found. They are the
Missed Speech (MISS), which accounts of the percentage of the
total evaluated time that the reference accounts for speech and
the system labels it as silence; and the False Alarm (FA) speech,
which is the percentage of silence that is labelled as speech. The
sum of both error types is the total speech/non-speech error.
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Figure 5:Energy-based system errors depending on its segment
minimum duration

To evaluate the speaker diarization algorithm, the metric
used is the same as is used in the NIST RT evaluations and
is called Diarization Error Rate (DER). It is computed by first
finding an optimal one-to-one mapping of reference speaker ID
to system output ID and then obtaining the error as the percent-
age of time that the system assigns the wrong speaker label.

In order to compute the error rates from the system out-
put files, ground-truth speaker diarization references have been
generated via forced alignment using the ICSI-SRI speech-to-
text (STT) system presented for the RTO5s NIST evaluation (see
[11]). For each meeting all speakers present in the meeting wear
an individual headphone microphone (IHM). The data from the
IHM channel was hand transcribed, and the STT system was
used to align the reference text to the acoustic data in each
channel. Then a single file was created by merging all of the
alignments. When presenting the metrics we don’t evaluate any
speech in in the input signal that is overlapped (more than one
speaker talking at the same time). One show in the evaluation
set had to be descarded due to the lack of official transcripts for
a speaker who had called in to the meeting on a speaker-phone.

For all metrics, the overall results given below are the time
weighted averages among all meetings in the development or
evaluation set.

6.1. Speech/Non-Speech Experiments

We used the development set to estimate the minimum duration
of the speech and non-speech segments in the energy-based de-
tector. In figure 5 we can see the MISS and FA scores for vari-

ous durations (in # frames). While for a final speech/non-speech
system we would choose the value that gives the minimum total

error, in this case our goal is to obtain enough non-speech data
to train the non-speech models in the second step. It is very
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Figure 6:Model-based system errors depending on its segment
minimum duration

important to choose the value with smaller MISS so that the

non-speech model is as pure as possible (the speech model con-

tains more Gaussian mixtures, therefore a bigger FA rate does
not influence it as much). We observe how in the range between
duration 1000 and 8000 the MISS rate remains quite flat, which
indicates that even though, when applying the selected value to
a different set of data, if this new set doesn’t contain a minimum
value for the MISS rate at the same value are our development
set, it will most probably still be a very plausible solution. We
choose a duration = 2400 (150ms duration) with MISS = 0.3%
and FA=9.5% (total 9.7%).

The same procedure is followed to select the minimum du-
ration for the speech and non-speech segments decoded using
the model-based decoder, using the minimum duration deter-
mined by the previous analysis of the energy-based detector. In
figure 6 we can see the FA and MISS error rates for different
minimum segment sizes (the same for speech and non speech);
such curve is almost identical when using different # mixtures
for the speech model, we choose a complexity of 2 gaussian
mixtures for the speech model. In contrast to the energy-based
system, this second step does output a final result, therefore we
are interested in finding the value that minimizes the total per-
cent error. We choose the minimum value of 5.6% error us-
ing a minimum duration of 0.7 seconds. If in the energy-based
detector we had chosen the parameters that minimize the over-
all speech/non-speech error (which is at 8000 frames, 0.5 sec-
onds) we would have obtained a minimum error of 6.0% after
the cluster-based decoder step.

evaluation data
MISS FA total
0.0% | 13.2% | 13.2%
1.9% | 4.6% | 6.5%
0.1% | 10.4% | 10.5%
28% | 21% | 4.9%

sp/nsp system| Development data
MISS FA total
0.0% | 11.4% | 11.4%
1.9% | 3.2% | 51%
0.4% | 9.7% | 10.1%

2.4% 3.2% 5.6%

All-speech system
Pre-trained models|
hybrid (1st part)
hybrid system(all)

conform to this rule. The second row shows the speech/non-
speech results using SRI speech/non-speech system [11] which
has been trained using training data coming from various meet-
ing sources and its parameters optimized using the development
data presented here and the forced alignment reference files.
If tuned using the hand annotated reference files provided by
NIST for each data set, it obtains a much bigger FA rate, pos-
sibly due to the fact it is more complicated in hand annotated
data to follow the 0.3s silence rule. The third and forth rows
belong to the results for the presented algorithm. The third row
shows the errors in the intermediate stage of the algorithm, after
the energy-based decoding. These are not comparable with the
other systems as the optimization in here is done regarding the
MISS error, and not the TOTAL error. The forth row shows the
result of the final output from both systems together.

Although the speech/non-speech error rate obtained for the
development set is worse than what is obtained using the pre-
trained system, it is almost a 25% relative better in the evalu-
ation set. As we will see in the next section, in both cases the
new proposed speech/non-speech output helps reduce the DER
error in the speaker diarization task.

6.2. Speaker Diarization Experiments

In order to test the usability of the speech/non-speech output
for the speaker diarization of meetings data we have run the
system explained in section 2 on the development and test data.
In table 2 we present the Diarization Error Rates (DER) for the
speaker diarization system presented in section 2 using different
speech/non-speech system outputs.

sp/nsp system Development| evaluation
All-speech 27.50% 25.17%
Pre-trained models 19.24% 15.53%
hybrid system 16.51% 13.97%

Table 2: DER using different speech/non-speech systems

The use of any speech/non-speech detection algorithm im-
proves the performance of the speaker diarization system. Both
systems perform much better than just using the diarization sys-
tem alone. This is due to the agglomerative clustering tech-
nique, which starts with a large amount of speaker clusters and
tries to converge to an optimum number of clusters via cluster-
pair comparisons. As non-speech data is distributed among all
clusters, the more non-speech they contain, the less discrimina-
tive the comparison is, leading to more errors.

In both the development and evaluation sets the final DER
of the proposed speech/non-speech system outperforms by a
14% relative (development) and a 10% relative (evaluation) the
system using pre-trained models. We can see how the DER on
the development set is better, even though the proposed system
has a worse speech/non-speech error. This indicates that the

In table 1 we present the results for the development and
evaluation sets using the selected parameters. The "all-speech”
system shows the total percentage of data labelled as non-
speech in the reference (ground truth) files. After obtaining
the forced alignment from the STT system, there existed many
non-speech segments with a very small duration. In the NIST
RT evaluations a silence segment is only considered within two
segments belonging to the same speaker when it is longer than
0.3 seconds. A postprocessing of the segments was done to

that are more tightly coupled with the diarization system.

7. Conclusions and future work

In this paper we present a new hybrid speech/non-speech detec-
tor and we use it for the task of speaker diarization of meeting
data. The proposed system first performs an energy-based de-
tection with an automatic threshold setting to obtain a rough
speech/non-speech segmentation, then a second part uses a
model-based system where HMM acoustic models are trained



with the data from the first step for speech and non-speech and
outputs the final segmentation. This speech/non-speech seg-
mentation is used on the diarization system, improving its per-
formance. We show an improvement on Diarization Error Rate
(DER) of 14% and 10% relative on the development and testing
sets.

In the meetings environment the major source of non-
speech is silence, which is what we focus on detecting with
this system. In other environments, like broadcast news, si-
lence is normally reduced to the minimum, and what mostly
appears are other noises and music. The proposed system could
be adapted to be able to process such recordings by exchanging
the energy-based speech/non-speech detector by a music detec-
tor or a detector able to label other non-speech events presentin
the recording.

8. References

[1] D. Reynolds and P. Torres-Carrasquillo, “Approaches
and applications of audio diarization,” iICASSP’ 05,
Philadelphia, PA, March 2005, pp. 953-956.

[2] C.Wooters, J. Fung, B. Peskin, and X. Anguera, “Towards
robust speaker segmentation: The ICSI-SRI fall 2004 di-
arization system,” irFall 2004 Rich Transcription Work-
shop (RT04), Palisades, NY, November 2004.

[3] Q.Li,J.Zheng, A. Tsai, , and Q. Zhou, “Robust endpoint
detection and energy normalization for real-time speech
and speaker recognition/EEE Transactions on Speech
and Audio Processing, vol. 10(3), 2002.

[4] J. Ajmera and C. Wooters, “A robust speaker clustering
algorithm,” in ASRU’03, US Virgin Islands, USA, Dec.
2003.

[5] S. Shaobing Chen and P. Gopalakrishnan, “Speaker, en-
vironment and channel change detection and clustering
via the bayesian information criterion,” iRroceedings
DARPA Broadcast News Transcription and Understand-
ing Workshop, Virginia, USA, Feb. 1998.

[6] J. Ajmera, I. McCowan, and H. Bourlard, “Robust
speaker change detectionEEE Sgnal Processing Let-
ters, vol. 11, no. 8, pp. 649—-651, 2004.

[7] X. Anguera, C. Wooters, B. Peskin, and M. Aguilo, “Ro-
bust speaker segmentation for meetings: The ICSI-SRI
spring 2005 diarization system,” iRich Transcription
2005 Spring Meeting Recognition Evaluation, Edinburgh,
Great Brittain, July 2005.

[8] A. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl,
H. Hermansky, P. Jain, S. Kajarekar, N. Morgan, and
S. Sivadas, “Qualcomme-icsi-ogi features for asr,”l @
S P02, 2002.

[9] X. Anguera, C. Wooters, and J. Hernando, “Purity al-
gorithms for speaker diarization of meetings data,” in
ICASSP’ 06, Toulouse, France, May 2006.

[10] NIST rich transcription evaluations,  website:
http://www.nist.gov/speech/tests/rt.

[11] A. Stolcke, X. Anguera, K. Boakye, O. Cetin, F. Grezl,
A. Janin, A. Mandal, B. Peskin, C. Wooters, and J. Zheng,
“Further progress in meeting recognition: The icsi-sri
spring 2005 speech-to-text evaluation system,’Rich
Transcription 2005 Spring Meeting Recognition Evalua-
tion, Edinburgh, Great Brittain, July 2005.



