
Appscio: A Software Environment for Semantic Multimedia Analysis

Gerald Friedland1,2 Eden Hensley1 Ramesh Jain1,3 Jerry Schumacher1

1Appscio Inc, 80 Airport Boulevard Street, Ste. 206a, Freedom, CA 95019
2International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704

3Bren School of Information and Computer Science, University of California, Irvine, CA 92697
{gfriedland,ehensley,rjain,jschumacher}@appscio.com

Abstract

The goal of the Appscio(tm) software platform is to
ease the creation of multimedia content analysis
applications that consist of components provided from
multiple sources, in different programming languages,
and for various operating systems. Appscio provides a
unified approach that standardizes the entire process of
development, deployment, and integration of
components into productive applications. In addition,
the aim is to facilitate the integration of analytic
approaches with traditional sensor output. Therefore
the framework allows the combination of multimedia
analytics with any other event generating sources, as
used for observational systems. A basic concept of the
platform is to allow mainstream application developers
to create semantic-rich web applications that integrate
components previously only accessible to scientists.

1. Introduction

In recent years, artificial intelligence and signal
processing research has developed a large amount of
algorithms and methods to analyze the semantics of
signals originally encoded for direct human perception,
e.g. images or sound. Fields such as computer vision
and audio processing, although still active research
fields, start to produce more and more mature
algorithms that are of potential use in products.
Unfortunately, the integration of research results into
larger real-world applications is often hindered because
of the lack of a common platform that is able to
integrate research components in an efficient way. As a
result, the software engineering quality of research
components is often very low. Therefore prototype
systems are many times ad-hoc solutions that are
difficult to reuse for anybody else but its original
creator. In the end, many components have to be re-
invented over and over again and still never end up in a
real production environment.
 Although the extraction of meaning from multimedia
content of various types is an active field of research in
a large number of institutions, multimedia is often

regarded a synonym for audio and video. In the
philosophy of the Appscio framework, multimedia
includes not only video, audio, and related metadata,
but any other source of sensory information that can
help accomplish a certain task. This particularly
includes the use of traditional sensors, such as RFID
tags or light sensors. The combination of traditional
sensors can sometimes provide the right amount of
context information that is needed achieve production-
level robustness of audio and/or video analysis
approaches.
 The following article presents the architecture
concept of the Appscio platform and provides a usage
example. Section 2 starts with the discussion of related
work. Section 3 summarizes the requirements for a
multimedia content analysis framework in contrast to
the framework presented in Section 2. Section 4
provides an overview of the architecture before
Sections 5 and 6 continue with a more detailed
description and Section 7 discusses a usage example.
Section 8 concludes the article with references to
further documentation.

2. Related Work

The need to create standardized interfaces for
multimedia streaming is widely accepted and several
solutions exist. Current multimedia software
frameworks such as Sun’s Java Media Framework,
Microsoft Direct X, Apple Quicktime, Real Networks’
Helix DNA, GStreamer, Phonon, Gegl, xine, and
ffmpeg are perfectly suited for the integration of
stream processing components from different
development sources. However, their primary purpose
is the composition of plugins for audio and video
recording, playback, and network transmission. The
presented frameworks mainly focus on the integration
of components on a software engineering level, i.e. the
composition is performed by software developers,
often people who develop individual components.
Additionally, the amount of concepts that have to be
understood in order to implement a certain component
usually forms a large entry-barrier and prevents many

The IEEE International Conference on Semantic Computing

978-0-7695-3279-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSC.2008.56

465

The IEEE International Conference on Semantic Computing

978-0-7695-3279-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSC.2008.56

456

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 07,2010 at 21:29:44 UTC from IEEE Xplore. Restrictions apply.

researchers from adapting their prototypes into a
certain framework. Rather than targeting the
integration of different signal processing algorithms,
these framework were originally designed to facilitate
cooperation with different hardware devices. For this
reason, some of the frameworks are closely tied to the
underlying operating system, which results in them
being platform-dependent. Most importantly, semantic
video analysis, has additional requirements that are not
fulfilled by traditional multimedia frameworks. As a
consequence, implementing machine learning
techniques in these frameworks becomes a
cumbersome task.

3. Requirements for a Content Analysis
Framework

Many of the tasks performed by traditional multimedia
frameworks, such as transcoding of formats, or random
positioning in streams are also needed for multimedia
analytics. For this reason, the analytic part of the
Appscio framework is built on top of a popular open-
source streaming framework, namely GStreamer (see
Section 5). Semantic analysis of multimedia content,
however, has additional requirements that are imposed
by the algorithms that are currently in use.
 Multimedia streaming frameworks do not contain
standard feature extraction components or machine
learning modules, such as Neural Networks or Support
Vector Machines. A content analysis framework has to
be able to process data offline as many semantic
computing algorithms are not able to handle data in
chunks. The integration of these algorithms requires
more than a linear pipeline as sometimes data has to be
passed back and forth between processing steps. The
communication between modules consists of more than
single stream of audio and/or video data in the form of
byte arrays. Rather, events must be passed between the
different steps of analytics. The metadata created by
the algorithms must be interpreted by all relevant
components, especially during the playback and
persistent storage of a stream.
 In order to be suitable as an experimental
environment, right from the beginning of a first
experiment, technical requirements include the cross-
language portability and the ability of the framework to
run in user space.

4. Architecture Overview

The following sections provide an architecture-level
overview of the Appscio platform which incorporates
the concepts discussed in the previous sections.

The Appscio platform provides mainly two different
views: A developer interface is provided for different

programming languages (such as C or Java) and an
application-integrator view is provided through both a
typical web-development interface and an integrated
development environment.

Figure 1 is a diagram of the overall architecture of
the Appscio Platform. The Pipeline Framework is
mainly accessed by component developers. Video and
audio signals may be processed and analyzed by
components inside the pipeline to extract information
and generate appropriate events. Events can be
generated by all kinds of different sources, e.g. sensor
output or output of semantic computing algorithms.
They are passed to the server via a web-services call.

The Application Server processes incoming events
from different sources. The server can be programmed
using different web-technology interfaces and using a
web-integrated development environment. It can
interface with various web services, such as e-mail.

The following sections describe the two main
components in a higher level of detail.

5. Pipeline Framework

The Appscio Pipeline Framework is a core component
of the platform. It provides a standard interface for
audio and video analysis components. While the
Pipeline Framework builds a layer on top of
GStreamer, it abstracts many details of the original
streaming framework. In fact, the layer is built such

Custom Event

Source 1

Custom Event

Source 2

Custom Event

Source n

.

.

.

C/C++/Java

Interface

Pipeline Framework

Video Application Server

Scripting & Logic Engine

Web Technology

Interface

Events

Integrated

Development

Environment

Services Connector

Code

Figure 1. Conceptual Overview of the Appscio
Platform

466457

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 07,2010 at 21:29:44 UTC from IEEE Xplore. Restrictions apply.

that it could be on top of any similar platform. This
way, the Appscio Pipeline Framework not only
facilitates the development of components, but it also
extends the framework's scope from a recording-
transmission-playback interface to a mixed-sensor
analytics standard. Figure 2 provides a diagrammatic
overview of the Pipeline Framework.
 GStreamer provides a generic framework to build
processing chains of video and audio processing
components. It provides a standard interface to support
and synchronize different formats and devices. Data
between graph nodes is exchanged via memory
buffers. This provides a lightweight and efficient way
of communication. Therefore it builds a widely
accepted base for many different media recording,
playback and/or transmission applications.
 The Appscio Pipeline Framework Host inserts itself
as a graph node into the GStreamer framework. A
multimedia application can either read from a file or
from a device. Application developers can either rely
on existing device drivers and file readers or may
create their own. Processing and analysis is mainly
performed in filter components. Stream formats
between different components are defined using
variable types. The Appscio Pipeline Framework takes
care of any format synchronization issues by relying on
GStreamer. Individual components are configured
using properties.
 The Appscio Pipeline Framework can be instructed
to record the stream to a file. A central feature of the
Appscio Pipeline Framework is the support of
asynchronous recording and processing requests.
Asynchronous requests allow to record and/or process
portions of the stream independently of the current
stream position. That means the processing time-

GStreamer

Source Recorder

User

Component 1

User

Component 2

User

Component n

Appscio

.

.

.

File

Device

Driver

Figure 2. Conceptual overview of the Pipeline.
The Pipeline is a layer on top of GStreamer

abstracting away its details while extending is
functionality for multimedia analysis

interval may start in the past and/or end in the future.
This allows a processed logging of past and/or future
content as an immediate reaction to an event. For
example, if an analysis algorithm detects a “stolen
purse” event, the recording of the video stream should
start a couple of seconds back in time. In order for this
to work, each asynchronous request is internally
assigned an individual pipeline with filter components
and a recording sink. A buffer with configurable length
is used to cache the stream in order to access past
stream positions.

6. Application Server

The Appscio Application Server is the central instance
to control pipeline execution and maintain system
configuration and state. It is controlled through
different interfaces. A web development interface
provides control through Javascript and PHP. Events
may be subscribed through JEXL. Multimedia content
can be stored persistently through the Application
Server Database, which is basically an RDF store. This
content and all metadata may be accessed through
SPARQL, which returns URLs pointing to the
resources. The Application Server can be accessed by
an Integrated Development environment which enables
most of the programmatic functionality to be
performed through a mouse-driven interface. The IDE
provides means to create and edit pipelines through
drag and drop as well as subscribing to events and to
create scripts to handle them.

7. Example Scenario

The following scenario provides a typical use case
for the Appscio platform.

7.1. Scenario

A retail store wants to make sure, that people only exit
after going through the cashier line and use the
entrance only for going into the building. Due to a
difficult architectural situation, the entry of the retail
store is not clearly visible for the cashiers and other
staff working at the market. Therefore they use a dual
photo barrier to make an alarm sound whenever people
try to exit the market though the entrance. For disabled
people, however, exiting through the entry would be
much easier. In addition, during the last moths the store
manager recorded an increase of stolen goods and the
detective reports more cases on persons trying to exit
through the entrance by circumventing the photo
barrier.

467458

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 07,2010 at 21:29:44 UTC from IEEE Xplore. Restrictions apply.

7.2. System Design

This problem can be solved by the following system:
A camera is installed in addition to photo barrier. A
vision system analyzes the camera picture to detect
activity in the area and to figure out the direction of the
movement of the activity. A support vector machine is
used to classify the moving video blobs into either
walking persons or wheel-chair persons. The goal is to
fire-off an alarm if, and only if, a non-wheel chair
persons tries to exit the store. This means, even if the
photo barrier is detecting an exiting person, the alarm
should not sound. If the photo barrier is not detecting
anything, the vision system might catch an illegal exit
attempt. Additionally, any illegal attempts should be
recorded after the system has detected a possible fraud.
 Currently, vision systems are not accurate enough
to provide an absolutely exact means to detect possible
frauds in this scenario. As observed in many cases,
simple photo barriers are accurate but can be easily
circumvented. Therefore it makes perfect sense to
combine two systems in order increase the fraud
detection rate.

7.3. Implementation in the Framework

Figure 3 illustrates the implementation of the example
application into the Appscio platform. The above
mentioned photo sensors are connected to a computer
that converts the binary information collected by them
into events that are sent to the Appscio Application
Servers. The vision system consists of a set of Appscio

components that are controlled and executed inside the
analytical pipeline. The output of the pipeline also
consists of events that are sent to the server. The
Application Server is programmed to handle the events
from the sensors and the vision. The configuration and
maintenance of the system is performed through web
pages in the Intranet of the store, internally controlled
by the Appscio Application Server web interface. If a
possible fraud is detected, an asynchronous recording
request is triggered to store the last couple of minutes
of the captured video in the Application Server's RDF
store, for possible later review by law enforcement.
Instead of triggering an awfully loud siren, the web
services interface of the Application Server is used to
send an e-mail to the mobile phone of the current shop
detective, who may silently choose to help a disabled
person that caused a false-alarm in the vision system.

8. Conclusion

Semantic multimedia analysis involves the use of
domain specific algorithms and combining them in an
engine that facilitates the interpretation of the derived
information in relation to the problem's domain
knowledge. This article presented the concepts of the
Appscio multimedia analytics platform which is guided
by the idea of semantic multimedia analysis. The
framework, currently under development, will be
released open source, enabling organic development of
the community of researchers and users. The hope is
that contributors will help to make the platform a
valuable and productive part of the semantic
computing community. For further information visit
the website: http://www.appscio.com.

SERVICES

Application Server
W
e
b

I
n
t
e
r
f
a
c
e

Photo Sensors

Camera Video

Recorder

Metadata

Store

Pipeline

Analytics Script Transcode

Events

Analytic Events

Event

Processing

Script

Admin &

Configuration

through Web

Video

Storage

&

Retrieval

Meta

Data

Mgmt

E-Mail to

Phone

Figure 3. The example described in Section 7 as concrete implementation in the Appscio platform.

468459

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 07,2010 at 21:29:44 UTC from IEEE Xplore. Restrictions apply.

