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Abstract

The most prevalent representation for text classification is
the bag-of-words vector. A number of approaches have
sought to replace or augment the bag-of-words representa-
tion with more complex features, such as bigrams or part-
of-speech tags, but the results have been mixed at best. We
hypothesize that a reason why integrating bigrams did not
appear to help text classification is that the new features
were not adequately examined for redundancy, i.e. the new
feature can be relevant by itself but irrelevant when con-
sidered jointly with other features. Searching for optimal
feature subsets in the combined space of unigrams and bi-
grams is prohibitively expensive given that the vocabulary
size is in the order of tens of thousands. In this work we
propose a measure that evaluates the redundancy of a bi-
gram based only on its unigrams. This approach although
suboptimal, since it does not consider interactions between
different bigrams or different unigrams, is very fast and tar-
gets a main source of bigram redundancy. We apply our fea-
ture augmentation measure in three text corpora; the Fisher
corpus, a collection of telephone conversations; the 20News-
groups corpus, a collection of postings to electronic forums;
and the WebKB corpus, a collection of web pages. We use
Naive Bayes and Support Vector Machines as the learning
methods and show consistent gains.

Keywords: Text categorization, Bigrams, 20Newsgroups,
WebKB, Fisher

1 Introduction

Text classification is an important instance of the clas-
sification problem with unique challenges and require-
ments. The objective is to classify a segment of text,
e.g. a document or a news article, to one (or more) of
C possible classes. A number of D tuples (Z4,yq) are
presented for training where Ty is the vector represen-
tation of the d-th document and y4 is a scalar (or set)
that indicates the class(es) of the d-th document.

A major challenge of the text classification problem
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is the representation of a document. The simplest and
almost universally used approach is the bag-of-words
representation, where the document is represented with
a vector of the word counts that appear in it. Depending
on the classification method, the bag-of-words vector
can be normalized to unity and scaled so that common
words are less important than rare words, such as in the
tf-idf representation.

Despite the simplicity of such a representation,
classification methods that use the bag-of-words feature
space often achieve high performance. Over the past,
a number of attempts have been made to augment or
substitute the bag-of-words representation with richer
features. In [12, 4] linguistic phrases, proper names and
complex nominals are used and in [20, 16] bigrams are
added to the feature space. In [15] character n-grams
are used for text classification. A recent comprehensive
study [14] surveys the different approaches that have
been taken thus far and evaluates them in standard text
classification resources. The conclusion is that more
complex features do not offer any gain when combined
with state-of-the-art learning methods, such as Support
Vector Machines (SVM).

We argue that a reason past approaches have failed
to show improvements is that they have looked only at
the relevance of the new features and not redundancy.
The issues of relevance and redundancy are both central
to the choice of optimum feature subset selection [9, 21].
Relevance is the degree to which a feature is useful for
classification by itself, and redundancy is the degree to
which a feature is correlated with other features. If a
feature has high relevance but is also strongly correlated
with other equally or more relevant features, adding it
to the feature subset can actually hurt classification per-
formance in the typical situation when training is lim-
ited. When constructing more complex representations,
the number of potential features can increase exponen-
tially. For example, using bigrams increases the vector
dimension from V to V2, where V is the vocabulary
size. With so many features, care must be taken to in-
clude not simply those that are relevant by themselves
but only those that are jointly relevant with the rest of
the features.



A major problem with determining redundancy is
the amount of computations needed. Algorithms such as
[9, 11] are of order O(T?) where T is the original number
of features. Adding bigrams as potential features makes
such an approach impractical, since T =V + V2 and V
is usually on the order of tens of thousands. Even ap-
proaches such as [21] with less than quadratic require-
ments can pose overwhelming computational burdens.
In this work, we propose a filter approach to feature
selection that determines the redundancy of a bigram
based on its unigrams. Although this approach is not
optimum, meaning that only a portion of possible fea-
ture combinations are examined for redundancy, it is
shown that it can offer gains in challenging text classi-
fication tasks and that it scales efficiently with vocab-
ulary size and order of word sequences. Performance
is not the only reason bigrams are a suitable target for
augmenting the feature space. Another important rea-
son is interpretation. A common way to interpret and
describe the topics present is to output the top-N dis-
criminative features. Adding bigrams to the list can
offer a more natural interpretation, although we have
no formal way of measuring this.

2 Adding relevant and non-redundant bigrams

There are two main approaches to the problem of fea-
ture selection for supervised learning. The filter ap-
proach [7] and the wrapper approach [8]. The filter ap-
proach scores features independently of the classifier,
while the wrapper approach jointly computes the clas-
sifier and the subset of features. A third approach, of-
ten called embedded [5], combines the two approaches
into one by embedding a filter feature selection method
into the process of classifier training, rather than treat-
ing the classifier as a black box. While the wrapper
approach is arguably the optimum approach, for appli-
cations such as text classification where the number of
features ranges from dozens to hundreds of thousands
it can be prohibitively expensive.

We followed a filter approach to feature selection,
and we implemented information gain (IG) since it has
been shown before [3] that is one of the best performing
methods. The IG measure is given by:

(21) IGy =—-H(C) +p(w)H(Clw) + p(w)H(C|w)
where H(C) = chzlp(c) log p(c) denotes the entropy
of the discrete topic category random variable C. Each
document is represented with the Bernoulli model, i.e.
a vector of 1 or 0 depending if the word appears or not
in the document.

We have also implemented another filter feature
selection mechanism, the KL-divergence, which is given

by:

C
(22) KLy = Dlp(clw)[[p(c)] = Y _ plclw) log

c=1

plcw)
p(c)

In the KL-divergence we have used the multinomial
model, i.e. each document is represented as a vector of
word counts. We smoothed the word-topic distributions
by assuming that every word in the vocabulary is
observed at least 10 times for each topic. All words
in the vocabulary are ranked according to KL, the
higher the KL score the more topic-specific the word
is. KL outperformed IG, in all three corpora used and
thus experiments reported here are carried out with KL
only.!

A problem with measures such as IG and KL is
that they do not consider the interactions of features,
rather they evaluate each feature independently. There-
fore, they have no way of dealing with redundancy.
To compensate for that we define the new measure
Redundancy-Compensated KL (RCKL) as:

(2.3) RCKL,,

= .Z:{Lw7 — KLU)i — KLwiH

i+1 Wi+1

Therefore, if a bigram is highly relevant, i.e. K Lw;w;41
is high, but its unigrams are also highly relevant it will
be less likely to get added. In words, equation (2.3)
can be described as How much more topic information
can w;wi+1 give us compared to its unigrams? To
illustrate the basic idea consider some examples from
one of our data sets. For the topic trials, the words
commit and perjury are deemed to be important for
classification. The bigram commit perjury, although
being by itself very much relevant, does not add further
information than the words commit and perjury. As
another example, the bigram a holiday is redundant
given that the word holiday is already included in the
feature subset. Examples of relevant and non-redundant
bigrams would be big brother for the topic reality shows,
or second hand for the topic smoking.

3 Experiments

3.1 Description of corpora used We conducted
experiments on three large corpora. The first is the
Fisher corpus [1] a collection of 5-minute telephone con-
versations on a predetermined topic. The topic was se-
lected from a list of 40 before the start of the conver-
sation. After eliminating conversations where at least
one of the speakers was non-native or the participants
T TA

measure similar to (2.2) has been suggested in [17]. Al-

though we have not seen an exact mention of (2.2) in the litera-
ture, we view this as being variation on a theme and not the main
contribution of this paper.



did not follow closely the topic, we were left with 10127
conversations or 20254 conversation sides. There were
about 15M words in the collection and conversation
sides were unequally divided among the 40 topics. The
median number of sides per topic was 478 with a stan-
dard deviation of 202 (max 1018, min 198). Only words
with 5 or more occurrences were kept, leading to a vo-
cabulary of 23236 words. The Fisher corpus was cre-
ated to facilitate speech recognition research and, to the
best of our knowledge, it has not been used before for
text classification. The Fisher corpus brings interesting
new challenges to the problem of text classification. It
bears the same core characteristics of text classification,
such as a very high dimensional space, but unlike other
corpora such as Reuters-21578 or 20Newsgroups it con-
sists of transcripts of spoken language. The language
is less structured and more spontaneous than written
text, including disfluencies such as repetitions, restarts
and deletions both at the word and above-word level.
An additional difficulty stems from the fact that 14% of
words in spoken language text are pronouns vs. 2% in
written text [18]. Since pronouns substitute for nouns
or noun phrases that are generally considered to con-
vey semantic information, they may have a negative im-
pact on clustering or classification performance. On the
other hand, the vocabulary is about half the size of a
comparable corpus of written text. Also, conversation
classification involves first converting speech into text,
which is a procedure that generates errors (state-of-the-
art systems achieve a word error rate of about 15%-20%
[19]). In this paper we have not dealt with the issue of
errorful transcriptions, i.e. the input to the classifica-
tion algorithms is the human-transcribed conversations.
Classifying conversations by topic can be important in
a number of scenarios, such as summarizing business
meetings or analyzing customer service call-centers.

The second corpus is 20Newsgroups [10], a collec-
tion of 18827 postings to electronic discussion forums or
newsgroups. There are 20 different classes in 20News-
groups and the corpus is almost perfectly balanced, i.e.
equal number of postings per newsgroup. Preprocess-
ing consisted of converting all numbers to a single token
and removing the From: field. Words with 5 or more oc-
currences were kept, resulting in a vocabulary of 34658
words.

The third corpus is a common subset of WebKB
[2]. WebKB is a collection of html pages from different
categories. In this work we selected 4 classes (faculty,
student, project, course) of 4199 pages in total. This is
a subset that has been used before [11]. Standard pre-
processing was followed, such as keeping only the text of
each web page and ignoring hyperlinks and headers and
converting numbers to special tokens. The vocabulary

of words with 2 or more occurrences consisted of 26087
words.

All three of the corpora are examples of single-label
collections, i.e. each document is associated with a
single class. A more general setting is a multi-label
corpus where a document is associated with a set of
classes, not necessarily of fixed length. Examples of
multi-label corpora are Reuters-21758 and OHSUMED.
Training multi-label classifiers was not investigated in
this work.

3.2 Learning methods and evaluation measures
Two learning methods were used throughout our exper-
iments: Naive Bayes [13] and Support Vector Machines
(SVM) [6]. The two methods are the most common used
for text classification, with Naive Bayes representing
a standard baseline and SVM being the state-of-the-
art method in text classification. Since our feature
augmentation method is a filter approach, we would
like to investigate how it performs for more than one
classifier. For Naive Bayes we used the Rainbow toolkit
(http://www-2.cs.cmu.edu/mecallum/bow/rainbow/).
For SVM we wused the SVMlLight toolkit
(http://svmlight.joachims.org/). Since SVM are
inherently binary classifiers and SVMLight does not
have implemented multi-class approaches to classi-
fication, we used the one-vs-one approach. In the
one-vs-one approach, given a C-category classification
problem, C'#(C —1)/2 binary classifiers are constructed
for every pair of classes. For each pair {i,j} a function
H; (cf) is estimated, where d is the vector representation
of document d. During testing, if H”(ci) > 0 then
votes(i) = wvotes(i) + 1 else votes(j) = wvotes(j) + 1.
Document d is assigned to the class with the maximum
number of votes ¢ = argmax;votes(i). SVM require
much larger computational resources than Naive Bayes,
although both can be run in parallel on multiple
machines. For Naive Bayes, the feature counts were
used as input, while for SVM the tf-idf measure was
used. Applying tf-idf or other normalization schemes
does not apply in Naive Bayes, since the model assumes
a discrete generation mechanism.

Since we operate in a single-label setting, the class
with the highest likelihood (for Naive Bayes) or number
of votes (for SVM) was selected as output. Classification
accuracy was used as the evaluation measure. Micro-F,
which is a common evaluation measure in text classi-
fication, does not apply in this case since classification
accuracy and micro-F are identical for the single-label
case.

3.3 Results In all our experiments we used 10 ran-
dom 80/20 train/test splits and averaged the classifi-



94

92

90

Accuracy
©
©

86

*- % Adding 10K bigrams

84

& Not adding bigrams

82 I I I I )
0 0.5 1 1.5 2 2.5

Number of unigrams x10*

Figure 1: Naive Bayes performance with and without
adding bigrams on the Fisher corpus.

cation accuracies over all splits. In Table 1 we see the
performance of both learning methods, Naive Bayes and
SVM, for a varying number of unigrams selected accord-
ing to (2.2) and bigrams selected according to (2.3). We
avoided making a decision on the number of unigrams
and bigrams because we wanted to observe the perfor-
mance of the feature augmentation method for a range
of possible features. In addition, it is not always clear
what criterion we should use to select the optimum num-
ber of features. One choice could be the highest classifi-
cation accuracy on a held-out set. Another choice could
be the ratio of classification accuracy and number of fea-
tures, so that we prefer classifiers with low numbers of
features. From Table 1 we see a clear gain from adding
bigrams for both Naive Bayes and SVM. Table 1 also
reveals a smooth accuracy variation for different num-
ber of bigrams, therefore having an automatic method
for determining the number of bigrams should not be
radically different from the optimum case. In Figures
1, 2 we plot four columns of Table 1 with the associ-
ated standard deviations to show the difference between
unigrams-only and mix of unigrams and bigrams. In
Table 2 we see the performance of using bigrams-only.
We observe that it is the combination of unigrams and
bigrams that achieves the highest accuracy rather than
unigrams-only or bigrams-only representations. In addi-
tion, from Table 1 we can see that by using 1K unigrams
and 1K bigrams we achieve the same performance as 7K
unigrams or 5K bigrams with Naive Bayes. This can be
important when we want the most compact model for
the fastest calculation and the smallest memory or disk
footprint.
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Figure 2: SVM performance with and without adding
bigrams on the Fisher corpus.

In Table 3 we see the performance of the fea-
ture augmentation method on the 20Newsgroups cor-
pus. This corpus is qualitatively different than Fisher.
Some of the documents are very small (42 with 5 or less
words and 93 with 10 or less words) and the vocabulary
is much bigger than Fisher’s (34658 vs. 23286). Ap-
plying feature selection on unigrams resulted in a slight
increase of classification accuracy for up to 30K features
and then a constant degradation of performance. The
degradation was even worse if IG was used as the fea-
ture selection method. In such a task where feature
selection does not appear to be important, Naive Bayes
did not benefit from augmenting its feature space with
bigrams. Performance did not degrade either, which
shows that the added features are relevant, given the
sensitivity that Naive Bayes has to high-dimensional
spaces. SVM gets a small boost of performance by in-
tegrating bigrams in the feature space. Using bigrams
only did not provide a superior alternative either, as it
is shown in Table 4.

In Table 5 we see the performance of the feature
augmentation method on the WebKB corpus. Here
feature selection appears to be more important than in
20Newsgroups for both Naive Bayes and SVM, even if
the vocabulary is much smaller. Adding bigrams offers
gains for both Naive Bayes and SVM. In Table 6 we
see the performance using bigrams only. Naive Bayes
achieves better results than using unigrams only but
SVM performance is about the same. Overall, the best
text classification accuracy for WebKB is obtained by
augmenting the bag-of-words space with bigrams, from
91.62 to 93.02 with standard deviation being for both



Table 1: 10-fold cross validation mean accuracies using a mix of unigrams and bigrams on the Fisher corpus.
Bigrams are selected according to (2.3). Standard deviations are in 0.2-0.4 range. Horizontal axis is bigrams,
vertical unigrams.

0 05K 1K 3K 5K 10K 20K 90K

23286 NB 86.64 8791 87.97 88.21 88.41 88.67 88.61 84.02
SVM 90.84 91.33 91.28 91.87 91.38 91.22 91.53 90.61
20K NB 88.55 89.25 89.31 89.95 90.25 90.27 90.12 84.62
SVM 91.01 9154 91.25 91.53 92.11 91.86 91.85 90.83
15K NB 89.15 90.00 90.11 90.52 90.70 90.86 90.75 85.07
SVM 91.07 91.19 91.76 91.83 92.18 91.76 91.48 90.39
10K NB 89.31 90.09 90.46 90.53 91.07 91.18 91.38 85.08
SVM 90.87 91.52 9140 91.72 92.02 91.61 9148 90.81
7K NB 89.67 90.38 90.67 9091 91.14 9142 91.30 85.07
SVM 90.61 91.33 91.35 9143 91.94 91.76 91.73 90.73
5K NB 89.49 90.57 90.70 91.10 91.34 9149 9146 85.15
SVM 90.26 90.86 91.24 91.39 91.67 91.72 91.60 90.30
3K NB 88.71 90.34 90.75 90.97 91.26 91.51 9145 84.55
SVM 89.32 90.50 91.11 9149 9144 91.65 91.52 90.21
2K NB 87.28 90.16 90.46 90.97 91.38 91.88 91.64 84.29
SVM 87.63 90.17 90.23 90.93 9140 91.58 91.48 90.00
1K NB 83.16 88.94 89.87 90.62 91.02 91.30 9147 83.58
SVM 80.96 88.90 89.44 90.57 90.95 90.78 90.11 89.88

Table 2: 10-fold cross validation mean accuracies using only bigrams on the Fisher corpus. Bigrams are ranked
according to K Lw;w; 1. Standard deviations are in the range 0.2-0.4

1K 5K 10K 20K 50K 100K 150K 230K
NB 85.69 89.00 89.91 90.63 90.71 89.61 87.35 73.60
SVM 80.01 88.25 89.75 90.42 91.02 90.19 90.11 90.23
0.81. methods. Key to the new representation is that the

In Table 7 a summary of the results is shown. The
highest classification accuracies using each one of the
three feature construction methods are shown. It should
be noted that in practice a scheme to automatically
estimate the number of features should be applied.
Table 7 shows that 5 out of 6 times the augmented
space is better than the bag-of-words space and 5 out
of 6 times better than the bigrams-only space. In no
occasion was the augmented space worse than either of
the representations on all three corpora and learning
methods and for the SVM method (which gave the
best results) the augmented space is always better than
either individual space.

4 Discussion

In this work, we have shown that incorporating selected
bigrams offers improvements over the bag-of-words rep-
resentation, across a variety of corpora and learning

added bigrams are compensated for redundancy. A bi-
gram is added according to how much more information
it brings compared to its unigrams. Therefore, bigrams
such as a holiday, the holiday will not be preferred given
that holiday is already in the feature set. This work
may help dismiss the myth that more complex repre-
sentations do not help text classification. The implicit
assumption was that the bag-of-words representation
captures enough of topic information and more complex
representations are hard to model, since they consider-
ably increase the dimensionality of the feature space.
Moreover, previous attempts to use more complex fea-
tures were not successful. As a result of this fallacy, re-
search in text classification has mostly focused on learn-
ing methods and not on vector representations. The
suggested method, although suboptimal since it does
not check for redundancy for all pairs of bigrams and
unigrams, offers some evidence that design of feature



Table 3: 10-fold cross validation mean accuracies using a mix of unigrams and bigrams on the 20Newsgroups
corpus. Bigrams are selected according to (2.3). Standard deviations are in 0.2-0.4 range. Horizontal axis is

bigrams, vertical unigrams.

0 05K 1K 5K 10K 20K 50K

34658 NB 89.16 89.20 89.14 89.31 89.52 89.41 89.52
SVM 90.13 90.84 90.93 90.86 91.02 91.13 91.08

30K NB 89.72 88.98 89.36 89.70 89.70 89.34 89.52
SVM 90.73 90.81 91.14 91.06 91.24 91.27 90.84

25K NB 89.34 89.40 89.47 89.41 89.67 89.42 89.39
SVM 91.04 90.93 91.08 91.05 91.50 91.26 91.21

20K NB 89.02 88.85 89.08 89.38 89.92 89.67 89.50
SVM 90.49 91.02 91.02 91.20 91.51 91.38 90.95

15K NB 88.66 88.25 88.41 89.06 89.54 89.30 89.05
SVM 90.35 90.37 90.73 90.63 91.42 90.87 90.81

10K NB 87.73 8744 88.01 88.45 89.15 88.86 89.11
SVM 89.23 89.96 90.13 9040 90.66 90.55 90.34

5K NB 85.67 85.96 85.98 87.04 87.72 87.58 88.11
SVM 8230 83.05 86.77 89.13 89.79 89.81 89.77

Table 4: 10-fold cross validation mean accuracies using only bigrams on the 20Newsgroups corpus. Bigrams are
ranked according to K Lw;w;1. Standard deviations are in the range 0.2-0.4.

5K 10K 15K 20K 30K 50K 100K 135K
NB 80.14 82.08 83.39 84.23 8542 86.64 87.14 86.14
SVM N/A N/A 7560 81.17 85.03 86.66 87.30 86.75

spaces can be more important than previously consid-
ered.

It would be interesting to connect the suggested cri-
terion with the model selection literature. In our work
we used an ad-hoc way for identifying non-redundant
bigrams. Is there an “optimal” compensation term that
could be added when considering the redundancy of a
bigram, as in the Bayesian Information Criterion (BIC)
or Akaike Information Criterion (AIC)? This formula-
tion may help extend this criterion in a natural way to
higher order n-grams.
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Table 7: Summary results from all corpora. The best accuracies for each feature construction method are shown.
Student’s t-test is performed to assess the significance of difference. The last two symbols show if the performance
of the augmented representation is statistically different than the unigrams-only and bigrams-only representation
respectively at the confidence level of 0.95. A (4) symbol means that the augmented representation is better and
a (=) symbol means that the difference is not significant.

Only Only Mix of
l-grams 2-grams 1-grams, 2-grams
Fisher NB 89.67 90.71 91.88 (+) +)
SVM 91.07 91.02 92.18 (+) (+)
20Newsgroups NB 89.72 87.14 89.92 (=) (+)
SVM  91.04 87.30 91.51 (+)  (+)
WebKB NB 87.25 90.39 90.28 (+) (=)
SVM 91.42 91.62 93.02 (+) +)




