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ABSTRACT 

 
The goal of this work was to explore modeling techniques to 

improve bird species classification from audio samples. We first 

developed an unsupervised approach to obtain approximate note 

models from acoustic features. From these note models we created 

a bird species recognition system by leveraging a phone n-gram 

statistical model developed for speaker recognition applications. 

We found competitive performance from the note n-gram system 

compared to a Gaussian mixture model baseline using the same 

acoustic features. We found an important gain by doing score-level 

combination relative to the best individual system results. We 

verified that on most of the bird species under study there was a 

gain from system combination. 

Index Terms— Bird species recognition, phone n-gram 

modeling, Gaussian mixture model. 

 

1. INTRODUCTION 
 

In this work we aim at bird species recognition based only on 

bird song audio samples. First some bird song definitions: song 

syllables are the units that help discriminate bird species. Syllables 

are composed of notes or elements [1]. A note is a unit of acoustic 

realization similar to a phone in acoustic modeling of speech. 

Authors like Härmä [2] have approached the problem of bird 

species identification by using a specific model of bird song 

syllables. In [3], Härmä and Somervuo extended this work by 

using harmonic structure. In [4], Somervuo and Härmä employed a 

song-level modeling approach using syllable pair histograms. 

Recently, Somervuo et al. [5] compared three feature 

representations of bird sounds for automatic bird species 

recognition. In [6], Kwan et al. explored Gaussian mixture models 

(GMMs) and hidden Markov models (HMMs) of acoustic features 

with the goal of bird species classification to reduce bird strikes to 

airplanes in airports.  

Some of the publications above use hand labeled syllable and 

note segments. However to the best of our knowledge there is no 

public database with note or syllable markings that covers a broad 

range of bird species. We addressed this problem by using 

unsupervised techniques to obtain note models from a big set of 

bird species. 

The goal of this work is to do bird species recognition based 

on modeling note sequences. The sequence modeling is based on 

the phone n-gram statistical model [7] developed for speaker 

recognition. Instead of defining syllables based on note sequences 

we directly created bird species models from note sequence 

statistics. We additionally explore score level system combination 

with an acoustic feature GMM bird species model. 

 

2. BIRD SONG DATA 

 
In our experiments we used the following publicly available 

collections of bird song data:  

 

 Macaulay Library of Natural Sounds, Bird Songs of 

California, Cornell Laboratory of Ornithology, Geoffrey A. Keller, 

3-CD, 2003 

 Peterson Field Guides: Bird Songs: Western North America, A 

Field Guide to Western Bird Songs, Second Ed., Cornell 

Laboratory of Ornithology Interactive Audio, 1992 

 Peterson Field Guides: Bird Songs: Eastern and Central 

North America, A Field Guide to Bird Songs, Third Ed., Cornell 

Laboratory of Ornithology Interactive Audio, 1990 

 Common Bird Songs (Audio CD), by Donald J. Borror, Dover 

Publications, 2003 

 Common Birds and Their Songs (Book and Audio CD), by 

Lang Elliott and Marie Read, Houghton Mifflin, 1998 

 Stokes Field Guide to Bird Songs: Western Region (Audio 

CD), by Kevin Colver et al., Hachette Audio, 1999 

 
These CD collections contain bird song vocalizations from 

multiple bird species and were captured using different types of 

recording equipment. We extracted the bird vocalization segments 

in the waveforms from background signals using a simple voice 

activity detection system, with acoustic models trained with bird 

vocalization data. We additionally discarded very short calls.  

Additionally for experiments we used a database [8] of the 

Borror Laboratory of Bioacoustics (Borror Lab) at the Ohio State 

University. This database contains multiple high quality recordings 

bird song samples from nine different bird species (shown in Table 

4). The bird song waveforms were hand-segmented into distinct 

songs and labeled for the song type.  

 

3. UNSUPERVISED NOTE MODELING 

 
Our initial goal was to produce a set of acoustic note models from 

bird song waveforms. We approached the problem using 

unsupervised clustering techniques, since there is no formal 

definition of note boundaries nor is there a public database with 

note segmentations for different bird species.  

These are the steps to train the note models: 

1) Do vector quantization of the acoustic features 

2) Write cluster index alignments 

3) Train note models from step 2) alignments 

4) Write note model index alignments 

5) Train note models from step 4) alignments 
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The purpose of doing a two-pass approach is that the models 

trained in step 3) are better that the clusters trained in 1). The 

alignments produced should also be better.  

Note models are three-state HMMs, similar to speech phone 

models. For training we used data from the CD collection 

described in Section 2 which contains data from 93 bird species.  

Figures 1 through 3 present examples of the note model index 

alignments. Each figure comprises two graphs. The upper graph 

contains the bird song waveform for a given bird species, and the 

lower graph contains the note alignment for a note model with 60 

classes.  

 

 
Figure 1 – Bird Song Waveform (upper graph) and Note Model 

Indexes (bottom graph) for Chipping Sparrow Bird Species 

 

 
Figure 2 – Bird Song Waveform (upper graph) and Note Model 

Indexes (bottom graph) for Carolina Wren Bird Species 

 

 
Figure 3 – Bird Song Waveform (upper graph) and Note Model 

Indexes (bottom graph) for Song Sparrow Bird Species 

 

Figure 1 illustrates the waveform and note model indexes or 

alignments for the Chipping Sparrow bird species. As shown, the 

bird song comprises a repetitive sequence of syllables. The note 

model alignment somewhat follows the syllable patterns with 

similar note model index sequences. In Figure 2 for the Carolina 

Wren bird species, the note model index sequence again follows 

the syllable patterns, just like in Figure 1. However the note model 

indices from Figures 1 and 2 are different. Figure 3 is the Song 

Sparrow example. This bird species is known for having a very 

rich repertoire of different syllables. This example illustrates that 

the complex song comprises some repetitive sub-songs, and those 

sub-songs have repetitive note index sequences as well. 

Syllable units can be derived from note sequences. However, 

in this work we did not formally define syllable units. Rather, we 

computed statistics from note sequences, such as unigrams and 

bigrams. In some sense these statistics capture information similar 

to syllables, since if a note sequence is repeated often it will have a 

high probability in our model.  

 

4. NOTE N-GRAM SYSTEM 
 

Once the note models were obtained we used a probabilistic 

framework to create bird species models. We used the phone n-

gram system developed for speaker recognition and called it the 

note n-gram. The phone n-gram can model phone sequences in a 

discriminative framework using support vector machines (SVMs). 

The analogy is that notes in bird songs are the similar to phones in 

speech.  

The note n-gram model has several advantages over the 

GMM. First, it can model longer time dependencies than the 

GMM, which operates only at the frame level with some context 

information given by the deltas. In addition, the SVM provides a 

discriminative framework where each bird species model is trained 

to maximize the margin between the correct bird species samples 

and the impostors. Another advantage is the multiscale modeling 

provided by using unigrams, bigrams, and trigrams, which 

basically enables modeling at different lengths. Finally, it provides 

a framework to model short syllables without explicitly defining 

them. To train and test with the note n-gram model, we first 

compute the features for the train and test samples: 

1) Compute note-loop lattices from bird song waveforms 

2) Extract expected note n-gram statistics from lattices 

3) Normalize features (we used rank normalization) 

To build bird species-dependent models, we trained a bird 

species-specific model by training the SVM with correct bird 

species features and with negative features (from background 

model data). 

Finally, during testing we score the bird species SVM with 

features computed from the test sample. 

 

5. BIRD SPECIES RECOGNITION EXPERIMENTS 

 
We used a speaker verification paradigm in our experiments. For a 

given bird species model we used two types of testing data – one 

from other samples of the same bird species (called true trials) and 

the other using samples from other bird species (called impostor 

trials). In this paradigm the task is to make a decision on whether 

to accept or reject the trial sample as being from the same bird 

species as the sample in the training model. If an impostor trial is 

accepted, it is called a false acceptance error. If a true trial is 

rejected, it is called a false rejection error. The equal error rate 

(EER) is the point at which the percent of false acceptance errors 

and percent of false rejection errors are equal. Typically, the 

number of impostor trials is one or two orders of magnitude larger 

than the number of true trials. 

For training and testing experiments we used a database [8] of 

the Borror Laboratory of Bioacoustics (Borror Lab) at the Ohio 

State University. This database contains bird song samples from 

nine different bird species (see Table 4 below for the bird species). 

The bird song waveforms were hand-segmented into distinct songs 

and labeled for the song type.  

For note model training and background GMM training data 

we used data from the CD collection described in Section 2. We 

used data from 93 bird species and four bird song waveform 

samples per bird species. These recordings had varying sound 

quality. Some were clean, but some were noisier than the Borror 

Lab data. 



We report results using all songs (which involves testing and 

training with songs regardless of whether they are the same as or 

different from the songs used in training) for all nine bird species. 

They are called All Songs results. We called the case of training 

and testing with the same song type of a given bird species the 

Same Song case. Training and testing with a different song was 

called Different Song case. Only five bird species had different 

song types, the rest of the bird species produced a single song type. 

 

5.1. GMM Results 

 
A GMM system [9] was used to model mel frequency cepstral 

coefficient (MFCC) features computed on bird vocalization 

waveforms. The system is based on the GMM-UBM model 

paradigm, in which a bird species model is adapted from a 

universal background model (UBM). Maximum a posteriori 

(MAP) adaptation was used to derive a bird species model from the 

UBM. The GMM has either 1024 or 2048 Gaussian components. 

The front end uses utterance-level mean and variance 

normalization [7]. The parameters of the front end were the 

optimal parameters described in our earlier paper on this subject 

[10]. 

Table 1 shows the GMM system EER results for All, Same 

and Different song conditions for two different number of 

Gaussians.  

 
Table 1 – GMM Results 

System - 
# Gaussians 

EER % 

All 
Songs 

Same 
Song 

Diff 
Song 

GMM – 1024 Gaussians 17.5 14.1 19.7 

GMM – 2048 Gaussians 16.7 13.4 19.3 

We conclude from Table 1 that in the All Songs case there is a 

big EER reduction from using a bigger GMM. We also see that the 

EER of the Same Song case is lower than the EER of the Different 

Song case. Clearly, it is much more difficult to identify a bird 

species when the bird species model was trained and tested with 

Different Songs from the same bird species. However, comparing 

the EERs from the Same Song and from the Different Songs 

condition, it is clear that most of the gain comes from the Same 

Song case.  

 

5.2. Note n-Gram Results 

 
We trained the note models on the birdsong CD data described 

earlier. Several note models of different number of notes were 

trained. The acoustic features used to train the note models were 

the same as those used in the GMM modeling. 

We used a full n-gram vocabulary; that is, all possible note 

index combinations were used. 

Table 2 shows the EER results of the note n-gram system. We 

first explored the number of different notes. We present results 

comparing the use of unigrams, then unigram and bigrams, and 

finally unigrams, bigrams, and trigrams. Different statistics are 

combined by simply concatenating the normalized frequency 

vectors for each analysis level. Finally, we show results for all 

songs, same song, and different song condition. The best result is 

indicated in bold in each column. 

 

Table 2 – Note n-gram Results 

System - 
# Notes 
Models 

n-gram  
Orders 

EER % 

All 
Songs 

Same 
Song 

Diff 
Song 

Note n-gram  - 
10 Note Models  

1 21.9 17.2 24.3 

1+2 21.2 14.2 24.2 

1+2+3 19.9 13.0 23.3 

Note n-gram  - 
30 Note Models 

1 20.3 14.6 23.0 

1+2 17.5 12.8 20.0 

1+2+3 16.5 13.5 18.5 

Note n-gram - 
60 Note Models  

1 18.7 14.0 20.8 

1+2 17.3 13.7 19.0 

1+2+3 16.5 13.5 18.3 

Note n-gram  - 
90 Note Models  

1 18.6 13.9 21.0 

1+2 17.0 14.7 18.5 

1+2+3 17.0 14.8 18.1 

We see in Table 2 that for the All Songs condition the 60 note 

model performs the best, and its performance compares well to the 

GMM system in Table 1. In addition, there is an advantage in all 

cases of combining unigrams, bigrams, and trigrams over either 

using unigrams or combining unigrams and bigrams. Comparison 

of the Same and Different Song conditions showed an opposite 

trend. For the Same Song condition, using a model of fewer than 

60 notes seems optimal. However, for the Different Song 

condition, a model of more than 60 notes is better. This means that 

when there are fewer note classes, it is better to model the same 

song per bird species. However, having more classes improves 

generalization across different songs of a given bird species. The 

optimal 60 note classes seem to be a balance between these two 

trends.  

 

5.3. System Combination Results 

 
In evaluating the score-level combination of the GMM and the 

note n-gram system, we used a simple equal weight at the score 

level. 

Table 3 shows the system combination EER results using the 

best GMM system from Table 1 and the best note n-gram from 

Table 2. We present results for all songs, same song, and different 

songs condition. 



Table 3 – System Combination Results 

Systems 

EER % 

All 
Songs 

Same 
Song 

Diff 
Song 

GMM – 2048 Gauss 16.7 13.4 19.3 

Note n-gram – 60 Note 
Mods, 1+2+3 n-grams 

16.5 13.5 18.3 

Score  
Combination 

14.1 11.7 15.5 

Table 3 shows an important EER reduction in all songs from 

system combination. We found similar relative EER reduction of 

14.5% in All Songs, 12.7% in Same Song and 15.3% in Different 

Song conditions over the best EER in each condition. The 

important EER reductions indicate that these systems are 

complementary. 

5.4. Results by Bird Species 

 
Table 4 shows the EER results for each bird species, for the GMM, 

the note n-gram, and the combined systems. 

 
Table 4 – GMM and Note n-gram Results by Bird Species  

Bird Species 

EER % 

GMM 
2048 

Note 
n-gram 

60 /1+2+3 
Comb. 

Acadian Flycatcher  1.8 3.6 0.2 

Brown-headed 
Cowbird  

13.7 18.3 14.0 

Carolina Wren 14.2 14.5 11.8 

Kentucky Warbler  12.9 12.3 11.6 

Northern Cardinal 17.0 20.4 14.6 

Red-winged 
Blackbird 

5.3 1.6 1.5 

Song Sparrow 25.7 20.1 19.5 

Swamp Sparrow 24.3 17.9 19.2 

White-crowned 
Sparrow  

3.4 14.0 2.2 

From Table 4 we can conclude that for most of the bird 

species there is an important gain from combining both of the 

proposed systems compared to the best individual system. Thus 

having complementary systems is an advantage for most of the 

bird species.  

6. CONCLUSIONS 
 

We explored two modeling techniques and score-level system 

combination for bird song recognition. We first developed an 

unsupervised approach to obtain note acoustic models. From these 

note models we created a bird species recognition system by 

leveraging the phone n-gram model developed for speaker 

recognition applications. We found competitive performance from 

the note n-gram system compared to a GMM baseline using the 

same acoustic features. We found important gains from using 

score-level combination relative to the individual systems. When 

analyzing the bird species-specific results, we found that the 

combination leads to gains for most of the bird species used in the 

experiments. 
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