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Abstract

We describe the development of a speech activity detecyistes
using an HMM-based segmenter for automatic speech reamgnit
on individual headset microphones in multispeaker mestiige
look at cross-channel features (energy and correlatioad)as
incorporate into the segmenter for the purpose of addrgssin
rors related to cross-channel phenomena such as crosfal.
sults demonstrate that these features provide a markeaweypr
ment (18% relative) over a baseline system using singleratla
features as well as an improvement (8% relative) over owique
solution of separate speech activity detection and crbassel
analysis. In addition, the simple cross-channel energyfea are
shown to be more robust—and consequently better performing
than the more common correlation-based features.

Index Terms: speech activity detection, multi-channel audio,
crosstalk.

1. Introduction

The segmentation of an audio signal into regions of speedh an
nonspeech is a critical first step in the task of automatiespe
recognition (ASR). This is especially the case within ther-co
text of multispeaker meetings with individual headset wjtrones
(IHMs). In such meetings, the microphone channels oftetaion
significant amounts of crosstalk—speech from speakers ttha
the wearer of the headset—which typically generates iioseet-
rors if processed by the recognizer. In addition, breathtbero
contact noise can be present, particularly for inexpeddrtead-
set wearers with poor microphone technique, and produngkasi
results. Lapel microphones capture less extraneous maigk,n
but are even more prone to pick up crosstalk speech.
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This research was thus not directed at SAD per se, but at im-
proving the ICSI-SRI meeting recognition system, with Hssu
measured in terms of word error rate (WER). Our previous ap-
proach to SAD for IHM recognition was to perform a time-based
intersection of the output from two distinct segmenters:

e A segmenter based on hidden Markov models (HMMs)
similar to that described in [3], but simpler in structur@an
utilizing standard cepstral features

e A local-energy detector that generates segments by zero-
thresholding a “crosstalk-compensated” energy-like aign
derived from the energy signals of all channels

The effectiveness of the approach lay in that the intersecti
procedure allowed the main weakness of each segmentegé&ylar
cancel out that of the other: the false alarms arising fromsstalk
in the HMM-based segmenter and those arising from breatfenoi
in the local energy detector. Details of the system can beddun
[2].

Though relatively well performing, having the cross-cheinn
analysis be disjoint from the speech activity modeling was b
lieved to be a suboptimal approach. This paper details thelole-
ment of a modified system that addresses this issue by camgbini
the two sources of information through the incorporatiocross-
channel features in the HMM-based segmenter.

The remainder of the paper is organized as follows. Section
2 details the HMM-based segmenter, and the ASR system with
which we measured segmentation performance is briefly ibestcr
in section 3. The cross-channel energy modeling is detail8eéc-
tion 4. We present development experiments in Section faal
tion of the final system in Section 6, and discussion procéeds

These phenomena present a significant challenge becayse thegation 7. Conclusions are given in Section 8.

cannot be addressed using the energy-based methods d=lelop

from single-channel speech activity detection (SAD) systeln

such systems speech/nonspeech (S/NS) decisions ardlfypera
formed according to one or more (possibly adaptive) thrielsh@s
in [1], for example). Crosstalk and breath noise, howeviigno
contain a substantial amount of energy, causing the thieisigo
methods to falsely trigger. Recent strong interest in tlvegai-

tion and understanding of multispeaker meetings is dematest
by initiatives such as the Interactive Multimodal InformoatMan-

agement (IM2), Augmented Multiparty Interaction (AMI),cthe
NIST Rich Transcription (RT) meeting recognition evaloas.

Recent results in the NIST RT evaluations [2] show that srior
speech activity detection are one of the major sources of arr
recognition from IHM recordings, providing us with the mati

tion for the work reported here.

2. HMM-based S/NS Segmenter
2.1. HMM architecture

The S/INS segmenter is derived from an HMM-based speech+ecog
nition system. The system was modified and simplified to con-
sist of only two classes — “speech” (S) and “nonspeech™ (NS)
each being represented with a three-state phone modes. et -
sion probabilities are modeled using a multivariate Gaushix-

ture Model with 256 components and diagonal covarianceimatr
ces. Segmentation is carried out by decoding the full IHMholeh
waveform. The decoding is potentially performed multipteds,
with decreasing transition penalty between the two classeas

to generate segments that do not exceed 60 seconds in length.



2.2. Basdinefeatures

The features used in the baseline system consist of 12t-Ivtel-
frequency cepstral coefficients (MFCCs), log-energy, glaith
their first and second differences. The features are cordjowvir a
window of 25ms advanced by 20ms and cepstral mean subtnactio
(CMS) is performed as a waveform-level normalization. Besg
such as these are common to many speech recognition sysitdms a
therefore provide an advantage over those used in [3]. litiadd

the cepstral features, being largely independent of enprgyide
information unavailable to energy-based systems, whicitdcaid

in distinguishing between local speech and other phenométha
similar energy levels (such as breaths and coughs).

2.3. Segmenter post-processing

To mitigate the effect of “clipped” segments (i.e., segraehat cut
off initial or final speech) that may be generated by the segene

a post-processing step is performed that pads the segméation
ends by a fixed amount (40ms). Similarly, a post-procesdieg s
that merges adjacent segments that have small separatssriifan
0.4s) is also performed to “smooth” the segmentation. Setgne
are merged to a maximum of 60s. These time constraints had
been optimized for best recognizer accuracy and a gooddffade
with recognizer runtime (long segments tend to use moredieco
ing time), using our baseline segmentation models. Theg hav
(yet) been reoptimized for the improved segmenter featpres
sented here.

3. ASR System

For ASR we used the meeting recognition system fielded by-ICSI
SRIinthe NIST Spring 2005 Meeting Recognition evaluatigii-
05S), as described in detail in [2]. The recognizer usesiphelt
decoding passes and front ends for cross-adaptation hetube
systems and successive refinement of hypotheses. It usEpper
tual linear prediction (PLP) and MFCC acoustic features altter
augmented with discriminative phone-posterior featustisrated

by multilayer perceptrons. Features are transformed wittalv
tract length normalization and heteroscedastic linearidignant
analysis, as well as feature-level constrained maximusiitikod
linear regression (CMLLR). Acoustic models are trained bou
2000 hours of telephone speech data, followed by maximunsa po
teriori (MAP) adaptation to about 100 hours of meeting datze
language model is a 4-gram estimated from a mix of telephone
conversations, meeting transcripts, broadcast, and Web dae
system has two versions: one using two decoding passesitidr qu
turnaround (the “fast” system), and one using an additisixadle-
coding passes for best results (the “full” system).

4. Cross-Channel Modeling

For a given speaker and corresponding channel in the IHMieond
tion, the primary complicating factor for speech activigtekction
is the presence of other speakers. Approaches that useiion
from the other channels (and thus about the speech activibeo
other speakers) are best suited for this condition. Suclosser
channel approach was incorporated into the previous SARIsys
as mentioned in Section 1, but in a way that kept it separata fr
the speech activity modeling. An alternative method exqaldrere
is the use of cross-channel features that are appended lhasiee
line feature vector. In this way cross-channel phenomenh as
crosstalk can be better modeled, improving local speedhitsct

modeling and detection. The features examined are givembel

L og-energy differences (LEDs) The log-energy difference rep-
resents the log of the ratio of short-time energy between
two channels, and is computed between a given target IHM
channel and each of the non-target channels. As with the
baseline features, the short-time energy is computed over a
window of 25ms with an advance of 20ms. This is a vari-
ation of the feature described in [4] with the simplifying
removal of the sigmoid, because the raw values were con-
sidered more informative.

Normalized log-ener gy differences (NL EDs) In some cases dif-
ferencing of the raw log-energy values may be suboptimal
because of significant differences in microphone gains. To
compensate for this, the normalization scheme described
in [3] was adopted as a step prior to the energy differenc-
ing. This normalization consists of subtracting the min-
imum frame log-energy of a channel from all log-energy
values in the channel. That is, for a channat framen

Ernorm(n) = Ei(n) — Emin,i )

whereE represents log-energy. This minimum frame log-
energy serves as a noise floor estimate for the channel
and has the advantage of being largely independent of the
amount of speech activity in the channel.

Normalized maximum cross-correlation (NMXC) A more
common cross-channel feature found in the literature [5, 6]
is one based on short-time cross-correlation maxima be-
tween channels. The correlation between the channels
serves as an indicator of crosstalk. We define the normal-
ized maximum cross-correlation between a target channel
and nontarget channglto be

max, ¢;;(7)
i (0)

where;; (1) represents the cross-correlation at tagnd
¢;;(0) is the nontarget channel autocorrelation for lag O
(i.e., its short-time energy). Cross-correlation and auto
correlation values are computed over a context window of
25ms using a Hamming window function with an advance
of 20ms.

T, = 2

A key consideration in using cross-channel features is the p
tentially variable number of channels to be processed settsel
requirement of a fixed feature vector size for the HMM-based
segmenter. The solution adopted for this work was to use or-
der statistics—specifically maximum and minimum—of the-fea
ture values generated on the different channels, as was ldone
Wrigley et al. in [5].

5. Development Experiments

Two development test sets were chosen for initial experignen

evaluate the performance of the cross-channel featuresiled

above, and to determine which methods to include in the fiA&l S
system.

5.1. Resultson AMI development set

The AMI development set consists of meetings contributethby
AMI program for the NIST RT-05S meeting recognition evalua-
tion. These are scenario-based meetings, elicited asiloedan



[7], each involving four participants wearing headset wptrones
or head-mounted lapel microphones.

HMM segmenter, the old intersection segmentation systerd s
[2] and briefly described in Section 1 (denoted by ‘interiec},

Because the meetings all contain the same number of chan-various cross-channel feature systems, and the referegoees-

nels, it is possible to create a feature vector of fixed lengihg
values from all channels, rather than by using the maximuch an
minimum values only. This experiment was performed to deter
mine the effect of the length standardization procedure.

For training of the HMM-based segmenter, the first 10 minutes
from 35 of these meetings were utilized. Testing was peréafm
on 12-minute excerpts from four additional meetings.

Table 1: Performance comparisons for systems using AMI devel-
opment data. Results obtained using “fast” ASR system.

[ System | Del | Subs]| Ins | WER |
baseline 174| 13.0| 74| 37.8
base + LEDs (all) 17.2| 13.0| 45| 34.8
base + LEDs (max & min) || 17.4 | 12.8 | 45| 34.7
base + NLEDs (max & min)|| 17.1 | 12.0 | 44 | 33.5
base + NMXC (all) 17.2| 12.8 | 4.3 | 34.3
base + NMXC (max & min)|| 17.4 | 12.1 | 45| 34.1
reference 18.3| 10.2 | 3.4 | 32.0

The results for the various systems are given in Table 1.-‘Ref
erence” refers to a segmentation derived from the time miarks
the reference for word error scoring. As these were preknyin
experiments, the fast version of the ASR system was usedn Fro
these results we see that the systems with cross-chanheidgall
represent a significant performance improvement from ttse-ba
line, and that this is largely due to the reduction of inggrerrors.
This suggests that these cross-channel features are indeéd
in distinguishing crosstalk from local speech, as croksth key
source of insertion errors for the IHM condition.

Also of note is that using max and min feature values yields
performance similar to using all cross-channel values. t€h&a-
tive conclusion is that max and min are good representative v
ues for the purposes of SAD, although one additional valug wa
omitted. It should also help that the min and max featureosap
a consistent rank ordering on the available cross-charaiaks.
Unfortunately, no substantial data sets are availablesbthese
effects on a much larger number of channels.

A third observation is that the energy normalization teghei
produces about a 1% absolute improvement over the unnaexdali
case, thus establishing its effectiveness. In additiesemormal-
ized log-energy difference features appear to be sligletiebthan
the commonly used cross-correlation based features ferditia
set.

5.2. Resultson RT-04S evaluation set

Having established the effectiveness of the features, Vbsesu
quently evaluated the cross-channel feature systems &®td S
evaluation set, this time using the full ASR system. This$ ses$
consists of 11-minute excerpts of meetings provided frooh e
the sources CMU, LDC, ICSI, and NIST. Each site contribubea t
meetings for a total of eight meetings. The meetings varyyile s
number of participants, and room acoustics, potentialgenting

a greater challenge than the AMI set. For this set the segment
was trained using the first 10 minutes from each of 15 NIST meet
ings and 73 ICSI meetings.

tation. Also note that the cross-channel features use oak/and
min values because of the variable number of speakers.

Table 2:Performance comparisons for systems using RT-04S eval-
uation data. Results obtained using “full” ASR system.

WER
System ALL [ CMU [ ICSI [ NIST [ LDC
baseline 296 | 33.1 | 234 | 20.0 | 38.7
intersection 279 | 325 | 214 | 20.2 | 349
base + LEDs 27.3| 32.8 | 20.1 | 20.0 | 33.7
base + NLEDs|| 26.9 | 32.8 | 185 | 19.6 | 34.0
base + NMXC | 28.1 | 31.7 | 249 | 19.0 | 33.8
reference 25.1| 30.3 | 180 | 17.0 | 31.9

As with the AMI development set, these results reveal im-
proved performance over the baseline system for the ciussrel
feature systems, further confirming the effectiveness edétfea-
tures. The cross-channel feature systems also represent-an
provement over the intersection system, supporting thialty-
pothesis that the disjoint cross-channel analysis andcbesivity
modeling was a suboptimal approach.

A comparison of the normalized cross-correlation and the no
malized log-energy difference features produces someshifiat-
ent observations for this data set. For two of the four saurce
(CMU and NIST), the NMXC features produce substantiallydow
word error rates than the NLED ones. For the ICSI meetings,
however, the WER with NMXC isnuchhigher—about 30% rel-
ative. Further investigation reveals that the contrilyifexctor for
the higher WER is almost exclusively insertion errors (@®the
NLED features and 9.1 for the NMXC features), which suggasts
poorer handling of crosstalk. This leads to a poorer oveetior-
mance for the NMXC features system (28.1% versus 26.9%) and
indicates that the NLED features tend to be more robust than t
NMXC ones. As a result, the NMXC features were removed from
consideration for the final SAD system.

6. Final System Validation

The NIST RT-05S meeting recognition evaluation was seteate

a test set for performing validation on the finalized systetne—
HMM-based segmenter with the baseline and NLED features. Th
test data is composed of 12-minute excerpts from 10 meetirigs
meetings were contributed by five sites with two meetingssjier
AMI, CMU, ICSI, NIST, and Virginia Tech (VT). Being drawn
from a pool similar to the RT-04S data, these meetings alse po
sess significant variation in style, number of participaats room
acoustics.

The segmenter was trained using the union of the AMI, ICSI,
and NIST training meetings described earlier (see Sectibaid
5.2). We explored two options to train the segmenter: eithpool
all training data to train a single model, or to train an AMikp
S/NS model for use on AMI test data, and a separate ICSI+NIST
model for use on all other test meetings. Using results oars¢p
development data to make the decision, we chose the twoimode
approach for the baseline and intersection methods, argirtgke-

Table 2 gives results on the RT-04S test set for the baselinepooled-model approach for the new cross-channel features.



way to achieve such improvements might be the inclusiontofrot

Table 3:Performance comparisons for systems using RT-05S eval'cross-channel, as well as single-channel features (&.q,[8]).

uation data. Results obtained using “full” ASR system.

System WER 8. Conclusions
ALL [ AMI | CMU | ICST [ NIST | VT We have detailed the development of a speech activity detect
baseline 293 ] 221 ] 233 | 205] 458 | 358 P b y

system using an HMM-based segmenter with single-chanep} (¢
stra, log-energy, and derivatives) and cross-channelgiaygy
differences) features. Results show that the inclusiohege sim-

intersection 259 | 233 | 233 | 245 | 345 | 23.6
base + LEDs 256 | 220 | 235 | 209 | 37.3 | 23.8

+ SDM 24.7 33.0 ; P
ple cross-channel features yields large reductions in ASRIer-
base++SI\IIDLNI?Ds ggg 219 | 23.1 | 20.6 ggg 22.9 ror rate performance over both the case of no cross-chanaél a
reference 195 | 192 | 199 | 168 | 214 | 206 ysis and that of cross-channel analysis independent othpse

tivity modeling. In addition, the benefit of the simple nolina

ing technique of minimum energy subtraction was demoredrat
Finally, the log-energy difference features were shownxtulwst
Table 3 presents recognition performance results for tge se greater robustness than the more prevalent cross-caorelzdsed

mentation from the two log-energy difference systems, (iwenor-
malized and normalized) along with the key contrastive pties
baseline segmenter, the old intersection system, and fbeenee

features. The inclusion of a distant omnidirectional mitrone
in the cross-channel feature computation allows the sggpe of
crosstalk even from speakers without dedicated microghone

segmentation. With regard to performance of the crosssaan
features, the same trend can be seen as in the developmenit exp
ments. The cross-channel system with NLEDs gives about%n 18
re"”ltlve WER redu‘?t'on Over the baseline and about an 8%vela through the research network IM2. This material is also thagmn work
reduction over the intersection approach. supported by the Defense Advanced Research Projects AGBAGYPA)
One of the NIST meetings in this test set presented an unusualunder Contract No. NBCHDO030010. Any opinions, findings and-c
setup. The meeting had a speaker participating via a spsakes, clusions or recommendations expressed in this materiathase of the
and, consequently, without corresponding IHM channel. ddi-a author(s) and do nqt necgssarily rgflect the views of the DXABPthe
tion, two of the participants were silent during the entireating. Department of Interior-National Business Center (DOI-NBC
This led to an inordinate amount of insertion errors triggeby
crosstalk, as reflected in the very high baseline error ratie 10. References
NIST column. To better cope with unmiked speakers we experi- [1] L.R. Rabiner and M.R. Sambu, “Application of an LPC dista mea-
mented with a variant of our algorithm that included a singtn- sure to the voiced-unvoiced-silence detection problefBFE Trans.
trally located, omnidirectional distant microphone (SDé#jannel on Acoustics, Speech, and Sig. Prowl. 25, no. 4, pp. 338-343,
in the cross-channel feature computation. The intent wathfe 1977. )
SDM to serve as a stand-in for any speakers without HFhe [2] A. Stolcke, X. Anguera, K. BoakyeD. Cetin, F. Grézl, A. Janin,
corresponding results are given in the table in the rows aethtk A. Mandal, B. Peskin, C. Wooters, and J. Zheng, “Further msgin
SDM". As can be seen, the SDM approach worked very well for meeting recognition: The ICSI-SRI Spring 2005 speecteit-eval-
dealing with the particular situation of the NIST meetingpe- gatlon system,” inMachine Learning for Multimodal Interaction:
. ’ - econd International Workshop, MLMI 2Q0Bteve Renals and Samy
C|a”y When COUp|ed W|th the NLED features The d|ﬁeren@9 b Bengio’ Eds. 2005‘ vol. 3869 tfecture Notes in Computer Sciemce
tween that system and the reference channel on the NISTngseti

pp. 463-475, Springer.
was now comparable to that for the other meeting sources. [3] T. Pfau, D.P.W. Ellis, and A. Stolcke, “Multispeaker s activity

detection for the ICSI meeting recorder,” Froc. IEEE ASRU Work-
shop 2001, pp. 107-110.
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7. Discussion

The initial motivation for this work was the improvement biet

ICSI-SRI ASR system for the IHM condition of the NIST meet-

ing recognition evaluation, specifically the speech atstidietec-
tion. The results presented here demonstrate that, torhisvee
made substantial progress. Significant WER reductions fdbu
18% relative) were achieved using the log-energy diffeeciea-

tures we have described. In the process, the technique s$-cro

channel modeling using these features was validated.cBlantiy

notable is the extent to which performance gains can be made u 7]

ing such relatively simple features. Along these lines,rtimist-
ness of these features (as compared to the cross-comebsged
features) is also of note.

Last, there still exists a performance gap of about 2-3%-abso

lute between our best automatic system and the referenoeeseg
tation. This suggests the possibility of further improveitse One

1Recall again that in the IHM condition, the recognizer is sigpposed
to recognize speech spoken by speaker without personabphicnes.
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