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Abstract
This paper focuses on combining answers generated by a

semantic parser that produces semantic role labels (SRLs) and
those generated by syntactic parser that produces function tags
for answering 5-W questions, i.e., who, what, when, where,
and why. We take a probabilistic approach in which a system’s
ability to correctly answer 5-W questions is measured with the
likelihood that its answers are produced for the given word se-
quence. This is achieved by training statistical language mod-
els (LMs) that are used to predict whether the answers returned
by semantic parse or those returned by the syntactic parser are
more likely. We evaluated our approach using the OntoNotes
dataset. Our experimental results indicate that the proposed
LM-based combination strategy was able to improve the perfor-
mance of the best individual system in terms of both F1 mea-
sure and accuracy. Furthermore, the error rates for each ques-
tion type were also significantly reduced with the help of the
proposed approach.
Index Terms: Question answering, Spoken language under-
standing applications

1. Introduction
The goal in the third year of DARPA-funded GALE Information
Distillation task is to extract exact answers to 5-W questions,
i.e., who, what, when, where, and why, for a top-level predi-
cate of each given sentence. The motivation for the 5-W task is
that the answers to 5-W questions cover the basic information
nuggets in a sentence. If a system can isolate these pieces of
information successfully, then it can produce the basic meaning
of the sentence.

The GALE Information Distillation task specifies what
kinds of constituents are expected in each answer. According
to the specifications, the logical subject of the chosen predicate
should answer who. It will be null whenever there is no subject,
for instance, in imperative sentences or in passive sentences in
which there is no logical subject indicated with a “by clause”.
The predicate itself and its logical object should appear in the
answer to what. The temporal argument of the main predicate
is expected to answer when. It may refer to specific times such
as “on Monday”, non-exact times such as “after the war”, and
adverbs of frequency and duration such as “always”. Physical
locations such as “in the building” as well as metaphorical loca-
tions such as “in his speech” are expected as answers to where.
Explicitly triggered expressions of reason, cause, and purpose
such as “as a result of the crisis” and “because of the explosion”
should answer why. The returned answers are judged “correct”
only if they either correctly identify a null answer (i.e., there is

no answer to be returned) or correctly extract an answer that is
present in the sentence. Answers are not penalized for including
extra text provided that the extra text is not from another answer
or from another top-level predicate.

It has been observed that incorrect parses account for a ma-
jor part of the errors in similar question answering systems.
This is mainly because the ability of a system to answer given
questions is limited by the depth of the available semantic repre-
sentations. Another reason is that most systems make the strong
assumption that the input will be a typical sentence. A better
approach would therefore take atypical cases (such as speech
recognition errors) into account, however, due to mostly unpre-
dictable nature of atypical cases this approach is of limited use.

In this paper, we have two 5-W answer generating mod-
ules: one that relies on syntactic parses with function tags
(such as “subject”, “location”, and so on), and another that re-
lies on semantic parses with semantic role labels (SRLs) that
indicate predicate-argument relations (ARG0 through ARG5
and ARGMs) [1, 2]. Our combination strategy receives an-
swers from these two modules and codes them as answer
sequences (e.g., “<s> ω1 who ω2 who ω3 what ω4 what
ω5 what ω6 when < /s>”) for the word sequence (ω1, ..., ω6.
We then combine the answers generated by these two modules
using a language model (LM)-based strategy. An LM is trained
to estimate the probabilities of n-gram answer sequences (e.g.,
Pr(who|who), Pr(what|who), etc.). Another LM is trained on
manually generated answers to predict the probability of an an-
swer given the word sequence (e.g., Pr(< word > |who),
Pr(< word > |what). A score that combines these two LMs
is computed for the answers of each of the modules and the 5-W
answers of the higher scoring module are accepted. As an alter-
native approach to the problem of multiple 5W answers is pre-
sented in [3]. The authors develop three independent systems
and extract useful features from the answers returned by each
answer. Then the answers are rescored based on SVM classi-
fication scores. An approach that is similar to ours was taken
in [4] for speech understanding. It was based on the stochas-
tic modeling of a sentence as a sequence of elemental units that
represent its meaning.

In this paper, we use hand-corrected parse trees of text gen-
res to train models, whereas use automatic parse trees of closed-
caption speech transcriptions as test data. Note that closed-
caption speech transcriptions also consists of many errors such
as the shortening of long sentences, skipping details, and so on.
These errors may result in significant deterioration in the quality
of automatic parses. One other factor that deteriorates the qual-
ity of automatic parses is that disfluencies (e.g., “um”, repeated
words, repairs, false starts, phrases like “you know” and so on)
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are common in normal speech. We designed our systems so that
disfluencies are removed with the help of syntactic information
as much as possible. Our experimental results indicate a signif-
icant improvement over the best performing system in terms of
reduced error rate and increased F1 measure.

2. 5-W Question Answering Task
The goal in the third year of DARPA-funded GALE Information
Distillation task is to extract exact answers to the 5-W ques-
tions, i.e., who, what, when, where, and why, for a top-level
predicate of each given sentence. Multiple plausible top-level
predicates exist in many cases including conjunctions or multi-
ple independent clauses (e.g., “Bob went and bought drinks”),
and statements (e.g., “Bob went to the store, police said”). Se-
lecting either predicate is considered “correct” in such cases.

Each non-null answer, a, returned by a system is regarded
correct if both of the following statements are true: ((i) a is of
the appropriate type (e.g. when, where, etc.), (ii) a could plau-
sibly be an argument of a top-level predicate in the sentence.
Each null answer returned by the system is “correct” if there is
no argument of this type that clearly modifies any of the top-
level predicate in the reference.

Answers are not penalized for including extra text, such as
prepositional phrases or subordinate clauses. However, if the
extra text includes text from another answer or text from an-
other top-level predicate, the answer is considered “incorrect”.
Answers may also be judged “partial”, meaning that only part of
the answer was returned. For example, if the the answer to what
contains the predicate but not the logical object, it is graded as
“partial”.

As an illustration, consider the sentence “There were elec-
tions held, I believe, a year or so ago” for which there are more
than one set of acceptable answers as follows:

• Answer 1: Who: I, What: believe there were elections
held a year or so ago.

• Answer 2: Who: There, What: were elections held a
year or so ago.

• Answer 3: Who: There, What: were elections held,
When: a year or so ago.

• Answer 4: What: were elections held a year or so ago,
Where: there.

• Answer 5: What: were elections held, When: a year or
so ago, Where: there.

2.1. Using Syntactic Parses with Function Tags

Our first 5-W question answering system uses the syntactic
parses with function tags produced by the University of Mary-
land parser that was specifically designed to handle ASR out-
puts (see [5, 3] for details) and works in two steps. The first
step is a cascade of several operations to determine one top-
level predicate: detecting and marking quotations, removing
conditional clauses, processing conjunction of sentences and
conjunction of verb phrases so that only one top-level predi-
cate remains, and detecting passive sentences. The second step
starts with an analysis of the sentence structure since the po-
sitions of constituents in the sentence depend on the sentence
structure. For instance, the subject is before the verb phrase in
simple active declarative sentences but it is after the verb phrase
in inverted sentences.

Figure 1: The syntactic parse trees with function tags (e.g.
“SBJ”, “TMP”, “LOC”, “DIR”, and “PRP”) are used to iden-
tify exact answers to 5-W questions.

Once the sentence is categorized according to its structure, a
set of linguistically-motivated handcrafted rules is applied to ex-
tract 5-W answers. These rules assign the constituents (that are
attached to the top-level predicate) with tags “SBJ” and “LGS”
to who, those with tag ”‘TMP” to when, those with tags “LOC”
and “DIR” to where, and those with tag “PRP”’ to why. The
answer to what is found by further processing of the remain-
ing constituents so that optional phrases are filtered out and no
repetitions of answers occur. An example of the mapping from
syntactic parses with function tags into 5-W answers is shown
in Figure 1 for the sentence “The United States has had its share
of warm weather this year”.

2.2. Using Semantic Role Labels

When presented with a sentence, a semantic role labeler identi-
fies and labels the semantic arguments of each of the predicates
in the sentence. In the ASSERT semantic role labeler [6], which
we used in this work, this is achieved by extracting features
for all constituents in the parse tree relative to the predicate.
The constituents are then classified into one class of semantic
role label using one-versus-all binary support vector machines
(SVMs) using the manually annotated PropBank data.

The permissible semantic arguments depend not only the
predicate itself but also the sense a predicate is being used
in the sentence. Generally speaking, ARG0 stands for agent,
ARG1 for the theme or direct object, and ARG2 for indirect ob-
ject, benefactive or instrument. Additionally, predicates might
have adjunctive arguments, referred to as ARGMs. For exam-
ple, ARGM-LOC indicates a locative, ARGM-TMP indicates
a temporal, and ARGM-CAU indicates a causative argument.
As in our first system, our second 5-W question answering sys-
tem first process the sentence so that only one top-level pred-
icate is considered and its category (declarative, imperative,
and so on) is determined. Afterwards, the semantic role la-
bels are mapped into answers. Note that this requires predicate-
specific considerations as there are some exceptional cases; for
instance, ARG3 represents a locative argument (and hence an-
swers where) for the predicate “go”. An example for mapping
SRLs into 5-W answers is shown in Table 1 for the above sen-
tence.

3. Combining Multiple 5-W Answer
Extractors Using Language Models

In the related problem of combining multiple semantic role la-
beling modules, it has been found that an argument combina-
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Table 1: Mapping SRLs into 5-W answers
ARG0 The United States
Target+ARG1 has had its share of warm weather
ARGM-TMP this year

tion strategy that may return different arguments from different
modules is better than a combination strategy that takes argu-
ments from one of the modules [7]. In the task that we consider,
the individual modules are required to return arguments for only
one of the predicates and they are free to select which predicate
to consider. Since the arguments are dependent on the pred-
icate chosen, it is not wise in our problem to return different
arguments from different modules. Furthermore, as our exper-
imental results show, the systems we developed make comple-
mentary mistakes and therefore the ideal combination strategy
that selects the best system for each sentence was able to give
an accuracy of as much as 95% overall.

The 5-W answer sequence for the permissible answer “An-
swer 2” of the example sentence of Section 2 would be “<s>
who what what what else else what what what what what
< /s>“. This 5-W answer sequence corresponds to marking
“there” with who, “were” with what, and so on. Therefore, the
task of finding the 5-W answers can be modeled as that of pre-
dicting the probability that the given word sequence (i.e., sen-
tence) produces the given 5-W answer sequence.

An LM is useful to find answers to 5-W questions in sev-
eral ways. An LM that models the probability of consecutive 5-
W answers restricts the permissible 5-W answer sequences that
are specific to language and genre. For instance, the sequence
“<s> who ... who what...what < /s>“ is the predominant pat-
tern in simple (grammatical) declarative sentences such as “The
president will give a talk”. However, a sequence like “<s>
who ... who what ... what .... who ... who < /s>“ is not a per-
missible answer sequence for simple (grammatical) declarative
sentences.

An LM that models the probability of words being pro-
duced by a given 5-W answer estimates how likely that a word
will appear in a given 5-W answer. It estimates, for instance,
that the word sequence “there” will likely to appear in the an-
swer to where (as in “It is raining there”) or who (as in “There
is rain”). Due to the probabilistic nature of LMs, some proba-
bility is still reserved for the case that, for instance, “there” will
appear in the answer to “when” (consider, “The president will
give a talk when he arrives there”).

Let W = {ω1, ω2, ..., ωN} denote a sequence of words
and Q = {q1, q2, ..., qN} denote a sequence of 5-W an-
swer sequence, where q denotes a question type from the set
{”who”, ”what”, ”when”, ”where”, ”why”, ”else”}. The
most likely 5-W answer sequence is the one that gives the high-
est probability of P (Q|W ), i.e.,

Q̂ = arg max
Q

Pr(Q|W ) (1)

= arg max
Q

Pr(W |Q)P (Q) (2)

The first term of Eqn. (1), P (W |Q), can be approximated as

P (W |Q) =
Y

i

Pr(ωi|qi, ωi−1, ωi−2) (3)

using a trigram model for word sequences and an indepen-
dence assumption that the ith word is independent of the ques-
tion types the previous words answer (i.e., q1 through qi−1)

given the question type it answers (i.e., qi). The probability
Pr(ωi|qi, ωi−1, ωi−2) estimates the likelihood that ωi will ap-
pear in the answer to question qi given its contextual words,
ωi−1 and ωi−2.

The second term of Eqn. (1), P (Q), is the prior probability
of a given 5-W answer sequence and can be approximated using
a trigram language model as

P (Q) =
Y

i

P (qi|qi−1, qi−2) (4)

Hence, a decision is made in favor of the system which yields a
greater value of Pr(Q|W ).

4. Experiments and Results
We ran experiments to evaluate the proposed approach and com-
pare their performance against individual systems and against
an oracle system. In this section, we first describe the corpus
that we use and then report our experimental findings.

4.1. Semantic Corpus

The OntoNotes corpus comprises of various genres of text that
are annotated with structural information (syntax and predicate
argument structure) and shallow semantics (word sense linked
to an ontology and coreference) [8]. The OntoNotes corpus
provides a wealth of resources; however, finding answers to
the 5-W questions for one top-level predicate introduces many
challenges for preparing a corpus that would be useful. Since
each sentence may have multiple correct sets of 5-Ws, it is not
straightforward to produce a gold-standard corpus for automatic
evaluation.

To combat such challengesin producing a gold standard, we
took a two-step approach to data preparation. In the first step,
we automatically produced 5-W answers using the rules that
find answers from syntactic parses with function tags. These
were then hand-corrected so that they can be used for training
language models. In the meantime, the answers of the individ-
ual modules were compared against the hand-corrected answers
and judged as “correct”, “incorrect”, or “partial”. These judg-
ments were also hand-corrected to account for the fact that there
may be more than one set of correct answers. The manual an-
notations of OntoNotes are used to train LMs. Our test data
consisted of automatic syntactic parses generated by the UMD
parser using closed-captions of the speech data. Eventually, our
training data consisted of 566 sentences, and our test data con-
sisted of 406 sentences.

4.2. Overall Performance Evaluation

Table 2 shows the error rates of different systems and combi-
nation strategies on different genres. “F-Tag” stands for the
system in which answers are found from syntactic parses with
function tags, and “SRL” stands for the system in which an-
swers are found from semantic role labels. The “Oracle” stands
for the ideal strategy that has the knowledge of which system
would perform best for a given sentence, and hence denotes the
best that can be expected from any combination scheme. The
results in the “LM” row show the performance obtained using
the LM-based approach of Section 3.

As seen From Table 2, in the overall, SRL is 30% worse
than F-Tag answer extraction. In the meantime, the error rate
of the oracle system is as low as 4.5%, which suggests that the
perfect combination strategy would cut the error rate by half.
The proposed LM-based combination strategy is able to reduce
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Table 2: The error rates per question type in 5-W question an-
swering.

Accuracy who what when where why all
F-Tag 8.4 19.5 5.7 9.4 3.0 9.2
SRL 10.6 27.1 8.2 10.6 3.7 12.0
LM 6.7 17.0 6.0 8.9 2.3 8.2
Oracle 4.7 10.1 2.8 3.5 1.5 4.5

Table 3: The precision, recall, and F1 measures
Precision Recall F1

F-Tag 91.2 81.5 82.6
SRL 91.1 79.9 82.5
LM 89.9 85.8 85.5
Oracle 96.6 92.4 92.9

the error rate to 8.2%, which means a relative error reduction of
11% compared F-Tag.

In Table 3, the performance is given in terms of precision
(P), recall (R), and F1 measure, which turned out to be compa-
rable. The LM-based combination strategy was able to increase
the F1 measure by roughly 3 figures, which is statistically sig-
nificant.

It is important to note that evaluation in terms of error rates
is a better criterion in this task than evaluation in terms of P,R,
or F1. Consider the example sentence of Section 2, i.e., “There
were elections held, I believe, a year or so ago”. As mentioned
there, there are more than one set of correct answers for this
sentence. For instance, “a year or so ago” could be thought of
as attached to “held” or to “were”. In the former case, it would
appear in the answer to what, whereas in the second case, it
would appear in the answer to when. Therefore, both “null” and
“a year or so ago” would be acceptable answers to when. When
calculating P, R, or F1, this situation would represent an incon-
sistency. However, the computation of error rates only consider
the given “correct” and “incorrect” annotations without any dis-
tinction as to type-I and type-II errors.

4.3. Performance Evaluation per Question Type

It is apparent from Figure 2 that the SRL system performs worse
than the F-Tag system in all question types. The difference is
significant in all question types. In when SRL performs about
relatively 43% worse than F-Tag, and in what, about relatively
39% worse. The most important reason was that the SRL com-
ponent quite often fails to return argument for any of the predi-
cates in the answers, which meant all-null answers, whereas the
F-Tag component always produced an output. A back-up pro-
cedure would allow the SRL component to avoid many of the
all-null answers. Another reason was that the SRL component
returned less non-null answers for when and where, which seem
to have worked to its disadvantage.

As Table 2 suggests, the performance on the answers to
what is substantially lower than those answers to other ques-
tions. Just to highlight the performance differences across ques-
tion types, Figure 2 shows the results in Table 2 visually. One
of the most important reasons is that the answers to what tend
to contain extra text, which quite often contains arguments of
a predicate other than the top-level predicate. It was also quite
common that the answer to what contained text that would cor-
rectly answer other questions. For instance, if the answer to
when is contained in the answer to what, then the answers to
both when and what are “incorrect”.

 

0
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0.25

0.3

who what when where why all

F-Tag SRL LM-Based Approach Oracle

Figure 2: The error rates per question type for each system
(from left to right: F-Tag, SRL, LM-Based Combination Ap-
proach, and Oracle.

5. Conclusions
In this paper, we described two systems to generate answers to
5-W questions: one relies on a semantic parser that produces
semantic role labels (SRLs) and the other that relies on a syn-
tactic parser that produces function tags. We propose a language
model-based approach to combining these two systems and an-
alyze why such a combination strategy is taken. Specifically, a
system’s ability to correctly answer 5-W questions is measured
with the probability of its answers being produced for the given
word sequence. We propose training statistical language models
(LMs) to predict whether the answers returned by semantic or
by syntactic parsers are more likely. We evaluated our approach
using the OntoNotes dataset. Our experimental results indicate
that the proposed LM-based combination strategy was able to
improve the performance of the best individual system in terms
of both the F1 measure and the error rate. Furthermore, the error
rates for each question type were also significantly reduced.
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