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Abstract
MLP based front-ends have shown significant complementary
properties to conventional spectral features. As part of the
DARPA GALE program, different MLP features were devel-
oped for Mandarin ASR. In this paper, all the proposed front-
ends are compared in systematic manner and we extensively in-
vestigate the scalability of these features in terms of the amount
of training data (from 100 hours to 1600 hours) and system
complexity (maximum likelihood training, SAT, lattice level
combination, and discriminative training). Results on 5 hours of
evaluation data from the GALE project reveal that the MLP fea-
tures consistently produce relative improvements in the range of
15% − 23% at the different steps of a multipass system when
compared to the conventional short-term spectral based features
like MFCC and PLP. The largest improvement is obtained using
a hierarchical MLP approach.
Index Terms: TANDEM features, Multi-Layer Perceptron,
Acoustic features, GALE project, LVCSR.

1. Introduction
Multi-Layer Perceptron (MLP) based front-ends originallypro-
posed in [1], have evolved in different fashions including the
use of long signal time span at the MLP input [2], the com-
bination of multiple MLP outputs based on probabilistic rules
(a.k.a. multi stream approaches) [3] and the use of more com-
plex architectures as compared to the conventional three-layer
MLP [2], [4]. Furthermore considerable improvements have
been reported in LVCSR systems whenever they are used in
concatenation with MFCC or PLP features (for a review see
[5]). More recently, MLP features have been applied in a num-
ber of different systems and languages like Mandarin and Ara-
bic, e.g., see [4],[6],[7],[8].

As part of the DARPA GALE1 program, the development
of different types of MLP features evolved along with the de-
velopment of ASR systems. The first contribution of this work
is to compare MLP front-ends used in a Mandarin ASR sys-
tem in a systematic manner, i.e., using the same phoneme set,
same speech-silence segmentation system, amount of training
data, and number of free parameters. Towards this end, section
2 briefly describes the different MLP features and benchmarks
them using a system trained on 100 hours of data. In contrast
to [9], the comparison covers all the MLP front-ends integrated
in the latest GALE Mandarin evaluation system. As an out-
come, two competitive feature sets are obtained and referred to

1http://www.darpa.mil/ipto/programs/gale/gale.asp

as MLP1 and MLP2, which provide a relative reduction of17%

Character Error Rate compared to standard spectral features.
The second part of the paper, i.e., section 3, investigates

how the previously described improvements scale up with the
amount of training data (from 100 hours to 1600 hours of train-
ing data) and with more complex LVCSR systems that include
Speaker Adaptative Training (SAT), lattice level combination
and discriminative training. The study is done using the RWTH
Mandarin LVCSR system [8]. Contrary to our previous related
works, the contrastive experiments are obtained using afull
multipass LVCSR system trained with and without the MLP
features on the entire 1600 hours of the training set. The re-
sults are then summarized and discussed in section 4 which con-
cludes the paper.

2. Small scale experiments
These studies are based on a simplified version of the large vo-
cabulary ASR system for transcription of the Mandarin lan-
guage described in [7], developed by SRI/UW/ICSI for the
GALE project. Recognition is performed using the SRI De-
cipher recognizer and results are reported in terms of Character
Error Rate (CER). The training is done using approximatively
100 hours of broadcast news and conversational data manually
transcribed including speaker labels. Results are reported on
the DARPA GALE evaluation 06 data (eval06). The baseline
system uses 13 standard MFCC plus a smoothed log-pitch es-
timate, as described in [10], augmented with first and second
order temporal derivatives resulting in an acoustic vectorof di-
mension 42. Vocal Tract Length Normalization (VTLN) and
speaker level mean-variance normalizations are applied. The
training consists of conventional Maximum Likelihood train-
ing. Details on acoustic modeling and language modeling can
be found in [7]. The decoding phase consists of two decoding
passes, a maximum likelihood speaker independent (si) decod-
ing followed by a speaker adapted (sa) decoding. Speaker adap-
tation is done using 3-class constrained Maximum Likelihood
Linear Regression (CMLLR). Performance of this baseline sys-
tem on eval06 data is 27.8% CER for the speaker independent
(si) and 25.8% CER for the speaker adapted (sa) models.

In the following section, we experiment with different MLP
features obtained equalizing the total number of parameters (un-
less the contrary is stated) in order to obtain a fair comparison.
The training is done using the same toneme set composed of
71 tones and using the same alignment. After PCA, a dimen-
sionality reduction accounting for 95% of the total variability is
applied. Let us briefly detail the different features.



Table 1: Summary of feature performances on eval06 data. Results are reported using MLP features only and in concatenation with
MFCC+f0 for the speaker independent/adapted system. In brackets the relative improvement w.r.t. the baseline is reported. The two
front-ends that produce the largest improvements are basedon the multi-stream approach (MLP1) and on the augmented hierarchical
MRASTA (MLP2).

Features MLP w/o MFCC+f0 MLP with MFCC+f0
CER (si) CER (sa) CER (si) CER (sa)

TANDEM-9framesPLP 27.6 (+0%) 25.5 (+1%) 23.4 (+15%) 22.2 (+13%)
HATS 30.5 (-9%) 29.1 (-12%) 23.8 (+14%) 22.7 (+12%)

Multi-stream (MLP1) 24.6 (+11%) 23.1 (+10%) 22.8 (+18%) 21.7 (+16%)
MRASTA 32.4 (-16%) 30.7 (-19%) 24.4 (+12%) 23.1 (+10%)

Hier 27.8 (+0%) 26.5 (-2%) 22.9 (+17%) 21.9 (+15%)
A-Hier (MLP2) 26.4 (+5%) 24.1 (+6%) 22.3 (+20%) 21.2 (+17%)

TANDEM- 9 frames PLP features: The input to the three-
layer MLP consists of 9 consecutive frames of PLP features
obtained after VTL normalization augmented with first and sec-
ond order temporal derivatives. Furthermore this representation
is augmented with 9 consecutive frames of the log pitch esti-
mate (f0) with its temporal derivatives. Speaker level meanand
variance normalization are performed. This produce a42 × 9

dimensional input feature vector. Their performance is reported
in Table 1.
Hidden Activation TRAPS (HATS) features: The HATS fea-
ture extraction [2] aims at including information from relatively
long signal time spans. At first the 19 critical band auditory
spectrum of the speech signal is extracted. In a first stage, a
separate MLP is trained for each critical band in order to clas-
sify phonetic targets. The input for each MLP is representedby
51 consecutive log critical band energy vectors corresponding
to 500 ms of speech. In a second stage a merger MLP is trained
with the hidden activations obtained (for the training data) from
the 19 MLPs in the first stage as input feature. This process pro-
duces a single posterior stream out of the 19 different estimates
obtained at the previous stage. The phoneme probability esti-
mates obtained at the output of the second stage MLP are then
used for TANDEM features. Their performance is reported in
Table 1.
Multi-stream features: MLP outputs represent phoneme
posterior probabilities and they can be combined according
to probabilistic rules. This approach is known as Multi-
stream ASR [3]. Phoneme posterior estimates obtained using
TANDEM-PLP and HATS that correspond respectively to short
and long temporal context are combined using the Dempster-
Shafer (DS) method [11]2. Their performance is reported in
Table 1.
Multiple RASTA (MRASTA) features is an extension of
RASTA filtering introduced in [12]. Similarly to HATS, it uses
the 19 critical bands auditory spectrum. A 600 ms long tem-
poral trajectory in each critical band is filtered with a bankof
Gaussian derivative filters aiming at dividing the available mod-
ulation frequency range into its individual sub-bands. Identical
filters are used for all critical bands. After MRASTA filtering,
frequency derivatives across three consecutive critical bands are
introduced. The total number of features at the MLP input is
432. Similarly to HATS, MRASTA aims at using long signal
time spans as input to the MLP. Their performance is reported
in Table 1.
Hierarchical MRASTA (Hier) features: Previous studies on
English and Mandarin data [13],[9] showed that significant

2DS combination has replaced the inverse entropy combination after
experiments performed in [7]

gains can be obtained combining classifiers trained on separate
ranges of modulation frequencies in hierarchical fashion.This
represents the main motivation for the Hierarchical MRASTA
processing in which the filter-banks are split in two separate
filter banks that filter respectively fast and slow modulation fre-
quencies. The cutoff frequency for both filter-banks is approx-
imatively 10 Hz. The output is then processed according to a
hierarchy of two MLPs progressively moving from high to low
modulation frequencies. Details can be found in [13]. Their
performance is reported in Table 1.

The MRASTA filtering can be also augmented with the
value of the critical band energy and the smoothed log-pitches-
timates. We refer to this set of features as Augmented Hierarchy
(A-Hier). Their performance is reported in Table 1.

Results of the different MLP features are summarized in
Table 1 both as stand-alone features and in concatenation with
MFCC. Only the multi-stream approach uses a number of pa-
rameters doubled compared to other architectures. Resultsre-
veal that:

1) Most of the MLP features do not outperform the MFCC
baseline when used as stand-alone front end. Only complex
MLP front-ends significantly outperform the MFCC baseline
i.e., the multi-stream approach (row 7) and the augmented hier-
archical approach (row 10). In the rest of the paper, we will refer
to those as MLP1 and MLP2 respectively. The performance of
MLP features that use long signal time spans, e.g., HATS and
MRASTA is particularly poor as stand alone front-end.

2) On the other hand, even when their individual perfor-
mance is poor, MLP features in concatenation with MFCC al-
ways produce considerable improvements in the range of 12-
20% relative in the speaker independent system and in the range
of 10-17% in the speaker adapted system. The largest im-
provement after adaptation is obtained by the MLP2 feature set
(+17% relative).

3) The relative improvements after speaker adaptation are
generally reduced by 2% relative respect to the speaker indepen-
dent system. This is consistent with what was already observed
in [14] on English ASR experiments.

4) MLP1 features (multi-stream approach that combines
TANDEM-PLP and HATS) produce the lowest CER as stand-
alone feature set while the MLP2 produces the lowest CER in
concatenation with MFCC features.

The following section investigates if these findings on fea-
tures MLP1 and MLP2 hold also on larger amounts of training
data (1600 hours of speech) and in a more complex multipass
ASR system.



Figure 1: RWTH evaluation system composed of two subsystemstrained on MFCC and PLP features. The two subsystems consistof
ML training followed by SAT/CMLLR training. The subsystemslattice outputs are finally combined together.

Table 2: CER for MFCC, PLP and MLPs features for the speaker
independent system. In brackets relative improvements respect to
the spectral features (MFCC or PLP) only are reported.

Feature GALE-dev07 GALE-dev08 GALE-eval07
MFCC 15.7 14.0 15.8
MLP1 13.1 (+20%) 12.4 (+11%) 13.8 (+12%)
MLP2 13.3 (+18%) 13.1 (+6%) 13.9 (+12%)

MFCC+MLP1 12.3 (+21%) 11.5 (+17%) 13.1 (+17%)
MFCC+MLP2 11.6 (+26%) 11.3 (+19%) 12.8 (+19%)

PLP 16.4 14.9 16.2
MLP1 13.1 (+20%) 12.4 (+16%) 13.8 (+14%)
MLP2 13.3 (+18%) 13.1 (+12%) 13.9 (+14%)

PLP+MLP1 12.3 (+25%) 11.3 (+24%) 12.9 (+20%)
PLP+MLP2 11.7 (+28%) 11.2 (+24%) 12.7 (+21%)

Table 3: CER for MFCC, PLP and MLPs features for the speaker
adapted system. In brackets relative improvements respectto the
spectral features (MFCC or PLP) only are reported.

Feature GALE-dev07 GALE-dev08 GALE-eval07
MFCC 14.0 12.5 14.5
MLP1 12.4 (+14%) 11.4 (+8%) 13.4 (+7%)
MLP2 12.3 (+14%) 11.6 (+7%) 13.2 (+8%)

MFCC+MLP1 11.3 (+19%) 10.2 (+18%) 12.2 (+15%)
MFCC+MLP2 10.6 (+24%) 10.1 (+18%) 11.8 (+19%)

PLP 14.4 13.4 14.5
MLP1 12.4 (+14%) 11.4 (+14%) 13.4 (+7%)
MLP2 12.3 (+14%) 11.6 (+13%) 13.2 (+9%)

PLP+MLP1 11.4 (+20%) 10.4 (+22%) 12.2 (+16%)
PLP+MLP2 11.1 (+22%) 10.3 (+23%) 12.1 (+16%)

3. Large scale experiments
In order to study how the previous results generalize on more
complex LVCSR systems and large amounts of training data,
the experiments are extended using a highly accurate automatic
speech recognizer for continuous Mandarin speech trained on
1600 hours of data collected by LDC. The data are used for
training of the HMM/GMM systems as well as the MLP front-
ends. The evaluation is done on the GALE 2007 development
corpus (dev07), used for hyper-parameters tuning, the GALE
2008 development and the sequestered data of the GALE 2007
evaluation (eval07-seq) for a total amount of 5 hours of data.

The evaluation system is composed of two subsystems
trained using MFCC and PLP augmented with log pitch esti-
mates as base features. More details on feature normalizations,
acoustic models, and language models can be found in [8].

Figure 1 shows the RWTH evaluation system. The first
pass consists of simple Maximum Likelihood training, referred
as the speaker independent system (SI). In the second pass,
speaker variations are compensated for using Speaker Adaptive
Training (SAT/CMLLR). During recognition, Maximum Like-
lihood Linear Regression (MLLR) is applied to the means of
the acoustic models. We will refer to it as the speaker adaptative
(SA) system. The recognition is performed using a 4-gram lan-
guage model. Finally, the outputs of the different subsystems
are combined at the lattice level using the min.fWER combi-
nation method described in [15]; min.fWER has been shown
to outperform other lattice combination methods as ROVER or
Confusion Network Combination (CNC) [15], and also within
the GALE project it has shown to yield competitive systems [8].
This system is referred to as system combination (SC).

Furthermore, we also study the effect of discriminative
training both on individual sub-systems and on the lattice com-

bination using a modified Minimum Phone Error criteria [16].
Speaker Independent - Adapted system Table 2 reports

the performance of the SI system trained on MFCC and PLP
features as well as the two MLP front-ends. Furthermore results
obtained concatenating spectral features with MLP front-ends
are also reported. The values in brackets represent the relative
improvements w.r.t. systems trained on spectral features only.
Table 3 reports the same performance for the Speaker Adapted
system.

The results show similar trends as for the 100 hours. In
other words, the MLP feature performance scales with the
amount of training data. In particular:

1) The MLP1 and MLP2 front-ends outperform the spec-
tral features and produce a relative improvement in the range of
15%-25% when used in concatenation with MFCC or PLP. The
improvements are verified on all the three data sets.

2) The relative improvements after Speaker Adaptative
Training (SAT) are generally reduced respect to the speakerin-
dependent system.

3) After SAT, the MLP2 features (based on a hierarchi-
cal approach) yield the best performance in concatenation with
both MFCC and PLP.

System combination The results of MFCC and PLP sub-
systems combination are reported in Table 4 (first row). For in-
vestigation purposes, corresponding sub-systems trainedusing
MLP1 and MLP2 front-ends are combined in the same way and
their performance is reported in Table 4 (second row). Their
performance is superior to the MFCC-PLP system by9 − 14%

relative.
In order to increase the complementarity of the sub-

systems, features MLP2 and MLP1 were concatenated with
MFCC and PLP, respectively. The performance of the lattice



Table 4: Lattice combination (designated with⊕) of MFCC or PLP subsystems in concatenation with MLP features
Features GALE-dev07 GALE-dev08 GALE-eval07

MFCC⊕ PLP 12.9 11.9 13.5
MLP1⊕ MLP2 11.1 (+14%) 10.7 (+10%) 12.3 (+9%)

MFCC+MLP2⊕ PLP+MLP1 9.9 (+23%) 9.4 (+21%) 11.0 (+18%)

Table 5: Effect of discriminative Training on different subsystems and their combination (designated with⊕).
Features GALE-dev07 GALE-dev08 GALE-eval07

PLP+MLP1 9.9 (+13%) 9.3 (+10%) 11.0 (+9%)
MFCC+MLP2 9.6 (+9%) 9.2 (+9%) 11.0 (+7%)

MFCC+MLP2⊕ PLP+MLP1 8.8 (+11%) 8.5 (+10%) 10.4 (+6%)

level combination of those two sub-systems is reported in Ta-
ble 4 (third row). The results show that using MLP features in
concatenation with MFCC/PLP features produces an additional
relative improvement in the range of18 − 23% in system com-
bination.

Discriminative Training Table 5 reports CER obtained
after discriminative training. Results are reported for the
PLP+MLP1 system, the MFCC+MLP2 system and their lattice
level combination. In all the three cases, discriminative train-
ing is reducing the CER in the range 6-13% relative, showing
that it is effective also when used together with different MLP
front-ends. For computational reasons, fully contrastiveresults
with and without discriminative training are not availableon
the 1600 hours system. However the relative improvements re-
ported in Table 5 are comparable to those obtained without MLP
features [17], showing that improvements obtained from thetwo
techniques can be additive.

4. Summary and discussion
This paper first investigates several MLP front-ends proposed
during the GALE project on a small scale experimental setup.
Results reveal that most of the MLP features do not outper-
form the MFCC baseline when used as stand-alone front end.
Only complex front-ends like, Multi-stream feature (MLP1)and
augmented Hierarchical features (MLP2) outperform spectral
features. They outperform the MFCC when used as a stand
alone feature (10% relative improvement in CER for MLP1)
and a considerable improvement is obtained in concatenation
with spectral features (up to 17% relative for MLP2).

In the second part of the paper, we investigate these two
features with large amount of training data as well as on a state-
of-the-art multipass system. The findings from the small scale
study hold for large amount of training data on speaker inde-
pendent, speaker adapted systems and after lattice level combi-
nation. This is verified both in concatenation with MFCC and
PLP features. The hierarchical MLP approach (MLP2) holds
the largest reduction in CER. The final gain after lattice com-
bination is in the range of18 − 23% relative for the different
evaluation data sets.

In the future we intend to extend these studies to other
recently introduced MLP front-ends, such as bottleneck fea-
tures [4] which has been mainly tested for Arabic language.

5. Acknowledgments
This work was partly supported by the the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-06-C-0023 and by Swiss National
Science Foundation through the NCCR IM2. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the DARPA. The authors would like to

thank colleagues involved in the GALE project at IDIAP, ICSI, RWTH and SRI
especially Arlo Faria and Andreas Stolcke for their help anddiscussions.

6. References
[1] Hermansky H., Ellis D., and Sharma S., “Connectionist fea-

ture extraction for conventional hmm systems.,”Proceedings of
ICASSP, 2000.

[2] Chen B., Chang S., and Sivadas S., “Learning discriminative tem-
poral patterns in speech: Development of novel TRAPS-like clas-
sifiers,” inProceedings of Eurospeech, 2003.

[3] Hermansky H., Tibrewala S., and Pavel M., “Towards ASR on
partially corrupted speech,”Proc. ICSLP, 1996.

[4] Fousek P., Lamel L., and Gauvain J.L., “Transcribing Broadcast
Data Using MLP Features.,”Procedings of Interspeech 2008.

[5] Morgan N. et al., “Pushing the envelope - aside,”IEEE Signal
Processing Magazine, vol. 22, no. 5, 2005.

[6] Vergyri D. at al., “Development of the SRI/Nightingale Arabic
ASR system,”Procedings of Interspeech 2008.

[7] Mei-Yuh Hwang et al., “Building a highly accurate Mandarin
speech recognizer,”Proc of ASRU., 2007.

[8] Plahl C. et al., “Development of the GALE 2008 Mandarin
LVCSR system,” inProceedings of Interspeech, Brighton, U.K.,
Sept. 2009, pp. 2107–2110.

[9] Valente F., Magimai.-Doss M., Plahl C., and Ravuri S., “Hierar-
chical modulation spectrum for the GALE project,” inProceed-
ings of Interpseech, 2009.

[10] Lei X. et al., “Improved Tone Modeling for Mandarin Broadcast
News Speech Recognition .,”Proceedings of Interspeech, 2006.

[11] Valente F. and Hermansky H., “Combination of acoustic clas-
sifiers based on Dempster-Shafer theory of evidence,”Proc.
ICASSP, 2007.

[12] Hermansky H. and Fousek P., “Multi-resolution RASTA filtering
for TANDEM-based ASR.,” inProceedings of Interspeech, 2005.

[13] Valente F. and Hermansky H., “Hierarchical and parallel process-
ing of modulation spectrum for ASR applications,” inProceed-
ings of ICASSP, 2008.

[14] Zhu Q. et al., “On using MLP features in LVCSR,”Proceedings
of ICSLP 2004.

[15] Hoffmeister B. et al., “Frame based system combinationand a
comparison with weighted ROVER and CNC,” inProceedings of
Interspeech, Pittsburgh, PA, USA, Sept. 2006, pp. 537–540.

[16] Heigold G. et al, “Modified MPE/MMI in a transducer-based
framework,” in Proceedings of ICASSP, Taipei, Taiwan, Apr.
2009, pp. 3749–3752.

[17] Heigold G. et al., “Margin-based discriminative training for string
recognition.,” Journal of Selected Topics in Signal Processing -
Statistical Learning Methods for Speech and Language Process-
ing, to appear December 2010.


