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Abstract—In this paper, we propose and compare single- and the individual objectives. For these reasons, we articulate that
multi-objective programming (MOP) approaches to the language methods of traditional SOP are not enough and take an multi-

model (LM) adaptation that require the optimization of a number At rammina (MOP) perspective for solvina such
of competing objectives. In LM adaptation, an adapted LM is g:)é%(l:sr\:]es prog g ( ) persp 9

found so that it is as close as possible to two independently trained . .
LMs. The LM adaptation approach developed in this paper is One of the most researched engineering problems from
based on reformulating the training objective of a maximum an MOP point of view is regularization. Accuracy versus
a posteriori (MAP) method as an MOP problem. We extract model complexity trade-off for designing neural networks
the individual at least partially conflicting objective functions, was studied in [2], [3]. With a similar kind of mind-set
which yields a problem with four objectives for a bigram LM: luti MOP ! f t ¢ hi SVM '
The first two objectives are concerned with the best fit to the evo u_tlonary, 0 .s.up.por vector machines ( s) was
adaptation data while the remaining two objectives are concerned considered in [4] to minimize FA rate, FR rate and the number
with the best prior information obtained from a general domain  of support vectors to reduce model complexity. All these
corpus. Solving this problem in an iterative manner such that previous work indicate that MOP offers a great degree of

each objective is optimized one after another with constraints on fraadom for obtaining a proper tradeoff among accuracy and
the rest, we obtain a target LM that is a log-linear interpolation .
model complexity.

of the component LMs. The LM weights are found such that . . o .
all the (at least partially conflicting) objectives are optimized 10 illustrate the use of MOP in a "ea“St!C application, we
simultaneously. We compare the performance of the SOP- and consider the language model (LM) adaptation problem [5], in

MOP-based solutions. Our experimental results demonstrate that which a background LM is adapted to an application domain
the ICO method achieves a better balance among the designgg, 4t the adapted LM is as close as possible to both the
objectives. Furthermore, the ICO method gives an improved S .
system performance. background model an_d thg apphc_atmn domain data. Language
modeling and adaptation is used in many speech and language
processing applications such as speech recognition, machine
l. INTRODUCTION translation, part-of-speech tagging, parsing, and information
It has been increasingly recognized that realistic problemetrieval.
often involve the consideration of a tradeoff among many Statistical n-grams are the state-of-art language models
design objectives. Consider regularization methods employgdVs) for large vocabulary automatic speech recognition
to avoid over-fitting, and hence, to improve generalizatiofASR). A statisticaln-gram LM is a representation of an
capabilities of learning machines such as neural networks [} — 1)%* order Markov model in which the probability of the
Traditionally, regularization is conduced by including an adsccurrence of a symbol is conditioned upon the occurrence
ditional term, which penalizes overly high model complexitypf the preceding+( — 1) symbols. Such:-gram models are
in the cost function of a learning algorithm. These regularizéypically constructed from a large corpus of text based on the
tion methods aim at a tradeoff between accuracy and modeloccurrences of the existing words. In practice, sthgram
complexity, which in most cases do not go hand-in-hand. LMs are extremely brittle across domains, and even within a
Traditional algorithms aim to satisfy multiple objectives bydlomain when the training and the recognition stages involve
forming a global objective function and solving the resultingnoderately disjoint time periods.
problem through the use of classical single-objective program-When the application specific data is of limited amount,
ming (SOP) methods. Combining several competing objectivasgeneral domain dataset is used to estimate an adequate
into an overall objective function, such SOP-based approachepresentation of prior information about thegram proba-
promise that the chosen overall objective function is optimizedilities, which is called a background LM. The target LM is
However, there is no guarantee on the performance of tf'emed by adapting the background LM to the new application
individual objectives as they are not considered separatefpmain by making efficient use of the limited application-
Moreover, one or more objectives tend to dominate the op$ipecific data. Among the most popular LM adaptation tech-
mization process. It will easily become overwhelming to findiques, interpolation-based approaches use the application-
an overall objective function that achieves desirable levels fepecific adaptation data to derive an LM that is merged with

_ _ the background model. Cache methods exploit self-triggering
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by the background model. Constraint specification approachegural ordering in the objective space. For example, let the
use the application-specific data set to extract featuresthat tleetor [f,, f2] denote the objective function values in a two-
adapted LM is constrained to satisfy. Topic-based approactugective MOP problem. The vectfr, 1] can be said to be less
use the application-specific data set to extract informatidhan(3, 3], but it is not obvious how to compafe, 3] to [3, 1].
about the underlying subject. MAP-based approaches usé&teerefore, in MOP problems, there are usually (infinitely)
prior distribution to exploit how much the-gram estimates many optimal compromise solutions that form the so-called
in the specific domain diverge from the background estimatdzareto optimal set. A decision vectét is (global) Pareto
See [5] for a review of the most popular LM adaptatiomptimalif there does not exist another decision vedmsuch
techniques with pointers to appropriate references. that fi,(8) < fi(6%), forall k =1,..., K, andf,(0) < f,(0")

In this paper, we take an multi-objective programmingt least for one indey [8]. According to the definition of
(MOP) approach to LM adaptation. MOP is concerned witRareto optimality, moving from one Pareto optimal solution to
finding the solutions in which a set of objective functions arenother necessitates trading off. Mathematically, every Pareto
simultaneously optimized, meaning that it is not possible wptimal solution is an equally acceptable solution to the MOP
improve any objective without degrading some others. Mamyoblem.
practical applications such as pattern classification can beMOP methods mainly fall into two major categories, in
posed as MOP problems, e.g., as we did in [6]. which the original MOP problems are converted into SOP

The LM adaptation approach developed in this paper [goblems either by aggregating the objective functions into
based on reformulating the training objective of the structurah overall objective function or by reformulating the problem
MAP (SMAP) method that we proposed in [7] as an MORvith proposer constraints [8]. One of the most common
problem. We extract the individual least partially conflicting engineering practices to solving MOP problems is the so-
objective functions in the SMAP formulation. For a bigrancalled weighting method. It reformulates the original MOP
LM, this yields a problem with four objectives: The first twoproblem as a convex linear combination of the individual
objectives are concerned with the best fit to the adaptatiohjectives with positive weightsy, > 0, such thad _, v, = 1.
data while the remaining two objectives are concerned with tAde task is, then, to minimize this overall objective function,
best prior information obtained from a general domain corpuse., to solve
Solving this problem in an iterative manner such that each &
objective is optimized one after another with constraints on the mn Z S (8),
rest, we obtain a target LM that is a log-linear interpolation k=1
of the component LMs. The LM weights are found such thithere the weightsy,, reflect the significance of the individual

all the (at least partially conflicting) objectives are optimize@bjectives. One of the fundamental limitations of the weighting
simultaneously. method is that the feasible objective space is not necessarily

The rest of the paper is organized as follows. In Se€onvex whereas the Pareto optimal solutions in the non-convex

tion Il, some background information on MOP is provideoSUbset of Pareto optimal solutions cannot be found with the
In Section 11, the iterative constrained optimization techniqu&eighting method [9]. Another major drawback is that solving
that we propose to use in LM adaptation is described. fRe problem with numerous weight vectors will give a limited
Section IV, an SOP- and an MOP-based approach is descrifiégtnber of Pareto optimal solutions. It is crucial that these
for LM adaptation. In Sectiof®?, our experimental results aresolutions be spread in the objective space as uniformly as

reported. Finally, the conclusion and future work is present@@ssible. The weighting method fails to meet this requirement
in Section VII. and generates an irregular discretization of the (convex part of

the) Pareto optimal set [8], [9].
[I. MOP TERMINOLOGY

) ) L [1l. | TERATIVE CONSTRAINED OPTIMIZATION (ICO)
Suppose that we are given a setfofcompeting objectives, ) ) o o
f(0) € (0,1) , k = 1,.., K, each of which is nonlinear Consider formulating the multi-objective optimization prob-

function of a set ofM decision vectorsw,, € R*, m — lem as a set of{" single-objective optimization problems in

1,.., M. The best compromise solutionga, ..., &}, are the form
found by MOP, which is formulated as: mgin 11(0)
0= {n,...on} = argmin [f1(0), f2(6), ... [ (0)]. (1) subjectto  f,(0) < f,,p=1,..K.p#k (2

In general, an improvement with regard to one objective caudes all £ = 1,..., K, i.e., the minimization of one objective
a deterioration of another. This corresponds to the situatitumction, f;(¢), with proper constraints on the othek” — 1)
that the objective functions arat least partially conflicting competing objectivesf,(6), Where?p’s are the upper bounds
meaning that they are conflicting at least in some regions fofr the objective function values to be attained.
the search space. In this paper, we refer to such objectiveStarting with a decision vectat’) and the corresponding
functions ascompetingobjectives. objective vectorf = (£V(6), ..., f(9)), the goal in
In SOP problems, we say that a solution with a smallé€O is to move into another decision vect®r yielding an
objective function value is better than one with a large objeobjective function vectorf(?) where at least one objective
tive function value. However, in MOP problems, there is nfunction f;,1 < k < K attains aconsiderably improved



/ Afl“) <0 guantities that are estimated from the application-specific data,
A; the subscript S” denote the quantities that are estimated
from the general domain datg; and the subscriptT” denote
the quantities that come from the unknown target distribution.
Given an appropriate prior information for the-gram
probabilities,g(Ps(w|h,,)), estimated fronS, the target LM
probabilities, Pr(w|h,,), can be found by maximizing the a
posteriori probability given the observed text dakH, This
corresponds to solving the following problem:

A‘fz(l' > O{

i

4% >0
Pr(w|h,) = argmax P(Pr|W) = argmax P(W|Py)g”(Ps).
Fig. 1. A close neighborhood of the current compromise solution is searched P P (4)
for a better compromise solution in each iteration. Each intermediate stve\ﬁ] . . .
yields an iterate on a more favorable indifference curve. ere a non-negative numbey, is included in (4) to control

the contribution from the involved datasets. It is implied
by (4) that the greatep is, the more the prior information is
Slepended upon, and hence the more the general domain dataset

point Z, is the starting point, and a better compromise solutidfPntributes while the more the influence of the application-
is being searched for. Because of the conflicting nature %qecmc data is discounted. This is useful since, for instance,
the two objectives, it is possible to achieve a reduction f§€ Prior information might not be reliable and we may be
1 wheneverf, is slightly increased. To compensate for thgﬂeres:ted in discounting its influence. Or else, the application-

performance loss inf,, f; should be slightly increased, angSPecific data may be too limited and we may want to increase

the bestf, for the givenf; value is searched for. Adjusting thethe influence of the prior information by tunipgo a relatively

constraints for the objectives by slightly perturbing their modd"9e value. _ ,
recent values corresponds to setting the constraint bounds a8 [7]: the Dirichlet density was used to model the prior
follows: distribution. Dirichlet density was chosen because it is the con-
F=f+0. 3) jugate prior density of the multinomial density. L&(w|h,,)
denote the hyper-parameters estimated fnThe use of a
where f is the vector of the most recent objective functiomirichlet density yields a hierarchical estimation formula for
values, ands € R¥ is a vector of small perturbations addedhe hyperparameters as well as a closed-form solution for the
to f. n-gram probabilities as
It is important to note that, in general, it is not necessaril
correct thpat the resulting individgal objectives are preferabl}é Pr(wlh,) = calhy,w) + plds(lhn) —1)
to the initial ones, especially when there are many competing calho) + 22, [p(ds(wilhe, ) — 1)]
objectives: What is gained in one iteration can quickly be The hyperparameters for the root nodes, i.e. (fer 1, are
lost in the subsequent iterations. This is because when @séimated as
objective is increased, some of the other objectives reduce P (wlhy) =1+ ec(hl)),

whereas some may increase. In ICO, a step-size is taker\lNﬁere 0 < ¢ < 1is a weighting coefficient. Note that

domg—s_o rtladuces 6}| pre—?elected cost functlonr.] d b kwhen e is small, the unigram observation frequencies are
No Elng_e fovera pei.r ormance m_easuri Sh OUICOe 18K counted. We obtain a recursive formula for estimating the
as a basis for a realistic comparison of the -train perparameters associated with the node at’thiyer using

class!f!ers_ to more tradltlo_nal classifiers. For many realistjfi hyperparameters at the-1)** layer in atop-downmanner
classification tasks, we typically want to prevent bias towar

any of the objectives and desire a symmetry across the many

competing objective functions. The ICO method is promising  ¢5(w|he) = c(h{Y,wi) + p(¢5 " (w|hw) — 1) + 1,

for producing lessoutliers in the objective function space -1 :

compared to the SOP algorithms with an overall objectivvgherequ (wlh.) is the hyperparameter of the parent node.
function. One way to quantify the degree to which a classifier V. AN MOP-BASED APPROACH
results in outlier objective values is to compare the upper and
lower 5% or 10% percentile averages.

value, while others arpossibly slightly degradedonsider the
illustration in Fig. 1 for a two-objective MOP problem, wher

(®)

In this section, we develop an MOP-based approach to the
LM adaptation, which takes its roots in ICO method.

IV. AN SOP-BASED APPROACH A. Formulation of LM Adaptation as an MOP Problem
In [7], we proposed a structural MAP (SMAP) framework | et p, denote am-gram LM estimated on the application-
for estimating then-gram probabilities using a hierarchicalspecific data,A, and Ps, denote ann-gram LM estimated
structure. The MOP approach that we develop in this papen the general domain dat& The KL divergence of the
has its roots in SMAP. For this reason, this section is devotigetn-gram distribution, Pr(w|h,,), from an estimatedh-
to an overview of SMAP. The connection between these tWwHa™ model.P,, (which is eitherP,, or P%,) is given by
approaches is the subject of the next section. For the rest of Pr(wlhe)

< >
DI[Pr||P.] = Pr(h P hy)log —————.
the discussion in this paper, let the subscript Henote the [Pl ] w(h) r(wlhe)log P (wlhe)

h w

(6)



Maximizing the likelihood function is equivalent to minimizing C. Sequential ICO for Language Model Adaptation

the KL divergence of the target model from a model obtained ¢qyngiger formulating the MOP formulation of the LM adaptation
from the data (hered), i.e., to minimizing D[Px|[Fs,] [10]. In  proplem as a series of constrained optimization problems as in (7)
the meantime, the conjugate prior density is the distribution whicl}, (8). In generalP is a considerably larger model thaf., and
minimizes the KL divergence of the target posterior model from the. e one would expect the two objectives to have different scales.
prior distribution. Minimizing the KL divergence of the target modelrpe 4 objectives in each of these problems can be rewritten so that
from the prior model makes the target model spread out as uniformly 1,5+ \ve can expect similar "distances”. This can be achieved by
as possible without contradicting the given information. Thus, the UsGeraging each KL divergence by the numbenegrams each model
of conjugate prior density implicitly minimize®[Pr||Ps,]. Based s,
on these two results, the LM adaptation problem SO'Vefj by the SMAP 14 solve the two-objective optimization problems in (7) and (8),
methqd can be posed as the following M_QP problem: .. two optimization subproblems need to be solved one after another.

Objective 1: The targetn-gram probabilities should be at a mini-These two subproblems are

mum distance from the background model. By minimizing

the KL divergence of the target model from the backgroun . 1
model, given new facts, the new distribution is being chose PROBLEM 1) PTJI(E?}ILU) N, D{Pr, (@lheo )1 Pan (w]he)]
which is as hard to discriminate from the well-trained

1
DIPr,, (wlha)||Ps,, (w]h)] < ds

background model as possible. s.t. N

Objective 2: The targetn-gram probabilities should be at a min-
imum distance from the distribution obtained from limited
application-specific data. By minimizing the KL divergence . 1
of the target model from a model estimated from the' ROBLEM 2) Pr olhe) N D[P, (wlhe) |1 P, (w]he)]
application-specific data, the new distribution is suitable to 1
describe the source generating the application-specific data. s.t. N

mA

S

DI[Pr, (w|hw)||Pa, (who)] < da

B. At-Least-Partially-Conflicting Objectives in LM Adaptatiorwheren = 1,2, andds and d, are the constraint bounds obtained
The KL divergenceD[Pr||Py,] (or D[Pr||Ps,]) is minimal (and Dy perturbing the most recent averaged KL divergences. For solving
equa' to Zero) when the target modﬂr’ is exact'y the same as (PROBLEM 1), the constraint is |nCOrpOrated into the 0pt|m|zat|0n
P4, (or Ps,) and any deviation fron,, (or Ps, ) results in a non- Process using a Lagrangian multipligs. This results in the follow-
zero KL divergence. Becaus@: cannot be exactly the same &, INg Lagrangian function:
and P, at the same time, minimizing[Pr||Ps,,] and minimizing _
D[Pr||Pa,] are at least partially conflicting objectives. Since the L(Pr,,As,) = DIPr,||Pan] + As, - DIPr.||Fs,] - (11)
goal in LM adaptation is to compensate for the insufficiency of the, oquating the gradient of this Lagrangian function with respect to
application-specific data set by using the general domain corpus, 1® 100 as
best approach to reliably estimating thegram probabilities is to "
establish a compromise between these two KL divergences. Pr,
Let ¢ denote an index from the index sgh1, A2, S1,S2}, where, 1+ log P
A,, denotes the quantities of arigram model estimated froh and "
Sn denotes the quantities of angram model estimated froff. *  we obtain a closed form solution for the probabiliti®s(w|.,) as
Based on the results of the previous section, LM adaptation as solved \
by SMAP can be posed as an MOP problem in two different ways:  p (/) — 1 [PA(W‘hw)}ﬁ[PS(wlhw)}ﬁ (12)
A sequential optimization approach Z(hy)
It is possible to find the probabilities of unigrams, bigrams . . .
and pso on, one after a%other. We refer gt]o this agproa:‘%\?r‘ere Lagrange multiplieAs is the only unknown and(h.,) is a
as sequential ICO for language modeling and adaptatio istory-dependent normalization factor.
For a blgram model,. this means solving the following 1) Finding the Component LM Weights:
optimization problems:
min D|Pr, || Pa, ] (7) There is no closed-form solution fox but it can be found by
. iterative techniques. For this purpose, the constrainPrROBLEM 1)
min DI[Pr, || Ps,] ;
can be rewritten as

Pr,

P,

+ As, - 1+log

=0, (11)

and then

d(As) = D3 [Pr(w|h)||Ps(w|h)] —ds = 0 13

T @ (As) = D [Pr(w|h) | Ps(w]h)] ~ ds (13)

min D[Pr,||Ps,] The zeros of this function can be obtained using the Newton’s method
) o for nonlinear equations [11] as follows:

An all-in-once optimization approach
It is possible to compute the-gram probabilities of all A\ — e, d(As,k) (14)
orders in only one optimization problem (instead of two). Skl = A8,k ag&xs,m
S,k

We refer to this approach ds-objective ICO for language
Sm%dnedlgn?Oinodw%da?ﬁzt'%ﬁ%f]‘ b:gﬁ?‘()g‘.ggﬁ\'/*eth'rsoggﬁ' The derivative ofd(\s ) with respect tos, turns out to be a
P 9 9 ) P " function of the target probabilitieﬁDTAs"“(w\h) and is computed as:

min D[PT1 HPAl] 9) P
i o4k _ T Pr(h) x
min DI Pr, ||Ps,] (10) h Yk =" P
min DI[Pr,||Pa,] P Peton) i X e
min D[P, ||Ps,] » T¥log piliny - gy log pr Pt (wih) - (19)

IThe divergences from unigram models as well as bigram models shodif€ solution to PROBLEM 2) is very similar: We just need to switch
be considered since backing-off is used when an unknexgram is observed P and Fs, and replace\s with Ax.
during the recognition (test) stage.



2) Algorithmic Implementation: no deviation of the objectives in the constraints from the constraint
bounds.

The algorithmic implementation of the sequential ICO for lan-
guage modeling and adaptation is given in Table I. The algorithm 2) Finding the Component LM Weights:
starts with estimating the low-ordes-gram probabilities for they
are used as the history probabilitie2; (), for high-ordern-grams. There are no closed-form solutions for the Lagrange multipliers,
D[Pr(w|h)||Ps(w|h)] is minimized by refining\s » so thatd()s ) A, butthey can be found by iterative techniques. Given the constraint
becomes roughly equal to 0. Once suchgais found, it is used to boundsd;, \;’s should be such that the derivative of the Lagrange
calculate the targeh-gram probabilities as in (12). After solving function with respect to\; vanish (by KKT optimality conditions),
the first subproblem in this manner, the algorithm proceeds witie., 55 = D[P||P] — di = 0,Vi.
solving the second subproblem. This iterative process stops wherlLet D()\;) denote the deviation of a KL divergence from the
there is no progress in neithed(Pr||Ps) nor D(Pr||Fs). The respective constraint bound, i.®@(\;) = D[P||P;]—d;. Itis a func-
relation \s = 1,/As comes from the fact that to make the initialtion of \; since P(w|h.,) used for calculatingD[P||P;] is obtained
target probabilities of PROBLEM 1) the same as those found afterby (12). The zeros of this function can be obtained using the Newton’s
solving (PROBLEM 2), we should have /As = Ay /(1 + Aa). method for nonlinear equations as1 = A; —D(A\;)/D’(\;) where

0D 0D OPr

/ _— —_—
D. K-Objective ICO for Language Model Adaptation D) = N,  OPr O\ (20)
We choose to optimize each objective with constraints on the _ = Pelho) (11 Pr(wlhe)
others. We then have four subproblems that will be solved one after - r(he)(1 +log pi(w|hw))
another. For instance, one of these subproblems is (wehe) #
min  DIP|Pa] (1= P log Piwlhe) Pr(wlhe) (21
subject to D[PHPZ} —d; = 0,7 € {Al,Sl,SQ} 3

For convenience, we restate this problem in an equivalent form as

min A4, (D[P”PAz] - dAz) (16) . . . .
subject to DIP||P)] — d; = 0,i € {A1,S1,Ss} If it was pqssnble to know the KL dlvergence§ thatadgswable target
v v ’ e LM would yield, this problem could be relatively straightforward.
The reason for incorporating a scaling factos, and a reference However, since we initially are not given these KL divergences, we
value d4, for the primary objective function (that is, the objectivechoose to adjust the goals in an iterative manner.
function of the problem in (16)) will shortly become clear. This The constraint bounds are obtained by perturbing the most recent
problem can be solved by incorporating a Lagrange multiplier fdL divergences. The reference value for the primary objective is

3) Adjusting the Constraint Bounds:

each constraint. The resulting Lagrange function is obtained by decreasing the most recent value (for instance, by
< multiplying by 0.9). The constraint bounds for the objectives in
L(P,)\;) = Xi(D[P||P;] — di) (17) the constraints are obtained by slightly increasing their most recent

i values (for instance, by multiplying by 1.1). This is to ensure that

the KL divergence of the target model from the primary objective is
reduced while the others are tolerated to increase. The algorithmic
implementation of the proposed ICO method for LM adaptation is

wherei € {A1, Az, S1,S2}. The target LM probabilitiesPr(w|h. ),
are such that

R > OD[P||P] _ (18) given in Table Il.
OPr(wl|ho) ) ZBPT(w\hw)
' Pe(w]ho) 4) Finding and Validating the Step-Size:
Ai l+log ——12¢/ —¢ The two objectives in the LM adaptation application interact in
i Pi(wlhe) a complicated manner. It is hard to analyze which objective has

. . . . . . what kind of impact on the speech recognition performance, For
theSco:l)vrlwnp?otr?;tprL(l)\;)éegnsj we obtain a log-linear interpolation (LL) Ofthis reason, the perplexity is used as the utility function to judge
the preferability of the new step found with the Armijo rule. That is,

with the ICO method for the LM adaptation application, the step-size
found by Armijo rule is validated and the LM weights are updated
only in those cases which do not result in degradation in terms of
where Z(h.,) is a history-dependent normalization factor. Note thaterplexity.

the same form oPr(w|h,,) is obtained irrespective of the subproblem

Pr(wlhy) =

Y .
Zthy | D)™ (19)

being solved. (Remember that there are four subproblems to be solved
for a bigram target LM.) This is the reason for the inclusion\af, ) . V1. EXPERIMENTAL _RESULTS .
andda, in (16). In this section, we report our experimental results comparing the
two proposed LM adaptation approaches with log-linear interpolation
1) Algorithmic Implementation: and SMAP.

The algorithmic implementation of the proposed ICO method fo . .
LM adap?ation is givepn in Table 1. The aﬁ)goﬁthm starts with somé- Experimental Results with SMAP
initial LM weights A\. These LM weights are refined in a manner that In our experiments we used the Wall Street Journal (WSJO0) dataset,
the subproblems in (16) are solved one after another. which was designed to provide a wealth of general-purpose speech
In order to set some initial constraint bounds for each objectivdata with large vocabularies [12]. It has a set of over 1.6 million stan-
all the KL divergences are evaluated. For the primary objective, tardized sentences for LM training collected from 1987 until 1989.
resulting KL divergence is discounted and set as the constraint bourtte test domain data is composed of WSJ newswire stories collected
while for the other objectives, the KL divergences are inflated arid November 1992. Unfortunately,-gram LMs are extremely brittle
set as the constraint bounds. even within domain when training and recognition involve moderately
The LM weights are found so that (i) the deviation of the primardisjoint time periods, yet there is no LM adaptation set provided
objective from the reference value is minimized, and (ii) there isithin the WSJO dataset.



TABLE |
SEQUENTIAL ICO ALGORITHM FOR LM ADAPTATION

I. Set Pp(h) = N% where N7 is the number of unigrams.
Il. For n=1,2,...(i.e., unigrams, bigrams,...)
Repeat until no progress iP(-)’s:
Ao = 0.5.
/ISolve PROBLEM 1):
ii.  until d(Xs,x) ~ 0.
Computelg j, from Equation (17).
ii. s =gk
iv. ~ ComputePr(w|h.) from Equation (15).
V. >\A\ =1 \ >\S-
/ISolve PROBLEM 2)
vi. until d(Ag %) =~ 0.
Compute), j, from Equation (17).
. Aa = Ak
iv.  ComputePr(w|hy) from Equation (15).
V. )\g =1 \ /\A-
/INew history probabilities for higher-order-grams:
P’I[‘(hw) = P_[‘(w‘hu).

TABLE I
K-0BJECTIVEICO ALGORITHM FOR LM ADAPTATION

I. Start with some initial LM weightsj;, i € {A1, S1, A2, S2}.
Il. Repeat
For eachi € {A2, S2, A1, 51} (in this order):
i Find the initial constraint bounds:
d? = 0.9D[Pr||P;], if k=1,
d) = 1.1D[Pr||P;], if k # i
ii. We want to solve:
min \; (D[P||P;] - df)
subject toD[P||P] — d = 0,k # i
iii. Computel,k € {Aa, S2,A1,S1} so that
D(X;) is minimized andD(\), k # i is 0.
iv.  Evaluate Py for these values of\;s.

Therefore, in [7], we constructed an artificial adaptation set twhenp = 0.1 than whenp = 107°.
illustrate the use of the proposed LM adaptation framework. For This behavior suggests, first, that when the contributions from the
doing so, we separated some of the sentences in the original textent nodes were very small or very large, igewas at extremes,
material as an artificial application-specific set. To make sure thée resulting LMs were not so right. Whegnwas large, the node-
this portion of the dataset is more relevant to the application thapecific information is dominated by the parent-specific information.
the rest, we selected those sentences which are rich in termswifen p was small, the nodes did not inherit significant information
the test setn-grams. After doing so, we trained an applicationfrom parent nodes. Secondly, with an appropriate selectiqn tie
specific LM using this separated portion, which constituted 10%rior information helped improve the performance by contributing in
of the available text data. The remaining 90% was used to traife n-gram probability estimation.
a background model. Both models were trained simply using the2. Effect ofe

maximum likelihood principle [13]. In [7], we demonstrated that gecondly, we explored the effect of changingy fixing p. The
this separation of adaptation material from the training data Wagrametere has an influence on the estimation of hyperparameters
appropriate to show the use of an LM adaptation technique. at the root nodes, which are then propagated to all other tree nodes.

S The perplexity and WER are plotted as functionsedbr different
1) Performance of SMAP LM Adaptation: values ofp in Fig. 4 and Fig. 5, respectively. Note that Fig. 4 and

We performed experiments to find the effect of different param&19- 5 are just other ways of looking at Fig. 2 and Fig. 3.
ters, p ande, on the perplexity and WER. We observe that the perplexity slightly reduced eaicreased

1. Effect ofp except for the case when= 0.1. The same result held true for the

First, we explored the effect of the forgetting factor|t is a para- change of WER as well. Whenis very small, then-gram counts in
meter serving two purposes: First, it controls how much informatidhe root nodes are excessively smoothed. This means that even when
each node inherits from its parent node. Second, it controls how mu&g frequencies of two unigrams differed by orders of magnitude, the
the prior information contributes in SMAP probability calculation. corresponding hyperparameters were very close.

The perplexity and WER are plotted as functionspdor different 4. SMAP Adaptation with a Relevant and an Irrelevant Adaptation
values ofe in Fig. 2 and Fig. 3, respectively. Fig. 2 shows thabDataset
the perplexity first reduced as increased, reaching its minimum Our final experimental study with SMAP concerned about the
at 47.65 atp = 0.01 for e = 0.01, and increased thereafter. Upon gerformance of the SMAP LM adaptation framework. For this reason,
comparison of Fig. 2 and Fig. 3, we observe that the perplexity aimd addition to the relevant adaptation get, we constructed an
WER in general change in parallel except that the perplexity waselevant set, called an irrelevant adaptation set and denoted as
higher whenp = 0.1 than whenp = 1075, yet the WER was lower A;, which is expecteaot-to-helpthe recognition. Our experimental
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The average KL divergences of the target model from two indé&ig. 6. The performance of SMAP LM adaptation when relevant adaptation

pendently models, one trained on the general domain data and @at is made available.

1) Performance Evaluation of Sequential ICO for Language
other trained on the application-specific data, are being minimized.

Modeling and Adaptation:



—— Average KL divergence from F’S |

R Average KL divergence from P, | |

formulated the original multi-objective programming problem as an
iterative process of the optimization of individual objectives with
proper constraints on the remaining competing objectives.

Average KL divergence

iteration number

In this work, we considered language model (LM) adaptation,
where a background LM is adapted to an application domain so that
the adapted LM is as close as possible to both the background model
and the application domain data. For this, we first considered an
SOP-based approach. We, then, formulated the original problem as
an MOP problem and solved it using the ICO method. Finally, we
compared the performance of the SOP- and MOP-based solutions
for each of the applications. Our experimental results demonstrated
that the ICO method achieves a better balance among the design
objectives. Furthermore, the ICO method gave an improved system
performance.

We believe ICO is well suited for many problems in a wide
range of applications. We will further this line of research in several

Fig. 7. The average KL divergences of the target model to the backgrouttgoretically rich directions. One of the first ones is about the
model P; and to the application-specific modE}, move towards a balance. automatic means to infer the constraint bounds. We have observed

COMPARISON OFLM ADAPTATION METHODS OF INTEREST

TABLE

in our experiments that different settings for the constraint bounds
directly translate into different end results, as our intuition also
suggests. Based on our experience, we foresee that the constraint
bounds can be set by analyzing the sensitivity of the problem on the

(2]

The goal in ICO is then to reach a balance among these two distankd
measures. Our experimental result on the change of the average KL
divergences is shown in Fig. 6. The constraints were obtained so that
the most recent objective functions were increased by 1%. As sho
in Fig. 7, the average KL divergences moved towards a better balance.
Moreover, each objective followed a zigzag pattern throughout the

iterative process. This is because the two objectives attempt to modif§]
the target model probabilities to be close to their respective model.

2) Performance Evaluation of<-objective ICO for Lan- [©]
guage Modeling and Adaptation:

We then performed experiments on model perplexity and ASFV]
word error rate (WER) to compare the performance of the proposqg]
LM adaptation framework with the SMAP method and Klakow's LLI g
model. Our experimental results are reported in Table Ill. In our ASIi
experiments, we used the same design as in [7]. The SMAP model
was trained withp = 0.0001 for the propagation of hyper-parameters,
€= 0.01, andp = 0.1. [10]

As shown in Table lll, the MOP-based approach is superior to
SMAP by 3.8% in terms of relative reduction in WER in ASR!11
experiments. This is because MOP leaves more flexibility in findir{éz]
the n-gram estimates while SMAP attempts to merge the conflicting
goals a priori in an overall function. In the meantime, in compariso[rﬂg]
to Klakow's LLI, the MOP solution performs relatively 2.1 % better
in terms of WER. Although both had the same form of the solution,
the distinction was in the way the LM weights (i.e., the Lagrange
multipliers) were estimated. Although the improvements do not seem
significant, the major gains in solving the LM adaptation problem
with MOP are twofold: (i) Upon observing the behavior of eact
objective, we have full freedom to tune the system into differer
operating points to meet different requirements. (ii) Meantime, k
observing each objective, we can easily avoid extremes, i.e., the ca
that the target LM is too dependent on the application specific de
or on the general domain data.

VIlI. CONCLUSION AND FUTURE RESEARCH
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