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A Comparison of Single- and Multi-Objective
Programming Approaches to Problems with

Multiple Design Objectives
Sibel Yaman and Chin-Hui Lee

Abstract— In this paper, we propose and compare single- and
multi-objective programming (MOP) approaches to the language
model (LM) adaptation that require the optimization of a number
of competing objectives. In LM adaptation, an adapted LM is
found so that it is as close as possible to two independently trained
LMs. The LM adaptation approach developed in this paper is
based on reformulating the training objective of a maximum
a posteriori (MAP) method as an MOP problem. We extract
the individual at least partially conflicting objective functions,
which yields a problem with four objectives for a bigram LM:
The first two objectives are concerned with the best fit to the
adaptation data while the remaining two objectives are concerned
with the best prior information obtained from a general domain
corpus. Solving this problem in an iterative manner such that
each objective is optimized one after another with constraints on
the rest, we obtain a target LM that is a log-linear interpolation
of the component LMs. The LM weights are found such that
all the (at least partially conflicting) objectives are optimized
simultaneously. We compare the performance of the SOP- and
MOP-based solutions. Our experimental results demonstrate that
the ICO method achieves a better balance among the design
objectives. Furthermore, the ICO method gives an improved
system performance.

I. I NTRODUCTION

It has been increasingly recognized that realistic problems
often involve the consideration of a tradeoff among many
design objectives. Consider regularization methods employed
to avoid over-fitting, and hence, to improve generalization
capabilities of learning machines such as neural networks [1].
Traditionally, regularization is conduced by including an ad-
ditional term, which penalizes overly high model complexity,
in the cost function of a learning algorithm. These regulariza-
tion methods aim at a tradeoff between accuracy and model
complexity, which in most cases do not go hand-in-hand.

Traditional algorithms aim to satisfy multiple objectives by
forming a global objective function and solving the resulting
problem through the use of classical single-objective program-
ming (SOP) methods. Combining several competing objectives
into an overall objective function, such SOP-based approaches
promise that the chosen overall objective function is optimized.
However, there is no guarantee on the performance of the
individual objectives as they are not considered separately.
Moreover, one or more objectives tend to dominate the opti-
mization process. It will easily become overwhelming to find
an overall objective function that achieves desirable levels for
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the individual objectives. For these reasons, we articulate that
methods of traditional SOP are not enough and take an multi-
objective programming (MOP) perspective for solving such
problems.

One of the most researched engineering problems from
an MOP point of view is regularization. Accuracy versus
model complexity trade-off for designing neural networks
was studied in [2], [3]. With a similar kind of mind-set,
evolutionary MOP of support vector machines (SVMs) was
considered in [4] to minimize FA rate, FR rate and the number
of support vectors to reduce model complexity. All these
previous work indicate that MOP offers a great degree of
freedom for obtaining a proper tradeoff among accuracy and
model complexity.

To illustrate the use of MOP in a realistic application, we
consider the language model (LM) adaptation problem [5], in
which a background LM is adapted to an application domain
so that the adapted LM is as close as possible to both the
background model and the application domain data. Language
modeling and adaptation is used in many speech and language
processing applications such as speech recognition, machine
translation, part-of-speech tagging, parsing, and information
retrieval.

Statistical n-grams are the state-of-art language models
(LMs) for large vocabulary automatic speech recognition
(ASR). A statisticaln-gram LM is a representation of an
(n− 1)st order Markov model in which the probability of the
occurrence of a symbol is conditioned upon the occurrence
of the preceding (n − 1) symbols. Suchn-gram models are
typically constructed from a large corpus of text based on the
co-occurrences of the existing words. In practice, then-gram
LMs are extremely brittle across domains, and even within a
domain when the training and the recognition stages involve
moderately disjoint time periods.

When the application specific data is of limited amount,
a general domain dataset is used to estimate an adequate
representation of prior information about then-gram proba-
bilities, which is called a background LM. The target LM is
formed by adapting the background LM to the new application
domain by making efficient use of the limited application-
specific data. Among the most popular LM adaptation tech-
niques, interpolation-based approaches use the application-
specific adaptation data to derive an LM that is merged with
the background model. Cache methods exploit self-triggering
words inside the application-specific data set to capture short-
time shifts in word frequencies, which cannot be captured
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by the background model. Constraint specification approaches
use the application-specific data set to extract featuresthat the
adapted LM is constrained to satisfy. Topic-based approaches
use the application-specific data set to extract information
about the underlying subject. MAP-based approaches use a
prior distribution to exploit how much then-gram estimates
in the specific domain diverge from the background estimates.
See [5] for a review of the most popular LM adaptation
techniques with pointers to appropriate references.

In this paper, we take an multi-objective programming
(MOP) approach to LM adaptation. MOP is concerned with
finding the solutions in which a set of objective functions are
simultaneously optimized, meaning that it is not possible to
improve any objective without degrading some others. Many
practical applications such as pattern classification can be
posed as MOP problems, e.g., as we did in [6].

The LM adaptation approach developed in this paper is
based on reformulating the training objective of the structural
MAP (SMAP) method that we proposed in [7] as an MOP
problem. We extract the individualat least partially conflicting
objective functions in the SMAP formulation. For a bigram
LM, this yields a problem with four objectives: The first two
objectives are concerned with the best fit to the adaptation
data while the remaining two objectives are concerned with the
best prior information obtained from a general domain corpus.
Solving this problem in an iterative manner such that each
objective is optimized one after another with constraints on the
rest, we obtain a target LM that is a log-linear interpolation
of the component LMs. The LM weights are found such that
all the (at least partially conflicting) objectives are optimized
simultaneously.

The rest of the paper is organized as follows. In Sec-
tion II, some background information on MOP is provided.
In Section III, the iterative constrained optimization technique
that we propose to use in LM adaptation is described. In
Section IV, an SOP- and an MOP-based approach is described
for LM adaptation. In Section??, our experimental results are
reported. Finally, the conclusion and future work is presented
in Section VII.

II. MOP TERMINOLOGY

Suppose that we are given a set ofK competing objectives,
fk(θ) ∈ (0, 1) , k = 1, ..., K, each of which is nonlinear
function of a set ofM decision vectors,ωm ∈ <n, m =
1, ...,M . The best compromise solutions, {ω̂1, ..., ω̂M}, are
found by MOP, which is formulated as:

θ̂ = {ω̂1, ..., ω̂M} = argmin
θ

[f1(θ), f2(θ), ..., fK(θ)] . (1)

In general, an improvement with regard to one objective causes
a deterioration of another. This corresponds to the situation
that the objective functions areat least partially conflicting,
meaning that they are conflicting at least in some regions of
the search space. In this paper, we refer to such objective
functions ascompetingobjectives.

In SOP problems, we say that a solution with a smaller
objective function value is better than one with a large objec-
tive function value. However, in MOP problems, there is no

natural ordering in the objective space. For example, let the
vector [f1, f2] denote the objective function values in a two-
objective MOP problem. The vector[1, 1] can be said to be less
than[3, 3], but it is not obvious how to compare[1, 3] to [3, 1].
Therefore, in MOP problems, there are usually (infinitely)
many optimal compromise solutions that form the so-called
Pareto optimal set. A decision vectorθ∗ is (global) Pareto
optimal if there does not exist another decision vectorθ such
thatfk(θ) ≤ fk(θ∗), for all k = 1, ..., K, andfp(θ) < fp(θ∗)
at least for one indexp [8]. According to the definition of
Pareto optimality, moving from one Pareto optimal solution to
another necessitates trading off. Mathematically, every Pareto
optimal solution is an equally acceptable solution to the MOP
problem.

MOP methods mainly fall into two major categories, in
which the original MOP problems are converted into SOP
problems either by aggregating the objective functions into
an overall objective function or by reformulating the problem
with proposer constraints [8]. One of the most common
engineering practices to solving MOP problems is the so-
called weighting method. It reformulates the original MOP
problem as a convex linear combination of the individual
objectives with positive weights,γk ≥ 0, such that

∑
k γk = 1.

The task is, then, to minimize this overall objective function,
i.e., to solve

min
θ

K∑

k=1

γkfk(θ),

where the weights,γk, reflect the significance of the individual
objectives. One of the fundamental limitations of the weighting
method is that the feasible objective space is not necessarily
convex whereas the Pareto optimal solutions in the non-convex
subset of Pareto optimal solutions cannot be found with the
weighting method [9]. Another major drawback is that solving
the problem with numerous weight vectors will give a limited
number of Pareto optimal solutions. It is crucial that these
solutions be spread in the objective space as uniformly as
possible. The weighting method fails to meet this requirement
and generates an irregular discretization of the (convex part of
the) Pareto optimal set [8], [9].

III. I TERATIVE CONSTRAINED OPTIMIZATION (ICO)

Consider formulating the multi-objective optimization prob-
lem as a set ofK single-objective optimization problems in
the form

min
θ

fk(θ)

subject to fp(θ) ≤ fp, p = 1, ..., K, p 6= k, (2)

for all k = 1, ...,K, i.e., the minimization of one objective
function,fk(θ), with proper constraints on the other(K − 1)
competing objectives,fp(θ), wherefp’s are the upper bounds
for the objective function values to be attained.

Starting with a decision vectorθ(1) and the corresponding
objective vectorf (1) = (f (1)

1 (θ), ..., f (1)
K (θ)), the goal in

ICO is to move into another decision vectorθ(2) yielding an
objective function vectorf (2) where at least one objective
function fk, 1 ≤ k ≤ K attains aconsiderably improved
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Fig. 1. A close neighborhood of the current compromise solution is searched
for a better compromise solution in each iteration. Each intermediate step
yields an iterate on a more favorable indifference curve.

value, while others arepossibly slightly degraded. Consider the
illustration in Fig. 1 for a two-objective MOP problem, where
pointZ0 is the starting point, and a better compromise solution
is being searched for. Because of the conflicting nature of
the two objectives, it is possible to achieve a reduction in
f1 wheneverf2 is slightly increased. To compensate for the
performance loss inf2, f1 should be slightly increased, and
the bestf2 for the givenf1 value is searched for. Adjusting the
constraints for the objectives by slightly perturbing their most
recent values corresponds to setting the constraint bounds as
follows:

f = f + δ. (3)

where f is the vector of the most recent objective function
values, andδ ∈ <K is a vector of small perturbations added
to f .

It is important to note that, in general, it is not necessarily
correct that the resulting individual objectives are preferable
to the initial ones, especially when there are many competing
objectives: What is gained in one iteration can quickly be
lost in the subsequent iterations. This is because when one
objective is increased, some of the other objectives reduce
whereas some may increase. In ICO, a step-size is taken if
doing-so reduces a pre-selected cost function.

No single overall performance measure should be taken
as a basis for a realistic comparison of the ICO-trained
classifiers to more traditional classifiers. For many realistic
classification tasks, we typically want to prevent bias towards
any of the objectives and desire a symmetry across the many
competing objective functions. The ICO method is promising
for producing lessoutliers in the objective function space
compared to the SOP algorithms with an overall objective
function. One way to quantify the degree to which a classifier
results in outlier objective values is to compare the upper and
lower 5% or 10% percentile averages.

IV. A N SOP-BASED APPROACH

In [7], we proposed a structural MAP (SMAP) framework
for estimating then-gram probabilities using a hierarchical
structure. The MOP approach that we develop in this paper
has its roots in SMAP. For this reason, this section is devoted
to an overview of SMAP. The connection between these two
approaches is the subject of the next section. For the rest of
the discussion in this paper, let the subscript ”A” denote the

quantities that are estimated from the application-specific data,
A; the subscript ”S” denote the quantities that are estimated
from the general domain data,S; and the subscript ”T” denote
the quantities that come from the unknown target distribution.

Given an appropriate prior information for then-gram
probabilities,g(PS(ω|hω)), estimated fromS, the target LM
probabilities,PT(ω|hω), can be found by maximizing the a
posteriori probability given the observed text data,W . This
corresponds to solving the following problem:

PT(ω|hω) = argmax
P

P (PT|W ) = argmax
P

P (W |PA)gρ(PS).
(4)

where a non-negative number,ρ, is included in (4) to control
the contribution from the involved datasets. It is implied
by (4) that the greaterρ is, the more the prior information is
depended upon, and hence the more the general domain dataset
contributes while the more the influence of the application-
specific data is discounted. This is useful since, for instance,
the prior information might not be reliable and we may be
interested in discounting its influence. Or else, the application-
specific data may be too limited and we may want to increase
the influence of the prior information by tuningρ to a relatively
large value.

In [7], the Dirichlet density was used to model the prior
distribution. Dirichlet density was chosen because it is the con-
jugate prior density of the multinomial density. LetφS(ω|hω)
denote the hyper-parameters estimated fromS. The use of a
Dirichlet density yields a hierarchical estimation formula for
the hyperparameters as well as a closed-form solution for the
n-gram probabilities as

PT(ω|hω) =
cA(hω, ω) + ρ(φS(ω|hω)− 1)

cA(hω) +
∑

ωi
[ρ(φS(ωi|hωi)− 1)]

. (5)

The hyperparameters for the root nodes, i.e., for` = 1, are
estimated as

φ1
S(ω|hω) = 1 + εc(h(1)

ωi
),

where 0 < ε ≤ 1 is a weighting coefficient. Note that
when ε is small, the unigram observation frequencies are
discounted. We obtain a recursive formula for estimating the
hyperparameters associated with the node at the`th layer using
the hyperparameters at the(`−1)st layer in atop-downmanner
as

φ`
S(ω|hω) = c(h(`)

ωi
, ωi) + ρ(φ`−1

S (ω|hω)− 1) + 1,

whereφ`−1
S (ω|hω) is the hyperparameter of the parent node.

V. A N MOP-BASED APPROACH

In this section, we develop an MOP-based approach to the
LM adaptation, which takes its roots in ICO method.

A. Formulation of LM Adaptation as an MOP Problem
Let PAn denote ann-gram LM estimated on the application-

specific data,A, and PSn denote ann-gram LM estimated
on the general domain data,S. The KL divergence of the
target n-gram distribution,PT(ω|hω), from an estimatedn-
gram model,Pn, (which is eitherPAn or PSn ) is given by

D[PT||Pn] =
X

h

PT(h)
X

ω

PT(ω|hω) log
PT(ω|hω)

Pn(ω|hω)
. (6)
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Maximizing the likelihood function is equivalent to minimizing
the KL divergence of the target model from a model obtained
from the data (hereA), i.e., to minimizing D[PT||PAn ] [10]. In
the meantime, the conjugate prior density is the distribution which
minimizes the KL divergence of the target posterior model from the
prior distribution. Minimizing the KL divergence of the target model
from the prior model makes the target model spread out as uniformly
as possible without contradicting the given information. Thus, the use
of conjugate prior density implicitly minimizesD[PT||PSn ]. Based
on these two results, the LM adaptation problem solved by the SMAP
method can be posed as the following MOP problem:

Objective 1: The targetn-gram probabilities should be at a mini-
mum distance from the background model. By minimizing
the KL divergence of the target model from the background
model, given new facts, the new distribution is being chosen
which is as hard to discriminate from the well-trained
background model as possible.

Objective 2: The targetn-gram probabilities should be at a min-
imum distance from the distribution obtained from limited
application-specific data. By minimizing the KL divergence
of the target model from a model estimated from the
application-specific data, the new distribution is suitable to
describe the source generating the application-specific data.

B. At-Least-Partially-Conflicting Objectives in LM Adaptation
The KL divergenceD[PT||PAn ] (or D[PT||PSn ]) is minimal (and

equal to zero) when the target model,PT, is exactly the same as
PAn (or PSn ) and any deviation fromPAn (or PSn ) results in a non-
zero KL divergence. BecausePT cannot be exactly the same asPSn
andPAn at the same time, minimizingD[PT||PSn ] and minimizing
D[PT||PAn ] are at least partially conflicting objectives. Since the
goal in LM adaptation is to compensate for the insufficiency of the
application-specific data set by using the general domain corpus, the
best approach to reliably estimating then-gram probabilities is to
establish a compromise between these two KL divergences.

Let i denote an index from the index set{A1,A2, S1, S2}, where,
An denotes the quantities of ann-gram model estimated fromA and
Sn denotes the quantities of ann-gram model estimated fromS. 1

Based on the results of the previous section, LM adaptation as solved
by SMAP can be posed as an MOP problem in two different ways:

A sequential optimization approach
It is possible to find the probabilities of unigrams, bigrams,
and so on, one after another. We refer to this approach
as sequential ICO for language modeling and adaptation.
For a bigram model, this means solving the following
optimization problems:

min D[PT1 ||PA1 ] (7)

min D[PT1 ||PS1 ]
and then

min D[PT2 ||PA2 ] (8)

min D[PT2 ||PS2 ]
An all-in-once optimization approach

It is possible to compute then-gram probabilities of all
orders in only one optimization problem (instead of two).
We refer to this approach asK-objective ICO for language
modeling and adaptation.For a bigram model, this corre-
sponds to solving the following multi-objective problem:

min D[PT1 ||PA1 ] (9)

min D[PT1 ||PS1 ] (10)

min D[PT2 ||PA2 ]
min D[PT2 ||PS2 ]

1The divergences from unigram models as well as bigram models should
be considered since backing-off is used when an unknownn-gram is observed
during the recognition (test) stage.

C. Sequential ICO for Language Model Adaptation

Consider formulating the MOP formulation of the LM adaptation
problem as a series of constrained optimization problems as in (7)
and (8). In general,PS is a considerably larger model thanPA, and
hence one would expect the two objectives to have different scales.
The two objectives in each of these problems can be rewritten so that
so that we can expect similar ”distances”. This can be achieved by
averaging each KL divergence by the number ofn-grams each model
has.

To solve the two-objective optimization problems in (7) and (8),
two optimization subproblems need to be solved one after another.
These two subproblems are

(PROBLEM 1) min
PTn (ω|hω)

1

NnA
D[PTn(ω|hω)||PAn(ω|hω)]

s.t.
1

NnS
D[PTn(ω|hω)||PSn(ω|hω)] ≤ dS

(PROBLEM 2) min
PTn (ω|hω)

1

NnS
D[PTn(ω|hω)||PSn(ω|hω)]

s.t.
1

NnA
D[PTn(ω|hω)||PAn(ω|hω)] ≤ dA

wheren = 1, 2, anddS and dA are the constraint bounds obtained
by perturbing the most recent averaged KL divergences. For solving
(PROBLEM 1), the constraint is incorporated into the optimization
process using a Lagrangian multiplierλS . This results in the follow-
ing Lagrangian function:

L(PTn , λSn) = D[PTn ||PAn ] + λSn ·D[PTn ||PSn ] (11)

By equating the gradient of this Lagrangian function with respect to
PTn to 0 as

�
1 + log

PTn

PAn

�
+ λSn ·

�
1 + log

PTn

PSn

�
= 0, (11)

we obtain a closed form solution for the probabilitiesPT(ω|hω) as

PT(ω|hω) =
1

Z(hω)
[PA(ω|hω)]

1
1+λS [PS(ω|hω)]

λS
1+λS (12)

where Lagrange multiplierλS is the only unknown andZ(hω) is a
history-dependent normalization factor.

1) Finding the Component LM Weights:

There is no closed-form solution forλ but it can be found by
iterative techniques. For this purpose, the constraint in (PROBLEM 1)
can be rewritten as

d(λS) = DλS [PT(ω|h)||PS(ω|h)]− dS = 0 (13)

The zeros of this function can be obtained using the Newton’s method
for nonlinear equations [11] as follows:

λS,k+1 = λS,k − d(λS,k)
∂d(λS,k)

∂λS,k

(14)

The derivative ofd(λS,k) with respect toλS,k turns out to be a
function of the target probabilitiesP

λS,k

T (ω|h) and is computed as:

∂dλk

∂λS,k
=
P

h PT(h)×
P

ω

h
1 + log PT(ωh)

PS(ω|H)

i
·
�

1
1+λ2

S,k
log PS

PA
P

λS,k
T (ω|h)

�
(15)

The solution to (PROBLEM 2) is very similar: We just need to switch
PA andPS, and replaceλS with λA.
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2) Algorithmic Implementation:

The algorithmic implementation of the sequential ICO for lan-
guage modeling and adaptation is given in Table I. The algorithm
starts with estimating the low-ordern-gram probabilities for they
are used as the history probabilities,PT(h), for high-ordern-grams.
D[PT(ω|h)||PA(ω|h)] is minimized by refiningλS,k so thatd(λS,k)
becomes roughly equal to 0. Once such aλS is found, it is used to
calculate the targetn-gram probabilities as in (12). After solving
the first subproblem in this manner, the algorithm proceeds with
solving the second subproblem. This iterative process stops when
there is no progress in neitherD(PT||PA) nor D(PT||PS). The
relation λS = 1�λA comes from the fact that to make the initial
target probabilities of (PROBLEM 1) the same as those found after
solving (PROBLEM 2), we should have1�λS = λA�(1 + λA).

D. K-Objective ICO for Language Model Adaptation
We choose to optimize each objective with constraints on the

others. We then have four subproblems that will be solved one after
another. For instance, one of these subproblems is

min D[P ||PA2 ]

subject to D[P ||Pi]− di = 0, i ∈ {A1, S1, S2}
For convenience, we restate this problem in an equivalent form as

min λA2(D[P ||PA2 ]− dA2) (16)

subject to D[P ||Pi]− di = 0, i ∈ {A1, S1, S2}
The reason for incorporating a scaling factorλA2 and a reference
value dA2 for the primary objective function (that is, the objective
function of the problem in (16)) will shortly become clear. This
problem can be solved by incorporating a Lagrange multiplier for
each constraint. The resulting Lagrange function is

L(P, λi) =
X

i

λi(D[P ||Pi]− di) (17)

wherei ∈ {A1,A2, S1, S2}. The target LM probabilities,PT(ω|hω),
are such that

∂L

∂PT(ω|hω)
=
X

i

λi
∂D[P ||Pi]

∂PT(ω|hω)
= (18)

X
i

λi

�
1 + log

PT(ω|hω)

Pi(ω|hω)

�
= 0

Solving this problem, we obtain a log-linear interpolation (LLI) of
the component LMs as

PT(ω|hω) =
1

Z(hω)

Y
i

Pi(ω|hω)λi (19)

whereZ(hω) is a history-dependent normalization factor. Note that
the same form ofPT(ω|hω) is obtained irrespective of the subproblem
being solved. (Remember that there are four subproblems to be solved
for a bigram target LM.) This is the reason for the inclusion ofλA2

anddA2 in (16).

1) Algorithmic Implementation:

The algorithmic implementation of the proposed ICO method for
LM adaptation is given in Table 1. The algorithm starts with some
initial LM weights λ. These LM weights are refined in a manner that
the subproblems in (16) are solved one after another.

In order to set some initial constraint bounds for each objective,
all the KL divergences are evaluated. For the primary objective, the
resulting KL divergence is discounted and set as the constraint bound
while for the other objectives, the KL divergences are inflated and
set as the constraint bounds.

The LM weights are found so that (i) the deviation of the primary
objective from the reference value is minimized, and (ii) there is

no deviation of the objectives in the constraints from the constraint
bounds.

2) Finding the Component LM Weights:

There are no closed-form solutions for the Lagrange multipliers,
λi, but they can be found by iterative techniques. Given the constraint
boundsdi, λi’s should be such that the derivative of the Lagrange
function with respect toλi vanish (by KKT optimality conditions),
i.e., ∂L

∂λi
= D[P ||Pi]− di = 0,∀i.

Let D(λi) denote the deviation of a KL divergence from the
respective constraint bound, i.e.,D(λi) = D[P ||Pi]−di. It is a func-
tion of λi sinceP (ω|hω) used for calculatingD[P ||Pi] is obtained
by (12). The zeros of this function can be obtained using the Newton’s
method for nonlinear equations asλi+1 = λi−D(λi)/D′(λi) where

D′(λi) =
∂D
∂λi

=
∂D
∂PT

· ∂PT

∂λi
(20)

=
X

(ω,hω)

�
PT(hω)(1 + log

PT(ω|hω)

Pi(ω|hω)
)

�

·
"
(1− λi

(
P

j λj)2
)(log Pi(ω|hω))PT(ω|hω)

#
.(21)

3) Adjusting the Constraint Bounds:

If it was possible to know the KL divergences that a desirable target
LM would yield, this problem could be relatively straightforward.
However, since we initially are not given these KL divergences, we
choose to adjust the goals in an iterative manner.

The constraint bounds are obtained by perturbing the most recent
KL divergences. The reference value for the primary objective is
obtained by decreasing the most recent value (for instance, by
multiplying by 0.9). The constraint bounds for the objectives in
the constraints are obtained by slightly increasing their most recent
values (for instance, by multiplying by 1.1). This is to ensure that
the KL divergence of the target model from the primary objective is
reduced while the others are tolerated to increase. The algorithmic
implementation of the proposed ICO method for LM adaptation is
given in Table II.

4) Finding and Validating the Step-Size:
The two objectives in the LM adaptation application interact in

a complicated manner. It is hard to analyze which objective has
what kind of impact on the speech recognition performance, For
this reason, the perplexity is used as the utility function to judge
the preferability of the new step found with the Armijo rule. That is,
with the ICO method for the LM adaptation application, the step-size
found by Armijo rule is validated and the LM weights are updated
only in those cases which do not result in degradation in terms of
perplexity.

VI. EXPERIMENTAL RESULTS

In this section, we report our experimental results comparing the
two proposed LM adaptation approaches with log-linear interpolation
and SMAP.

A. Experimental Results with SMAP
In our experiments we used the Wall Street Journal (WSJ0) dataset,

which was designed to provide a wealth of general-purpose speech
data with large vocabularies [12]. It has a set of over 1.6 million stan-
dardized sentences for LM training collected from 1987 until 1989.
The test domain data is composed of WSJ newswire stories collected
in November 1992. Unfortunately,n-gram LMs are extremely brittle
even within domain when training and recognition involve moderately
disjoint time periods, yet there is no LM adaptation set provided
within the WSJ0 dataset.
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TABLE I

SEQUENTIAL ICO ALGORITHM FOR LM ADAPTATION

I. Set PT(h) = 1
N1

, whereN1 is the number of unigrams.
II. For n=1,2,...(i.e., unigrams, bigrams,...)

Repeat until no progress inD(·)’s:
λ0 = 0.5.

//Solve (PROBLEM 1):
ii. until d(λS,k) ≈ 0.

ComputeλS,k from Equation (17).
iii. λS = λS,k
iv. ComputePT(ω|hω) from Equation (15).
v. λA = 1 \ λS.

//Solve (PROBLEM 2)
vi. until d(λA,k) ≈ 0.

ComputeλA,k from Equation (17).
iii. λA = λA,k

iv. ComputePT(ω|hω) from Equation (15).
v. λS = 1 \ λA.

//New history probabilities for higher-ordern-grams:
PT(hω) = PT(ω|hω).

TABLE II

K-OBJECTIVE ICO ALGORITHM FOR LM ADAPTATION

I. Start with some initial LM weights,λi, i ∈ {A1, S1, A2, S2}.
II. Repeat

For eachi ∈ {A2, S2, A1, S1} (in this order):
i. Find the initial constraint bounds:

d0
k = 0.9D[PT ||Pi], if k = i,

d0
k = 1.1D[PT ||Pi], if k 6= i

ii. We want to solve:
min λi(D[P ||Pi]− d0

i )
subject toD[P ||Pk]− d0

k = 0, k 6= i
iii. Computeλk, k ∈ {A2, S2, A1, S1} so that

D(λi) is minimized andD(λk), k 6= i is 0.
iv. EvaluatePT for these values ofλks.

Therefore, in [7], we constructed an artificial adaptation set to
illustrate the use of the proposed LM adaptation framework. For
doing so, we separated some of the sentences in the original text
material as an artificial application-specific set. To make sure that
this portion of the dataset is more relevant to the application than
the rest, we selected those sentences which are rich in terms of
the test setn-grams. After doing so, we trained an application-
specific LM using this separated portion, which constituted 10%
of the available text data. The remaining 90% was used to train
a background model. Both models were trained simply using the
maximum likelihood principle [13]. In [7], we demonstrated that
this separation of adaptation material from the training data was
appropriate to show the use of an LM adaptation technique.

1) Performance of SMAP LM Adaptation:

We performed experiments to find the effect of different parame-
ters,ρ and ε, on the perplexity and WER.

1. Effect ofρ
First, we explored the effect of the forgetting factor,ρ. It is a para-

meter serving two purposes: First, it controls how much information
each node inherits from its parent node. Second, it controls how much
the prior information contributes in SMAP probability calculation.

The perplexity and WER are plotted as functions ofρ for different
values of ε in Fig. 2 and Fig. 3, respectively. Fig. 2 shows that
the perplexity first reduced asρ increased, reaching its minimum
at 47.65 atρ = 0.01 for ε = 0.01, and increased thereafter. Upon a
comparison of Fig. 2 and Fig. 3, we observe that the perplexity and
WER in general change in parallel except that the perplexity was
higher whenρ = 0.1 than whenρ = 10−6, yet the WER was lower

whenρ = 0.1 than whenρ = 10−6.
This behavior suggests, first, that when the contributions from the

parent nodes were very small or very large, i.e.,ρ was at extremes,
the resulting LMs were not so right. Whenρ was large, the node-
specific information is dominated by the parent-specific information.
Whenρ was small, the nodes did not inherit significant information
from parent nodes. Secondly, with an appropriate selection ofρ, the
prior information helped improve the performance by contributing in
the n-gram probability estimation.

2. Effect ofε
Secondly, we explored the effect of changingε by fixing ρ. The

parameterε has an influence on the estimation of hyperparameters
at the root nodes, which are then propagated to all other tree nodes.
The perplexity and WER are plotted as functions ofε for different
values ofρ in Fig. 4 and Fig. 5, respectively. Note that Fig. 4 and
Fig. 5 are just other ways of looking at Fig. 2 and Fig. 3.

We observe that the perplexity slightly reduced asε increased
except for the case whenρ = 0.1. The same result held true for the
change of WER as well. Whenε is very small, then-gram counts in
the root nodes are excessively smoothed. This means that even when
the frequencies of two unigrams differed by orders of magnitude, the
corresponding hyperparameters were very close.

4. SMAP Adaptation with a Relevant and an Irrelevant Adaptation
Dataset

Our final experimental study with SMAP concerned about the
performance of the SMAP LM adaptation framework. For this reason,
in addition to the relevant adaptation set,Ar, we constructed an
irrelevant set, called an irrelevant adaptation set and denoted as
Ai, which is expectednot-to-helpthe recognition. Our experimental
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findings are plotted in Fig. 6. The curves marked with “¤” and “◦”
were obtained whenAi andAr were used, respectively.

Several observations can be drawn from Fig. 6. First of all, using
Ar reduced the WER considerably. SMAP LM adaptation framework
was able to reduce WER to 4.37% using the entireAr, which was
relatively 15.5% better than the WER obtained withAr. On the other
hand, performing SMAP adaptation withAi proved itself useless.
This is because not only the ML modeling yielded better WER results
than LM adaptation but also using more ofAi did not yield any
improvement.

B. Experimental Results with ICO
The application-specific model had about 474K of bigrams while

the background model had about 1,56 millions of bigrams. Since the
computation of the KL divergence is demanding, at this stage we
performed experiments using the bigram LMs. By performing LM
adaptation, more than 1,6 millions of bigram probabilities are to be
estimated.

1) Performance Evaluation of Sequential ICO for Language
Modeling and Adaptation:

The average KL divergences of the target model from two inde-
pendently models, one trained on the general domain data and the
other trained on the application-specific data, are being minimized.
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Fig. 6. The performance of SMAP LM adaptation when relevant adaptation
data is made available.
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Fig. 7. The average KL divergences of the target model to the background
modelPS and to the application-specific modelPA move towards a balance.

TABLE III

COMPARISON OFLM ADAPTATION METHODS OF INTEREST

Bigram
Model PP WER (%)

LLI 80.06 7.06
SMAP 80.53 7.19
MOP 79.18 6.91

The goal in ICO is then to reach a balance among these two distance
measures. Our experimental result on the change of the average KL
divergences is shown in Fig. 6. The constraints were obtained so that
the most recent objective functions were increased by 1%. As shown
in Fig. 7, the average KL divergences moved towards a better balance.
Moreover, each objective followed a zigzag pattern throughout the
iterative process. This is because the two objectives attempt to modify
the target model probabilities to be close to their respective model.

2) Performance Evaluation ofK-objective ICO for Lan-
guage Modeling and Adaptation:

We then performed experiments on model perplexity and ASR
word error rate (WER) to compare the performance of the proposed
LM adaptation framework with the SMAP method and Klakow’s LLI
model. Our experimental results are reported in Table III. In our ASR
experiments, we used the same design as in [7]. The SMAP model
was trained withρ = 0.0001 for the propagation of hyper-parameters,
ε = 0.01, andρ = 0.1.

As shown in Table III, the MOP-based approach is superior to
SMAP by 3.8% in terms of relative reduction in WER in ASR
experiments. This is because MOP leaves more flexibility in finding
the n-gram estimates while SMAP attempts to merge the conflicting
goals a priori in an overall function. In the meantime, in comparison
to Klakow’s LLI, the MOP solution performs relatively 2.1 % better
in terms of WER. Although both had the same form of the solution,
the distinction was in the way the LM weights (i.e., the Lagrange
multipliers) were estimated. Although the improvements do not seem
significant, the major gains in solving the LM adaptation problem
with MOP are twofold: (i) Upon observing the behavior of each
objective, we have full freedom to tune the system into different
operating points to meet different requirements. (ii) Meantime, by
observing each objective, we can easily avoid extremes, i.e., the cases
that the target LM is too dependent on the application specific data
or on the general domain data.

VII. C ONCLUSION AND FUTURE RESEARCH

In this paper, we described a multi-objective programming based
method, called iterative constrained optimization (ICO), where we

formulated the original multi-objective programming problem as an
iterative process of the optimization of individual objectives with
proper constraints on the remaining competing objectives.

In this work, we considered language model (LM) adaptation,
where a background LM is adapted to an application domain so that
the adapted LM is as close as possible to both the background model
and the application domain data. For this, we first considered an
SOP-based approach. We, then, formulated the original problem as
an MOP problem and solved it using the ICO method. Finally, we
compared the performance of the SOP- and MOP-based solutions
for each of the applications. Our experimental results demonstrated
that the ICO method achieves a better balance among the design
objectives. Furthermore, the ICO method gave an improved system
performance.

We believe ICO is well suited for many problems in a wide
range of applications. We will further this line of research in several
theoretically rich directions. One of the first ones is about the
automatic means to infer the constraint bounds. We have observed
in our experiments that different settings for the constraint bounds
directly translate into different end results, as our intuition also
suggests. Based on our experience, we foresee that the constraint
bounds can be set by analyzing the sensitivity of the problem on the
changes of the individual objectives.
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