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Abstract

We study constrained speaker recognition systems, or sys-
tems that model standard cepstral features that fall withinpar-
ticular types of speech regions. A question in modeling such
systems is whether to constrain universal background model
(UBM) training, joint factor analysis (JFA), or both. We ex-
plore this question, as well as how to optimize UBM model
size, using a corpus of Arabic male speakers. Over a large set
of phonetic and prosodic constraints, we find that the perfor-
mance of a system using constrained JFA and UBM is on av-
erage 5.24% better than when using constraint-independent(all
frames) JFA and UBM. We find further improvement from op-
timizing UBM size based on the percentage of frames covered
by the constraint.
Index Terms: Speaker Recognition, Cepstral Features, Con-
straints, Joint Factor Analysis

1. Introduction
One of the most successful approaches to speaker identifica-
tion models Mel frequency cepstral coefficients (MFCCs) using
Gaussian mixture models (GMM) [1] and employs joint factor
analysis (JFA) for channel variability compensation [2]. In this
and other similar approaches, typically all frames of speech are
modeled together.

Some previous research, however, has explored the extrac-
tion of cepstral features from only certain regions, to reduce
variability from differences in speech content. Sturim et al.
constrained a cepstral GMM using a set of frequent words [3].
Baker et al. expanded on this work, constraining on syllables
rather than the entire word [4]; Bocklet and Shriberg [5] stud-
ied phonetic, syllable-based, and pause-based constraints. Both
Park et al. [6] and Shriberg [7] review other studies that condi-
tion the regions of cepstral feature extraction on linguistic in-
formation such as words and phones.

In this paper, we explore a question for constraint modeling
not addressed in earlier work: should the universal background
model (UBM) and/or the JFA use all frames, or only the frames
in the relevant constraint? We will use the termconstraint-
independentto refer to the use of all frames to estimate the
UBM and JFA parameters, andconstraint-dependentto refer
to the use of only the frames within the constraint of interest.
For constraint-dependent modeling, we further ask whetherand
how to optimize UBM size given that constraints differ in spar-
sity.

Speaker verification experiments are performed on a
database of Arabic male speakers that contains a large number
of sessions for each target speaker.

2. Constrained cepstral features
We explore a range of constraint types. Unit-based constraints
are regions constrained by specific syllable, phone, or sub-
phone regions. Prosodic or acoustic constraints are regions con-
strained by voicing, energy and pitch values, or by pitch and
energy slopes. Some examples are regions including voiced
frames or regions constrained by the sign of the slope in the en-
ergy and the pitch. Turn-taking or discourse-related constraints
are regions constrained by their location relative to spurts (re-
gions of speech without long pauses). Examples include regions
of N frames at the beginning and/or end of a spurt. Speaking
rate constraints are regions constrained by different measures of
speaking rate. Some examples are regions with a min/max value
of the phone length normalized by phone and speaker statistics
or windows with a min/max number of phones per unit time
where the unit is the window length.

3. Modeling approach
Features are based on 60 MFCCs consisting of 20 coefficients
with cepstral mean subtraction in addition to first and second
derivatives. The features are used to model both the targetsand
impostors using GMMs. We trained a background GMM with
held-out data to use as our UBM. We tested two different meth-
ods of speaker adaptation. First, we experimented with MAP
adaptation, in which the GMM is adapted to each speaker’s fea-
tures using a maximum a posteriori estimation of the means.
The second methodology used was JFA. JFA assumes the means
of the speaker’s model are given bym’=m+Vy+Ux where
m is the background supervector (concatenation of the GMM
means),V is a rectangular low-rank matrix in which columns
are the directions of speaker variability known as eigenvoices
(ev), andU is another rectangular low-rank matrix in which
columns are the number of directions of channel variability, or
eigenchannels (ec). Valuesx andy are learned from the sam-
ple. The score obtained for each test sample is the estimated
likelihood ratio between the speaker’s model and the UBM.

The modeling approach for the constrained cepstral fea-
tures is the standard JFA method normally used for modeling all
frames, except that statistics are now computed using features
extracted only from regions of interest. We discuss in this pa-
per two different ways to obtain the parameters of the models:
constraint-independent modeling where UBM and JFA matri-
ces are obtained using all frames (baseline case) and constraint-
dependent modeling where UBM and JFA matrices are obtained
using only frames over the constrained regions of interest.

The optimal size of the UBM (number of Gaussians) for
each constraint was investigated empirically, since this could be
affected both by frame sparsity and by inherent homogeneityof



the constraint. We will use the termfrequencyto refer to the
percentage of frames covered by the constraint. This measure
is computed with respect to all speech (nonpause) frames; the
baseline in this case would be 100% or all frames of speech.
Note that the frequency measure is a function of both (1) the
frequency of the occurrence of the constraint, and (2) the con-
straint length.

The results discussed in this paper involve each constraint
performance by itself not in combination with the all-frame
baseline. In this paper, we explore each constraint on its own
since our goal is to understand the UBM and JFA parameters
and how they are affected by the frequency of the constraint.
Our end goal is to investigate the performance of one or more
constraints in combination with the baseline.

4. Datasets
The male Arabic database is composed of data from several
sources. IntelCenter (IC) provided both audio and video sam-
ples of 57 Arabic male speakers with as many as 51 sessions
each. The GALE Broadcast News (BN) data, contains 2124
male speakers with as many as 80 sessions each [8]. These
two datasets were used because of the large number of ses-
sions for each speaker. Since the GALE database was not orig-
inally designed for speaker recognition, we further processed
the data to assure the accuracy of target speaker labels for our
experiments. The Mixer corpus as provided by NIST for the
2004 and 2005 Speaker Recognition Evaluations (SRE04 and
SRE05) and LDC data in various Arabic dialects were also used.
Together, the NIST and LDC corpora provided 135 male speak-
ers with a total of 257 sessions. We limit this study to male
speakers, both because of data availability, and because state-
of-the-art systems use gender-dependent modeling techniques
that would have added complexity to the experiments.

The target speakers were chosen from the IC and GALE BN
databases. There were eight target speakers from IC that hadat
least 14 sessions each, and 35 target speakers from GALE that
had at least 16 sessions each and for which we were confident
of the speaker identity. The remaining speakers not used as tar-
gets were split for use as impostors and for UBM and JFA pa-
rameter training. The UBM used only one or two sessions for
each of 1224 speakers, while for JFA training we chose 142 of
those speakers which had at least 6 sessions each. The remain-
ing speakers were used to create impostor samples against the
target speakers, using 525 speakers for development and 524
for evaluation. The Z-normalization and T-normalization matri-
ces (ZTNORM) were selected from the same speakers used for
the UBM, but selecting only one session for each speaker. The
GALE data made up 90% of the data used to train the UBM,
JFA, and ZTNORM. The remaining 10% came from the small
amount of Arabic LDC and NIST data.

5. Experiments
5.1. Task setup

We created five models for each of the target speakers using ap-
proximately 120 seconds from each of three different sessions.
Test samples are given by 30-second snippets randomly selected
from the available target and impostor sessions. We chose not
to use all snippets from each session to avoid having highly cor-
related samples that might lead to biased results. We testedeach
of the models against all other available sessions for the particu-
lar target speaker. We also tested each of the models againstall
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Figure 1:Performance of baseline system.

the impostor samples and other target speakers. For each model
in this task, this results in an average of 20 target samples and
1700 impostor samples.

5.2. Baseline all-frame system

We performed a large number of calibration experiments in-
cluding comparing MAP to JFA, comparing using no normal-
ization to ZT-normalization (Z-normalization followed byT-
normalization), and varying the UBM size. The goal of these
experiments was to obtain the best possible baseline for com-
parison purposes. Figure 1 shows our calibration experiments
on the baseline system. We use the traditional NIST mini-
mum detection cost function (DCF) as our performance mea-
sure (9.9×Pfa+Pmiss, Pfa is false alarm probability,Pmiss is
miss probability). We chose this performance measure instead
of equal error rate (EER) because it operates at a higher miss
rate, which gives more target errors since the number of target
samples is much smaller than the number of impostor samples.

Both JFA and ZTNORM give large gains. Experiments
were performed on the baseline system to find the optimal JFA
parameters: 100 eigenchannels (ec) and 100 eigenvoices (ev).
The performance of our system was optimal using JFA and ZT-
NORM for a UBM size of 512. The corresponding EERs range
from 7.6% to 0.93%. Based on SRI’s performance on NIST
SRE10 [9], we believe that this baseline is close to the stateof
the art for cepstral systems.

5.3. Constraint-independent systems

A constraint-independent system uses all frames (as in the base-
line system) to train the UBM. This method was tried with
both MAP and constraint-independent JFA, which also uses
all frames to train the JFA matrices, with and without ZT-
NORM. Our hypothesis was that if one trains the UBM with
all frames, then the UBM size will need to be large to ac-
count for a constraint with a small frequency. We obtained
the constraint-independent results for 104 different constraints
ranging in frequencies from 0.17% to 38.52%. We ran exper-
iments on all of the constraints for six different sizes of the
constraint-independent UBM: 32, 64, 128, 256, 512, and 1024
Gaussians. Over all constraints, the optimal performance was
found using UBM size of 512 with constraint-independent JFA
and ZTNORM, as it was for the baseline. We will use this as our
baseline system for each constraint. We did not try 2048 Gaus-
sians because models with even larger number of Gaussians are
often not practical due to the time it takes to train and evaluate
them.
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Figure 2: Constraint-independent versus constraint-dependent
results for(a) Arabic phoneH (unvoiced pharyngeal fricative)
and(b) all Arabic syllables withk phone (unvoiced velar stop).

5.4. Constraint-dependent systems

A constraint-dependent system uses only the frames selected
by a given constraint to train the UBM. This method was tried
with both MAP and constraint-dependent JFA, which likewise
uses only selected frames in training the JFA matrices, with
and without ZTNORM. Our hypothesis was that if one trains
constraint-specific UBMs, then the model size suitable for rep-
resenting the infrequent constraint should be smaller thanwhen
the UBM is trained on all frames. We obtained the constraint-
dependent results for the same 104 constraints as before. Weran
experiments for five different sizes of the constraint-dependent
UBM: 32, 64, 128, 256, and 512 Gaussians. We did not try
1024 Gaussians for two reasons. First, since the constraint-
independent systems were optimal with a size of 512 Gaussians,
we would not expect the optimal constraint-dependent UBM to
exceed this size. Second, most of the constraints show degrada-
tions for the constraint-dependent system when the UBM size
reaches 512.

Figure 2 shows constraint-independent results and
constraint-dependent results for various UBM sizes, for two of
the constraints. In all cases, JFA was used and ZTNORM is
applied to scores. The name and frequency of each constraint
are given in the figure. The dotted horizontal lines show the
best DCF achieved using the constraint-independent UBM.
Both phoneH (unvoiced pharyngeal fricative) and all syllables
containing k phone (unvoiced velar stop) show significant
gains when using the constraint-dependent method. These
cases are representative of most other constraints, exceptfor
very infrequent constraints for which the constraint-dependent
model is not robust. Furthermore, most of the very frequent
constraints do not show significant gains over the baseline
system since, for frequent constraints, the resulting models
behave much like the constraint-independent baseline system,
which uses all frames. The most significant gains from the
constraint-dependent approach are obtained in the frequency
range between 2% and 20%.

On average over all constraints, the optimal performance
was found using the constraint-dependent approach with a
UBM of size 256. This performance is 5.24% better than the av-
erage performance of the constraint-independent approachwith
optimal UBM size of 512. These results support the original
idea that the size needed for the UBM for a sparse constraint
with constraint-dependent modeling is smaller than that needed
with constraint-independent modeling.

We also tried using a constraint-independent UBM and
constraint-dependent JFA matrix for each constraint. Thisap-
proach did not perform as well as constraining both the UBM
and the JFA, so we did not investigate it further.
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Figure 3: Average gain for constraint-dependent system with
JFA used for analysis.Freq. is maximum frequency in each
bin andQuant. is number of constraints in each bin.ng=xxxx
shows the optimum number of Gaussians used for the UBM
when this optimum was not0256.

5.5. Analysis

When using a constraint-dependent UBM model of size 256
with JFA, some constraints degraded with respect to using a
constraint-independent UBM of size 512. Therefore, we inves-
tigated ways to vary the number of Gaussians depending on the
frequency of the constraint. We split or binned the constraints
based on their frequencies on a log scale. The dotted line in Fig-
ure 3 shows the gain for the 10 different frequency bins, overthe
baseline using a constraint-dependent UBM of size 256. Each
tick on the x-axis shows the maximum value of the frequen-
cies that bin holds (Freq.). For example, 1 represents frequen-
cies 0-1%, 1.5 represents frequencies 1-1.5%, and so forth.The
number of constraints in each bin (Quant.) is labeled below the
frequencies. The figure shows degradations for very low and
very high frequencies.

To see whether degradations could be avoided by choos-
ing different UBM sizes based on the constraint frequency, we
chose the best size of the constraint-dependent UBM for each
bin of frequencies and compared its performance with that of
the fixed 256-Gaussian constraint-dependent UBM. The solid
line in Figure 3 shows the gain over the baseline when choosing
the optimal size of the constraint-dependent UBM for each bin.
For constraints with frequencies less than 1.0%, choose a UBM
size of 64 Gaussians; for frequencies between 1.0% and 2.3%,
use 128; for frequencies greater than 25.6%, use 512. Other-
wise, choosing a UBM size of 256 is optimal. This set of UBM
sizes obtained as a function of the frequency always achieves
positive gains over the baseline.

5.6. Optimizing UBM size for constraint-dependent sys-
tems

The described method to find the optimal UBM size for each
constraint gives optimistic results since decisions are made
based on all constraints within a frequency bin and applied to
those same constraints. Consequently, we propose a fair method
for finding the UBM sizes as a function of the frequency.

The 104 constraints were randomly split equally into two
groups so that the information obtained for group 1 could be
used on group 2 and vice versa. We inspected scatter plots for
each group of constraints with the gains over the baseline versus
the frequency on a log scale for each of the five different UBM
sizes. These scatter plots have a somewhat quadratic shape.
Hence, for each UBM size and each group of constraints, we
calculate quadratic regression curves. Figure 4 shows the five



0.125 0.25 0.5 1 2 4 8 16 32
−5

0

5

10

0.65

0.88

2.09

20.09

Frequency

D
C

F
 G

ai
n

 

 

ng=32
ng=64
ng=128
ng=256
ng=512

(a)

0.125 0.25 0.5 1 2 4 8 16 32
−5

0

5

10

0.57
0.89

1.87

18.62

Frequency
D

C
F

 G
ai

n

 

 

ng=32
ng=64
ng=128
ng=256
ng=512

(b)
Figure 4:Regression curves for constraints in(a) group 1 and
(b) group 2 labeled with points of intersection.

quadratic regression curves for the two groups of constraints.
The points of intersection of the five curves for group 1 are

used as the thresholds to choose the optimal UBM size for group
2. For group 2, we chose a UBM size of 32 for constraints with
frequencies less than 0.65%, 64 for constraints between 0.65%
and 0.88%, and so forth. Similarly, the points of intersection of
the five curves for group 2 were used as the thresholds to choose
the optimal UBM size for group 1. The thresholds were quite
similar across groups; only 5 of the 104 constraints fell between
the two groups’ thresholds.

Figure 5 shows the same average gain results as Figure 3,
except that each tick on the x-axis is the value of the constraint-
dependent UBM size (ng) that is optimal based on this thresh-
olding method. The number of constraints for each optimal
UBM size (Quant.) is labeled below the frequencies. The dot-
ted line in Figure 5 shows the gain over the baseline when doing
constraint-dependent modeling of the UBM with size 256. The
solid line in Figure 5 shows the gain over the baseline when
choosing the optimal size of the constraint-dependent UBM.A
total of 37 constraints out of the 104 did not use a UBM size of
256 with this thresholding method. The average gain in choos-
ing the UBM based on frequency compared to choosing size
256 is 1.57% over these 37 constraints.

Using the proposed frequency thresholding method for
choosing constraint-dependent UBM size, the average gain over
the baseline over all the constraints is 5.83%. Some constraints
had as much as a 24% gain over the baseline when using the ob-
tained UBM size like phoneH in Figure 2. Syllables containing
thek phone achieve an 8% gain. Even after choosing the opti-
mal UBM size in the described way, some constraints showed
degradation with respect to using the constraint-independent
UBM and JFA. The worst degradation was 15% relative.

It is possible that these constraints are, in fact, not so spe-
cific in terms of the location of the features that satisfy thecon-
straint in the feature space and, hence, are described fine bythe
overall distribution (over all frames). On the other hand, some
constraints are very specific and do benefit from constraint-
dependent modeling.

6. Conclusions
We model constrained cepstral features using the JFA technique
and compare two approaches for training the UBM and JFA pa-
rameters: a constraint-independent approach and a constraint-
dependent approach. We show that the constraint-dependent
approach outperforms the constraint-independent one on aver-
age over all the constraints. Furthermore, we find that a smaller
number of Gaussians is needed in the UBM when it is trained
using only constraint-specific frames than when trained on all
frames. Finally, we find that a simple method for predicting the
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Figure 5: Average gain for constraint-dependent system with
JFA using quadratic regression thresholds.ng is number of
Gaussians used for UBM using thresholds andQuant. is num-
ber of constraints for each optimal UBM size.

size of the constraint-dependent UBM outperforms the systems
obtained with a fixed UBM size on average over all constraints.

We believe a constrained UBM and JFA performs better
than an unconstrained UBM and JFA because matching the con-
tent of the frames is more important than using a larger number
of frames that contain unmatched content.
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