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Abstract
We propose new data selection approaches based on speaker
discriminability features, including kurtosis and a set of nasal-
ity features which exploit spectral properties of nasal speech
sounds. Data selected based on the speaker discriminability fea-
tures are used to implement end-to-end speaker recognition sys-
tems, which produce significant improvements when combined
with the baseline system (which uses the speech-only data re-
gions determined by a speech/non-speech detector), where the
optimal combination of systems produces roughly a 24% im-
provement over the baseline. Results suggest that focusing the
modeling power on data regions selected via the kurtosis and
nasality speaker discriminability features, part of which are of-
ten discarded in the speech/non-speech detection process, can
improvement speaker recognition.
Index Terms: speaker recognition, kurtosis, nasality features,
data selection

1. Introduction
Traditionally, data selection for speaker recognition has either
been done using a speech/non-speech detector and keeping the
speech regions, or selecting data based on various speech units
(i.e. lexical units, such as words, phones, and syllables) [1].
In the former approach, the signal energy is typically used to
determine regions of higher energy signal (likely to be speech)
versus lower energy signal (likely to be silence). However, this
approach may be problematic when confronted with higher-
energy, non-speech regions, such as in highly noisy data. In
the latter approach, only data corresponding to certain speech
units are used to construct end-to-end speaker recognition sys-
tems. However, the units that are used usually depend on the
existence of an automatic speech recognizer, which may not be
available.

In this work, we use a noisy data set to investigate an alter-
native approach to data selection, which lies along the contiuum
spanning the energy-based approaches, and the lexical-based
approaches. Instead of using energy, our approach is based on
the use of various speaker discriminability features, which have
been determined to have good predictive power for the speaker
discriminability of lexical regions of speech [2][3][4]. The fea-
tures include kurtosis and several nasality features, which have
been determined to have strong influences on speaker recogni-
tion accuracy [2] [3]. These features allows us to select speech
data determined to be speaker discriminative.

The features are applied in lieu of speech/non-speech de-
tection, and the data selected via these features can be used
to construct end-to-end speaker recognition systems. The ad-
vantages of using these features over the strict application of
a speech/non-speech detector is that the features select for
speaker discriminative regions of utterance data, as opposed
to selecting merely the speech-only regions. We presume that

in certain contexts, the non-speech regions would have speaker
discriminative power, especially in cases where certain speakers
are associated with certain environmental conditions. Data se-
lection based on the speaker discriminability features also have
potential advantages compared to selection via speech units, in
that the data selected are not constrained merely by the units
themselves, which may or may not have high speaker discrimi-
native power.

This paper is organized as follows: Section 2 describes
the database, section 3 describes the kurtosis and nasality fea-
tures, section 4 describes our data-selection scheme, section 5
describes the speaker recognition system, section 6 describes
the experiments and results and provides a brief discussion, and
section 7 provides a summary of the current work and discusses
potential future work.

2. Data, preprocessing, and speaker
recognition

We used the ROSSI database [5], which contains various types
of channel and environmental noise typically with 10 dB SNR
per utterance, for our experiments. The portions of the ROSSI
database we used consist of utterances of roughly 50 seconds
of monologue landline and cellular phone speech, recorded in
various noisy environmental conditions. The breakdown of the
types of utterances used for UBM training, speaker model train-
ing, and testing are shown in table 1.

A total of approximately 100 distinct speakers are used for
speaker model training, and 200 speakers are used for testing.
100 of the 200 speakers are used for training, and the remain-
ing 100 do not exist amongst the training speakers. A total of
approximately 450,000 speaker recognition trials are used, with
2,500 true speaker trials, and 447,500 impostor trials.

3. The kurtosis and nasality features

Our prior work on speaker discriminability features has in-
dicated that kurtosis and nasality are effective for detecting
speaker discriminative regions of speech [4][3][6]. The speaker
discriminative power of the kurtosis and nasality features are
determined by computing them over regions of 30 phones, and
computing the correlation of the feature values to the Equal Er-
ror Rates (EERs) obtained from speaker recognition systems
implemented using data constrained by each of the phones. Our
previous results indicate that the kurtosis feature has a 0.7 cor-
relation with the EERs, while a linear regression of the nasality
features produces a 0.9 correlation with the EERs. These results
are obtained on 1,060 female conversation sides of the SRE06
database.



Development
Environment Channel # of utterances # of hours
Office Landline 200 2.8
Office Cellular 50 0.7
Public place Cellular 50 0.7
Vehicle Cellular 50 0.7
Roadside Cellular 50 0.7
Total – 400 5.6

Speaker model training
Environment Channel # of utterances # of hours
Office Landline 100 1.4
Office Cellular 100 1.4
Public place Cellular 100 1.4
Vehicle Cellular 100 1.4
Roadside Cellular 100 1.4
Total – 500 7

Testing
Environment Channel # of utterances # of hours
Office Landline 200 2.8
Office Cellular 200 2.8
Public place Cellular 200 2.8
Vehicle Cellular 200 2.8
Roadside Cellular 50 0.7
Total – 850 11.9

Table 1: Description of channel and environment information
of utterances in the ROSSI database.

3.1. Kurtosis feature

Kurtosis is a measure of peakiness and/or non-Gaussianity of a
random variable. Kurtosis feature normalization is an effective
way to improve speaker recognition performance, such that a
low kurtosis value (close to 0) is desired [2]. Kurtosis is defined
for random variable X as:

Kurtosis(X) =
E(x4)

E(x2)2
− 3 (1)

In this work, kurtosis values are computed on MFCC fea-
ture vectors using windows of 30 feature frames, with 5-frame
shifts. Hence, given that MFCC feature vectors are computed
every 10 ms, kurtosis values are computed using feature vectors
that span 300 ms, shifting every 50 ms. Kurtosis is computed
for each feature dimension separately, and averaged across all
feature dimensions to obtain the final kurtosis feature value.
Note that selecting data based on kurtosis is similar to Gaussian-
normalization of data. However, kurtosis data selection avoids
the risk of data distortion through Gaussian normalization by
selecting data that’s already normalized.

3.2. Nasality features

Previous work suggests that nasal regions of speech are an ef-
fective speaker cue, because the nasal cavity is both speaker
specific, and fixed in the sense that one cannot change its vol-
ume or shape [7]. Various acoustic features have been pro-
posed for detecting nasality. Glass used six features for detect-
ing nasalized vowels in American English [8]. Pruthi extended
Glass’s work and selected a set of nine knowledge-based fea-
tures for classifying vowel segments into oral and nasal cate-
gories automatically [9].

For this work, we’ve implemented 5 nasality features that

Figure 1: Distribution of std01k nasality feature for nasal,
vowel, and non-nasal consonant regions for 1,060 female
speakers in SRE06 database.

we’ve determined to be effective for purposes of data selection.
All nasality features are computed using 25 ms windows with
10 ms shifts. A description of each are given below:

a1h1max800: The difference, measured in the log magnitude
squared spectrum, between the amplitude of the first formant
(A1) and the first harmonic (H1) [9]. This feature is found to be
lower for nasal regions of speech.

a1max800: The amplitude of the first formant (A1) relative to
the total spectral energy between 400 Hz and 800 Hz. This
feature is found to be higher for nasal regions of speech.

frat: The ratio of the spectral energies between 300 to 700 Hz
and between 2,500 to 3,400 Hz. This feature is found to be
higher for nasal regions of speech.

std01k: The standard deviation of frequency around the center
of mass of the frequency region below 1000Hz [8]. This feature
is found to be lower for nasal regions of speech.

ctm01k: The center of mass of the short-term log magnitude
squared (dB) spectrum amplitude in the frequency band be-
tween 0 and 1000 Hz. This feature is found to be lower for
nasal regions of speech.

As an example of how the nasality features are distributed
over speech regions, figure 1 show the distribution of the std01k
nasality feature when computed over nasal, vowel, and non-
nasal consonant regions in 1,060 female SRE06 conversation
sides. According to the figure, the std01k nasality feature is
lower overall respectively when computed across nasal regions,
as opposed to the other regions.

4. Selecting data with discriminability
features

To select speech data using our features, we set thresholds
on the kurtosis and nasality features, and select utterance re-
gions with kurtosis or nasality feature values above or below
the thresholds. We know (according to past work) that speech
regions with lower kurtosis values, lower a1h1max800 values,
higher a1max800, higher frat, lower std01k and lower ctm01k
values hold higher speaker discriminative ability. Hence, we



set thresholds such that speech regions with a1max800 and frat
values lying above certain thresholds, and with other values be-
low certain thresholds are selected. Lastly, we’ve attempted to
select only the non-speech regions as determined by the Shout
speech/non-speech detector [10] to see if they are speaker dis-
criminative in any way.

5. Speaker recognition system
For this work, we’ve used a 128-mixture GMM-UBM system
[11] with MAP adaptation and MFCC features C0-C12 (with
25 ms windows and 10 ms intervals) with deltas and double
deltas, and mean and variance normalization. The simplified
factor analysis approach is used. The ALIZE implementation
is used for GMM model and factor analysis training and testing
[12], and the MFCC features are obtained via HTK [13]. We’ve
also used the Shout detector to select the speech regions. The
ROSSI development utterances are used for UBM and factor
analysis matrix training.

6. Experiments and results
We’ve applied our data selection scheme using the kurtosis
and nasality features on all trials of the ROSSI database, us-
ing the aforementioned speaker recognition system. We’ve first
attempted to perform data selection using the kurtosis feature,
and tested various lower and upper thresholds to determine the
optimal amount of data to keep. The thresholds are represented
as percentiles (i.e. a lower threshold of 0.1 indicates that data
with the lowest 10 percent of kurtosis values are discarded; an
upper threshold of 0.9 indicates that data with the highest 10
percent of kurtosis values are discarded). Results are shown in
table 2. For the results with the Shout+Kurtosis feature, the in-
tersection of the data selected via kurtosis and data selected via
the Shout speech/non-speech detector is used. For the results
with the ALL feature, all utterance data is used.

Feature Lower Upper EER (%)
threshold threshold

Kurtosis 0.00 0.70 10.0
Kurtosis 0.00 0.85 9.8
Kurtosis 0.00 0.95 9.9
Kurtosis 0.15 0.85 10.4
Kurtosis 0.15 1.00 10.3
Shout+Kurtosis 0.00 0.85 9.8
ALL – – 9.9

Table 2: Results for kurtosis data selection using various thresh-
olds.

Results indicate that using lower and upper thresholds of
0.00 and 0.85 respectively produce the lowest EER (9.8%). This
indicates that data with kurtosis values belonging to the low-
est 85th percentile should be selected for speaker recognition,
which agrees with the fact that speech regions with lower kur-
tosis values for its feature vectors are more speaker discrimi-
native. We obtain a 4.7% relative EER improvement by taking
data selected with kurtosis values in the lowest 85th percentile,
versus data selected with kurtosis values in the highest 85th
percentile (10.3% EER). Note that while data selection using
the Shout+Kurtosis measure also produces a 9.8% EER with
the same thresholds, it requires the use of a speech/non-speech
detector. Kurtosis-based data selection also leads to a slightly

lower EER (though perhaps insignificant) than simply using all
utterance data (9.8% vs 9.9% EER).

Based on these results, data selection using the nasality
features is also performed by selecting utterance regions with
nasality feature values in either the lowest or highest 85th per-
centile, depending on whether lower or higher nasality feature
values indicate greater speaker discriminability.

Table 3 shows the percentage of total utterance data (from
all development utterances) selected by both Shout and the fea-
tures, the percentage of total utterance data selected uniquely
by Shout and not by the features (i.e. regions selected by both
were excluded), and the percentage of total utterance data se-
lected uniquely by the features and not by Shout. Denote the
kurtosis feature as kurt.

Feature % data % data sel. % data sel.
selected by by Shout by feature
Shout and and not and not

feature by feature by Shout
kurt 61.6 13.4 17.8
a1h1max800 61.6 13.4 23.4
a1max800 60.2 14.8 24.8
frat 67.4 7.6 17.7
std01k 68.3 6.8 16.8
ctm01k 64.4 10.6 20.6

Table 3: Percentage of overlap of data selected via Shout, and
via each of the speaker discriminability features, with respect to
total utterance data.

Results show that while there is a high degree of correspon-
dence between the data selected using each of the features and
using Shout (for each feature, over 60% of all utterance data are
selected by the feature and by Shout), there are significant re-
gions of data selected by either the features or by Shout, but not
both. Moreover, for each feature, the percentage of data selected
by the feature and not by Shout is greater than the percentage of
data selected by Shout and not by the feature. This suggests that
non-speech regions are more significantly included in the data
selected by the features than the speech regions are included in
the data selected by Shout. The data selected using the features
may thus be complementary to the data selected using Shout.

Each data selection technique (i.e. using kurtosis or nasal-
ity features) is used to implement a separate speaker recognition
system. EER results are obtained standalone and in combina-
tion using an MLP with 2 hidden nodes and 1 hidden layer,
implemented using Lnknet [14]. The EERs represent averaged
EER values over 100 splits amongst the trials, where each split
contains training and testing sub-splits. For each of the 100
splits, MLP weights are trained using the training sub-split, and
EERs for each split are obtained by applying the MLP weights
on the testing sub-split. This is done even if there is only one
system used, so that the standalone results can be consistent
with the combination results. The set of all results are shown
in table 4, where systems with feature-based data selection are
denoted by its feature, the baseline system (which uses the ut-
terance regions determined to be speech according to Shout)
is denoted as base, and a system that uses only the silence re-
gions obtained using Shout is denoted as sil. Note that for each
system, factor analysis is applied only in cases where it signifi-
cantly improves its standalone EER.

Our results indicate that the baseline GMM-UBM system
(with factor analysis) using the Shout speech/non-speech detec-



System EER (%)
base 9.1
sil 32.2
kurt 9.7
a1h1max800 15.2
a1max800 15.0
frat 14.9
base+sil 9.5
base+kurt 8.0
a1h1max800+a1max800+frat 7.9
base+kurt+sil+a1h1max800+ 7.2
a1max800+frat+std01k+ctm01k
base+kurt+ 6.9
a1h1max800+a1max800+frat

Table 4: Results for all systems standalone and in combination

tor is the best standalone system, with an EER of 9.1%. The
standalone system involving data selection via the kurtosis fea-
ture (9.7% EER) is 5.8% worse than the baseline in terms of
EER. However, when combined with the baseline system, the
kurtosis system produces a 12.5% relative improvement over
the baseline system standalone (8.0% EER vs. 9.1% EER).

While the individual nasality features do not perform as
well as the baseline system, they perform effectively in com-
bination. Combining systems based on the a1h1max800,
a1max800 and frat nasality features produces a 7.9% EER, a
14.0% relative improvement over the baseline. We’ve found
that when in combination with the baseline, kurtosis, and
silence-based systems, the nasality features contribute to a 7.2%
EER, regardless of whether only the a1h1max800, a1max800
and frat features are used, or whether all five nasality features
are used. Our best result is obtained by combining the base-
line system with systems with data selected using the kurtosis,
a1h1max800, a1max800 and frat features, producing an EER
of 6.9%. This represents a 23.9% relative improvement over
the baseline standalone.

The system that uses the silence-only regions from the
Shout speech/non-speech detector performs surprisingly well,
giving a 32.2% EER. This perhaps indicates that there are
factors outside of speech (i.e. channel and acoustic environ-
ments linked to different speakers) for utterances in the ROSSI
database that contribute to speaker recognition accuracy. Over-
all, the results show that there’s useful complementary informa-
tion in the data selected via the features we used, especially as
there are significant differences in the utterance regions that the
features selected (refer to table 3).

While past data selection approaches have traditionally
been based on selecting only the speech regions, we demon-
strate the importance of non-speech regions for speaker recog-
nition in noisy data. The features we implemented, which
were able to select utterance regions determined to be speaker
discriminative according to past work, allow us to employ
a new data selection technique that potentially involves the
non-speech regions. Speaker recognition systems implemented
based on these regions are complementary to the baseline sys-
tem using only the speech regions.

7. Conclusion and future work
In this work, we propose new data selection approaches based
on speaker discriminability features for noisy speech data. The

approaches lie along the contiuum spanning the energy-based
approaches, and the lexical-based approaches. The speaker dis-
criminability features include kurtosis, and a set of five nasal-
ity features. Data regions where its kurtosis or nasality feature
passes certain thresholds are retained for end-to-end speaker
recognition system implementation, and the thresholds are de-
termined by the distributions of the features. Combining the
baseline system (which uses data selected by a speech/non-
speech detector) with the systems using data selected from the
speaker discriminability features produces significant improve-
ments over the baseline system standalone. Results suggest that
focusing the modeling power on data regions selected via the
kurtosis and nasality speaker discriminability features, part of
which are often discarded in the speech/non-speech detection
process, can improvement speaker recognition. Future work can
examine additional approaches to selecting data - such as ran-
dom data selection - and applying our techniques on standard,
larger datasets such as the NIST SRE’s.
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