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Abstract—This article reviews a line of research carried out over the last decade in 
speech recognition assisted by discriminatively trained, feedforward networks. The 
particular focus is on the use of multiple layers of processing preceding the hidden 
Markov model based decoding of word sequences. Emphasis is placed on the use of 
multiple streams of highly dimensioned layers, which have proven useful for this 
purpose. The article ultimately concludes that while the deep processing structures 
can provide improvements for this genre, choice of features and the structure with 
which they are incorporated, including layer width, can also be significant factors. 
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I. INTRODUCTION 
Automatic speech recognition (ASR) has a long history, minimally dating back to the 

1952 Bell Labs paper describing a technique for digit recognition [1]1. Similarly, machine 

learning has a long history, with significant development in the branch commonly called 

neural networks also going back to at least the 1950’s. Speech recognition methods 

converged by 1990 into statistical approaches based on the hidden Markov model 

(HMM), while artificial neural network (ANN) approaches in common use tended to 

converge to the multilayer perceptron (MLP) incorporating back-propagation learning.  
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1 One could also argue that Radio Rex, a toy from the 1920’s, was a primitive speech recognizer. A celluloid dog popped out of its 

house in response to any sound with sufficient energy in the 500-700 Hz region, for instance for the word “Rex.” 



 
More recently, there has been considerable interest in neural network approaches to 

phone recognition that incorporate many of the stylistic characteristics of MLPs (multiple 

layers of units incorporating nonlinearities), but that are not restricted to back 

propagation for the learning technique [2]. It should be noted in passing that the earliest 

ANN training methods did not use error back propagation; for instance, the Discriminant 

Analysis Iterative Design (DAID) technique developed at Cornell in the late 1950’s 

incorporated multiple layers that were separately trained, using Gaussian kernels at the 

hidden layer and a gradient training technique at the output layer [3].  

 

It has been important for machine intelligence researchers to conduct experiments with 

modest-sized tasks in order to permit extensive explorations; on the other hand, 

conclusions from such experiments must be drawn with care, since they often do not 

scale to larger problems. For this reason, among others, many researchers have gravitated 

towards large scale problems such as large vocabulary speech recognition, which often 

incorporate hundreds of millions of input patterns, and can require the training of tens of 

millions of learned parameters [4]. Given the maturity of the speech recognition field, 

competitive performance often requires the use of complicated systems, for which any 

novel component plays a minor role. Modern speech recognition systems, for instance, 

incorporate large language models that use prior information to strongly weight 

hypothesized utterances towards task-specific expectations of what might be said. Thus, 

it can be difficult to see the advantage of a new method. However, if improving speech 

recognition is our goal, there is no choice but to examine a large scale task, although 

smaller tasks can be used to validate code and rule out obvious problems with an idea. On 



the other hand, small tasks can also be both realistic and difficult; for instance, a small 

vocabulary recognition task that incorporates fluently spoken words in a moderate 

amount of noise and/or reverberation can yield significant insight about the robustness of 

a proposed technique. 

 

This paper will describe some of the methods developed over the last decade that 

incorporate multiple layers of computation to either provide large gains for noisy speech 

on small vocabulary tasks or modest but significant gains for high SNR speech on large 

vocabulary tasks. In each case the emphasis will be to describe methods that have 

exploited structures incorporating both a large number of layers (the depth) and multiple 

streams using MLPs with large hidden layers (the width). In some cases the underlying 

model is at least initially generative (as with the maximum likelihood training used in 

conventional ASR systems prior to discriminative training), but in other cases the 

methods are discriminative from the start. The focus here will be on what are now 

classical methods, as well as newer approaches making use of discriminatively trained 

features. In most cases these systems are inherently heterogeneous, incorporating a 

sequence of computational layers that perform differing functions. The class of systems 

incorporating deep belief networks, which are fundamentally generative nature but also 

homogeneous in their form and training, will be emphasized in other papers (in this 

special issue) and are not within the experience of this author, and hence are not the topic 

of this paper. 

  



II. LAYERS IN AUTOMATIC SPEECH RECOGNITION 

A. Standard approaches to large vocabulary ASR 

As of this writing, state-of-the-art automatic speech recognition (ASR) systems 

incorporate quite a few layers of processing prior to the output of word sequences. The 

process starts with several layers of signal processing (e.g., windowing, short-term 

spectral analysis, critical band spectral integration and cepstral transformation). It’s true 

that these stages are typically implemented with fixed parameters; on the other hand, 

there has been recent work that has shown improvements using learned parameters for a 

nonlinear function of the spectral values, inspired by the amplitude compression that is 

evident in human hearing [5]. However, even for other systems, it is quite common to 

transform the spectrum by compressing or expanding it in a process called vocal tract 

length normalization [6]. Despite its name, VTLN does not require any measure of the 

vocal tract, but uses statistical learning techniques to determine the maximum likelihood 

compression/expansion of the spectrum for each clustered utterance or speaker (often 

derived from an unsupervised learning algorithm); these approaches are based on an 

underlying generative model. Another common component is Linear Discriminant 

Analysis (LDA) or its less constrained cousin, Heteroscedastic Linear Discriminant 

Analysis (HLDA), each of which is trained to maximize phonetic discrimination. This 

layer transforms cepstral features, typically over several past and future acoustic frames, 

into a new observation sequence for the recognition system.  

The resulting features are then used to train a large number of Gaussians that are used 

in combination to generate likelihoods for particular speech sounds in context. Note that 

both the individual Gaussians and their mixture coefficients are trained, and that 



Expectation Maximization is used for training since the weighting of each component in 

the mixture is unknown a priori, even in training. Following training with a maximum 

likelihood criterion, objective functions such as maximum mutual information (MMI) or 

minimum phone error (MPE) [7] are typically used to train the Gaussian parameters 

discriminatively. The parameters of this acoustic model are then altered further for testing 

by incorporating one of several related methods for adaptation, for instance Maximum 

Likelihood Linear Regression (MLLR) [8].  

The entire acoustic likelihood estimation subsystem is then used in combination with a 

language model probability estimation, which has been trained in a supervised fashion on 

a large number of words; additionally, there are usually multiple sources of word 

prediction information (such as large quantities of written text and smaller amounts of 

transcribed spoken words) so that weighting and backoff parameters must be learned. The 

interpolation coefficients between language and acoustic level log likelihoods are also 

learned, as are various other recognizer-specific parameters. Finally, the best recognizers 

typically incorporate multiple complete systems that combine their information at various 

levels, such as what is called cross-adaptation, in which training targets for one system 

comes from the other [9]. 

All of the above assumed a single stream of speech entering the system. However, it is 

becoming more common in practice to have at least 2 speech signal streams, one from 

each of 2 or more microphones. Combination techniques commonly incorporate 

unsupervised learning methods to determine the best combination of the microphone 

outputs [10]. 

This is far from a complete list of common ASR components; but it should suffice to 



show the reader that even ASR systems that do not routinely incorporate artificial neural 

networks or other explicitly layered machine learning mechanisms are both deep (many 

layers of computation) and wide (many different components combined). These layers 

often have fixed parameters, but in many cases they are learned, and often with an 

underlying generative model. The next section will review a class of additional learned 

layers that have been added in some systems to nonlinearly process the features that are 

fed to the statistical engine. 

 

Figure 1: Computational layers for standard single stream large vocabulary speech recognition acoustic 
model. Shaded boxes represent layers with at least some learned parameters. VTLN stands for Vocal 
Tract Length Normalization (defined in text). Not shown are the decision trees that determine the 
structure of the models in the statistical engine; these also have learned parameters. 

	
  

B. Tandem approaches 

In 2000, as part of a European Telecommunications Standards Institute (ETSI) 



competition for a new Distributed Speech Recognition standard [11], an approach to 

speech recognition was developed that was called Tandem [12]. Drawing on MLP 

techniques developed in the context of computing discriminant emission probabilities for 

HMMs [13], this approach generated features for the HMM that were trained for phonetic 

discrimination. As in the earlier techniques, the MLP in the newer approach is trained 

with phone label targets, so that it estimates state or phone posterior probabilities; outputs 

from multiple MLPs are sometimes combined to improve the probability estimates. The 

typical initial system used a single nonlinear hidden layer. However, later architectures 

incorporated more layers; for instance the so-called TRAPS system used such an MLP 

for a half second of the time sequence of energies for each critical band of the spectrum 

(or for each set of 3 bands, with overlap)[14], followed by a combination component that 

comprised an additional MLP with its own hidden layer. This was learned separately, so 

that there was no attempt to back propagate errors all the way back through the system. A 

later form of this system called HATs [15] was trained by taking the input-to-hidden 

nonlinear transformations from each critical band and using their outputs to feed the final 

combination MLP (Figure 2). In a number of large tasks (American English 

conversational telephone speech, American English broadcast news, Mandarin broadcast 

news, Arabic broadcast news), a further combination of HATs output and an MLP 

processed version of standard PLP features was used to provide significant (roughly 10% 

relative) reductions in errors. This was one of the largest reductions shown from any 

improvement in the systems under test [9]. 



 

Figure 2: Computational layers for the TRAPS or HATS version of Tandem processing, where the first 
layer summarizes the front end processing from Figure 1. All layers except the last have learned 
parameters. Each of the MLP layers has nonlinear hidden units. The critical band MLPs  can either be 
trained separately from the combining MLP(as in HATs) or in one large training with connectivity 
constraints (as in Chen’s Tonotopic MLP). The simplified figure doesn’t show that the input to the MLP 
stage is from the pre-smoothed spectral values, while the standard components of the feature vector are 
cepstral values with other transformations (e.g., derivatives, HLDA, etc.) All MLPs were trained with 
phone targets, and generated estimates of phone posteriors. Each output from the MLP is either taken prior 
to the final nonlinearity or else after computing the log probability. The linear transformation in this and 
later figures typically consists of principal component analysis (PCA), which requires unsupervised 
learning to determine the orthogonal dimensions with the greatest variance.  

C. Other Approaches 

At IBM, researchers developed a technique called Feature-based Minimum Phone 

Error (fMPE) [16], which incorporated the MPE error criterion at the feature level. In this 

approach the features were generated by training a large number of Gaussians over the 

acoustic sequence2 and computing temporally local posteriors. In practice it provided 

similar improvements to either MPE training of the acoustic models or to the MLP-based 

approach described above. Combinations of these methods have also been explored in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 The preliminary processing that comprises this sequence typically is either a set of mel frequency cepstral coefficients (MFCCs) 

or Perceptual Linear Prediction coefficients (PLP), each of which is computed over something like a 25 ms window and stepped 
forward every 10 ms. 



[17]. 

Other approaches have been built on a hierarchical feature approach, for instance 

training Tandem features for high temporal modulation frequencies and using them, 

appended to low temporal modulation frequencies as input for a second network 

generating Tandem features (Figure 3). Thus one path through the networks encountered 

4 layers of processing by trained parameters while the other encountered 2. This method 

provided significant improvement on a difficult ASR task requiring recognition of speech 

from meetings [18], and later was demonstrated to provide significant improvements in 

character error rate for a large vocabulary Mandarin broadcast news evaluation [19]. 

	
  

	
  

Figure 3:Computational layers for hierarchical modulation processing [19]. The high temporal 
modulations (e.g., > 10 Hz) are processed first, and the phone posteriors from the first MLP are used as 
input to the second along with low modulation frequency information, all coming from critical band 
energies over time (typically .5 seconds). 

	
  



D. Comments on depth and width 

For all of these approaches to improving speech recognition systems via modifications 

of the observation stream, it often was most natural to incorporate many layers of 

processing, and to add them on (or insert them) into existing systems without 

reengineering the entire structure. Instead, the standard capabilities of maximum 

likelihood or discriminative training methods were ultimately used to best accommodate 

the new transformations. In other words, at least for the difficult task of large vocabulary 

speech recognition, any successful system will be “deep”, in the sense of many layers of 

processing, and many of these layers will have parameters that are learned. Some layers 

will be trained using an underlying generative model, others will be trained in a purely 

discriminative manner, while in other cases both approaches will be used. 

 

However, the existence of multiple learned layers does not obviate the requirement for 

substantial width. In our experiments with conversational telephone speech, for instance, 

we found it useful to have MLP hidden layers with as many as 20,000 hidden sigmoidal 

units, resulting in over 8 million parameters for each of four different MLPs [20] (2 

genders times 2 architectures, namely HATs and PLP-Tandem). While there are certainly 

speech processing tasks for which hidden layers can be much smaller, we have found that 

in practice, having sufficiently large widths can also be very important. In our work, we 

have typically found that using an insufficient number of units per layer can have a very 

large effect on the word error rate (although this saturates or can even slightly decline 

with too large a layer). Of course, it also clearly matters what any additional layer does. 

While in MLPs all of the computational layers tend to do the same thing, in larger 



systems such as the one shown in Figure 1, the layers are often quite heterogeneous. 

Furthermore, systems often have a more complex topology than a straightforward layered 

structure – often there are parallel sidepaths, as in the hierarchical approach described in 

[19] and sketched in Figure 3. In another hierarchical structure described in Joel Pinto’s 

recent PhD thesis [21], the different layers of the hierarchy correspond to width of the 

acoustic context observed by each MLP; the first layer encompassing 90 ms of the 

cepstral input and the second layer taking as input 150-250 ms of the outputs from the 

first MLP.  

The next section describes some of the experiments over the last decade that 

demonstrated the value of both increasing width and depth in layered networks for large 

vocabulary speech recognition.  

III. REVIEW OF SOME RELEVANT EXPERIMENTS 
In a 1999 ICASSP paper [4] we empirically demonstrated the utility of using a 

sufficiently large hidden layer for 3-layer networks used in the hybrid HMM/MLP system 

[13]. The paper showed that for such a system there was an optimum range for the ratio 

between training patterns and number of parameters (between 10 and 40) when the 

maximum computation available was fixed. Without computational limits, given an early 

stopping learning approach (in which cross-validation on an independent set indicated 

when to stop training), the paper showed that increases in the number of parameters, as 

implemented through the increase of hidden layer size, provided large reductions in word 

error rate. This was an unsurprising result. However, it is still important to note that 

significantly increasing the width of the hidden layer was an effective way to derive the 

benefits one might expect from an increase in the number of learned parameters (see 



Table 1 below). 

 
# hidden units WER 
500 39.2% 
1000 36.9% 
2000 34.4% 
4000 33.7% 

 
Table 1: Word error rate percentages with the hybrid HMM/ANN system for Broadcast News speech and 

differing width MLPs (from [4]).  
	
  

In Barry Chen’s 2005 PhD dissertation, he described a range of experiments with 

Tandem systems that use different topologies for their MLP transformations.  

 
System Stand-alone 

WER 
Augmented 

WER 
Baseline PLP+ - 37.2% 
15 x 51 MLP3 48.0% 36.6% 
15 x 51 MLP4 44.3% 35.6% 

HAT 44.5% 35.6% 
TMLP 44.9% 35.5% 

 
Table 2: PLP+ refers to HLDA-transformed PLP and its first 3 temporal derivatives, while the next two 
rows give results for a feature stream augmented by an MLP nonlinearly transforming 15 spectral energies 
over 51 frames. MLP3 refers to a 3-layer MLP (one hidden layer) and MLP4 refers to a 4-layer MLP (2 
hidden layers). HAT and MLP are both 4-layer MLPs, but the former uses15 critical band MLPs trained 
separately with outputs used to feed a 16th combining MLP, while TMLP is a single MLP with the same 
connections that is all trained together.  The number of parameters in the MLP is the same. The Stand-
alone column refers to using a Tandem feature vector on its own, while the Augmented column gives results 
for a feature vector comprised of the PLP+ features augmented by the Tandem features, which is the way 
that our Tandem features are generally used. WER=Word Error Rate for conversational telephone speech. 
From [15]. 

 

In this experiment, as is typically the case for Tandem systems, the MLPs are trained 

on phonetic targets that are obtained via forced alignment on the training sentences using 

previously trained HMMs. The SRI system (DECIPHER) was used for both training and 

recognition [9]. 

Figures 4 through 6 show the topologies for the systems of Table 2. Note that while the 

bottom three rows, which incorporate an additional layer, show substantial improvements 



over the three-layer system, all three 4-layer systems provide comparable improvements. 

This suggests that, at least for this task, which was large vocabulary conversational 

telephone speech recognition, neither the precise topology nor the training approach 

(piece by piece or all at once) made any significant difference. 

 

Figure 4: 15x51 MLP3 
 

 

Figure 5: 15x51 MLP4  
 



 

 
Figure 6: Chen’s Tonotopic net (TMLP). When the top row of hidden layers are trained previously as 

part of individual 3-layer MLPs, the diagram also represents Chen’s Hidden Activation TRAPs (or HATs). 
 

More recently, we and others have explored the use of temporal and spectral filters as 

preprocessors of the time-frequency plane for multiple MLP streams that are used in 

Tandem style. This approach is similar to the modulation filtering shown in figure 3, but 

in this case we did a broad range of spectro-temporal modulation filtering and channeled 

groups of these features into a number of MLP-transformed streams, leading to 

significant reductions in error, particularly for noisy test sets [22]. In our best result for 

noisy speech, we combined streams by weighting and summing each phone probability 

with its counterparts in the other streams, where the weights were generated as outputs 

from another MLP that had been trained using targets that were set to one for the best 

stream (according to frame classification with some moderate smoothing) and zero for 

the other streams. Thus we have found that not only width and depth are important, but 

also the choice of mechanism for weighting and/or selecting streams is important for 



handling diverse test sets whose properties may not match those available during training.  

 

Figure 7: Spectro-temporal modulation filters implemented as streams of mel spectra over time and 
frequency with Gabor functions; for the 4-stream case, each stream uses roughly 500 different filters 
providing output into an MLP. In this case the input layer for each MLP is wider than the hidden layer, as 
the latter uses only 160 units. An additional MLP is trained to generate weights for a linear combination of 
the phone posterior probability estimates coming out of the Gabor stream MLPs. For this MLP, the targets 
are derived from a determination of the best stream (closest phone classification to reference) on a 
development set. Details of this approach can be found in [23]. 
 

IV. COMMENTARY AND SPECULATION 
For all of the methods described in the previous section, a key property was the 

computation of a number of different functions in parallel, in addition to using multiple 

layers of computation. In some cases, particularly for noisy speech, the additional 

“width” (via hidden layer size or multiple streams of processing) provided dramatic 

improvements. The overall number of trained parameters was also a critical quantity, in 

some cases even more effective than adding additional layers. But probably the most 

important factor was the choice of transformations, which makes significant use of our 

Single stream front end

speech signal

Gabor stream MLPs

Linear combining

Linear 
transformations

Augmented front end

Weight 
generation 

MLP



experience with processing the speech signal.  

As noted in the introduction, the focus of this paper is on a class of largely 

heterogeneous layered systems, many of which provided greater width and less depth 

than the systems that are becoming known as Deep Belief Networks. The latter are just 

beginning to be tested for large vocabulary speech recognition (at least with large 

amounts of training data relative to the number of trained parameters), and so this author 

has made no attempt to compare them to the methods described here. It is however worth 

noting that the two kinds of approaches are somewhat different. Deep Belief Networks3, 

as for instance described in [2], incorporate layer-by-layer learning for a generative 

model in a homogeneous structure for tasks such as, e.g., phoneme recognition. In this 

approach these stages of learning are typically followed by a globally discriminative 

training step incorporating error back propagation, which does not rely on a generative 

model. Consequently one could either view the whole process as being a fundamentally 

generative architecture with some minor tuning at the end of the learning procedure, or 

else a fundamentally discriminative method with a clever form of initialization at the 

start. In the latter view, other types of initialization may serve equally well (for instance, 

a discriminatively trained set of weights for a previous, similar task). Such initializations 

(both using deep belief networks and weights from other tasks or data sets) are likely to 

be more important for examples with insufficient data, as one might find with low 

resource languages (i.e., those for which there are currently insufficient amounts of 

manually labeled data to rely entirely on standard methods). Indeed, as noted by one of 

the pioneers of Deep Belief Networks [24], the ability to use many more parameters for a 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

3 The common acronym for Deep Belief Networks is, understandably, DBN; this author has chosen to only use the expanded form 
given the acronym’s overlap with Dynamic Bayesian Networks, a previous method that still holds considerable interest in the speech 
community. 



given amount of data (without overfitting) was one of the major design aims for deep 

learning networks. However, to the best of this author’s knowledge, there is currently 

insufficient experimental evidence to support comparative performance with and without 

deep learning initialization for large vocabulary speech recognition tasks for which 

sufficient data is indeed available. 

After 60 years of speech recognition research, we find that error rates for difficult tasks 

are still unacceptably high. It is likely that using many layers of well-chosen 

computation, along with multiple streams of these layers, will be an important component 

of the solution. However, it is unlikely that a blind search using any clever machine 

learning technique will be sufficient to solve this problem. New approaches to learning 

over many layers (whether they are phonetically supervised, as the Tandem-related 

approaches are, or trained in an unsupervised approach as with the restricted Boltzmann 

machines of the deep belief network approach) may provide performance improvements 

on a number of tasks in speech and language processing. However, despite such 

advances, it could be the case that we will not make further substantial progress until we 

better understand what limitations in our signal representation and models are causing the 

errors.  

There have been a few steps in this direction. One was the Ph.D. dissertation of Lin 

Chase [25], in which considerable effort was exerted towards the goal of showing the 

causes of individual errors. A more recent effort [26] provided a methodology for 

exploring the source of modeling errors, in particular showing which violations of the 

model assumptions were causing problems. The previously mentioned Pinto thesis [21] 

also made use of Volterra series analysis to better understand the nature of the phonetic 



confusions arising from the particular structure. It could be the case that we will not be 

able to substantially improve speech recognition until we follow such approaches and 

learn what it is that we have to fix. In the meanwhile, we all continue to suggest clever 

ideas for improving the front end or the statistical engine, and these will provide some 

traction. Some of these may continue to be inspired by models of speech production or 

perception, given the relation of production mechanisms to the resulting signal, and the 

robustness of human speech recognition in comparison with its artificial counterpart. 

 

It should be noted that this paper only included topics pertaining to the acoustic model. 

The model for the sequence of words (the so-called language model), as well as any post 

processing of word sequence hypotheses that incorporates pragmatic knowledge about 

the application, are both extremely important. The processing of the outputs of the 

complete (acoustic and language model) statistical engine may be as important as any 

particular approach to machine learning for the models, or the processing of the feature 

inputs that has been the focus here. 

For further reading on previous milestones and possible directions for future progress 

in ASR, the reader is referred to [27] and [28] for a recent study by a number of us in the 

field. 
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