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ABSTRACT
Detecting the time of occurrence of an acoustic event (for in-

stance, a cheer) embedded in a longer soundtrack is useful

and important for applications such as search and retrieval in

consumer video archives. We present a Markov-model based

clustering algorithm able to identify and segment consistent

sets of temporal frames into regions associated with different

ground-truth labels, and simultaneously to exclude a set of

uninformative frames shared in common from all clips. The

labels are provided at the clip level, so this refinement of the

time axis represents a variant of Multiple-Instance Learning

(MIL). Evaluation shows that local concepts are effectively

detected by this clustering technique based on coarse-scale

labels, and that detection performance is significantly better

than existing algorithms for classifying real-world consumer

recordings.

Index Terms— Environmental Audio, Audio Segmenta-

tion, Markov Models, Multiple Instance Learning

1. INTRODUCTION

Short consumer videos – casual recordings of people’s daily

lives – are being created in huge numbers with today’s pocket

cameras, and are extensively available on web sites like

YouTube. These video clips contain a great deal of rich in-

formation relating to locations, activities, occasions, objects,

etc., and consequently present many new opportunities for

automatic extraction of semantic concepts to be used in intel-

ligent browsing and retrieval systems. These concepts have

diverse characteristics in terms of consistency, frequency and

interrelationships. For example, concepts such as “music” or

“crowd” typically persist over a large proportion of any clip

to which they apply, and hence should be well represented in

the global feature patterns, such as the mean and covariance

of per-frame features of a clip. However, a “cheer” appears

as a relatively small segment within a clip (at most a few sec-

onds) which means that the global statistics of a longer clip
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may fail to distinguish it from others. This paper addresses

the problem of detecting such local patterns embedded in a

global background soundtrack. In particular, we examine the

case where we have training labels to indicate when examples

of the concepts are present, but these labels are available only

at the clip level (such as tags applied to YouTube videos), and

therefore do not provide any more detailed information on

the timing of the local events within the clip.

Multiple instance learning (MIL) has been successfully

used to learn robust models from this kind of weak annotation

across different levels of granularity. In MIL, each bag (e.g.

an entire image or soundtrack) is a collection of instances (e.g.

local feature vectors). Annotation is given at the bag level re-

flecting the label of one or more instances in that bag. If at

least one instance is positive, the corresponding bag is labeled

as positive. On the other hand, a bag is tagged as negative

only when all instances in the bag are negative. The goal is

to learn a set of instance points that are close to positive bags

and simultaneously far away from negative bags. MIL, orig-

inally developed for applications in drug discovery [1], has

been applied to content-based image retrieval, classification,

and object detection [2, 3, 4].

In the next section, we describe a novel MIL approach, a

Markov model-based clustering algorithm able to segment a

set of temporal frames into multiple local regions (concepts)

associated with different ground-truth labels tagged at the clip

level, and simultaneously to exclude uninformative “back-

ground” frames shared in common from all clips. Evaluation

and conclusions are presented in section 3 and 4 respectively.

2. LOCAL CONCEPT DETECTION

Our system starts with a basic frame-level feature, Mel-

frequency Cepstral Coefficients (MFCCs), that are commonly

used in speech recognition and other acoustic classification

tasks. The single-channel (mono) soundtrack of a video is

first resampled to 8kHz, and then a short-time Fourier magni-

tude spectrum is calculated over 25ms windows every 10ms.

The spectrum of each window is warped to the Mel frequency

scale, and the log of these auditory spectra is decorrelated
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Fig. 1. Clustering temporal frames into concept-related segments by modifying the Markov model transition matrix.

into MFCCs via a discrete cosine transform. After the initial

MFCC analysis, each video’s soundtrack is represented as a

sequence of 21 dimensional MFCC feature vectors.

We then train a hidden Markov model (HMM) with Gaus-

sian mixture emission models to learn the concepts. Each

concept is a distinct state in the model, and in addition one or

more “global background” states are included. The assump-

tion here is that each feature vector can be associated with a

particular concept (state), but through the time sequence of

features in an entire clip, multiple different concepts may be

expressed at different times. The model is learned via con-

ventional Baum-Welch Expectation Maximization (EM), but

for each clip the transition matrix is modified to ensure that

only the states for the concepts specified in the labeling of

that video and the global background states will be updated;

transitions to all other concept states are set to zero. Figure 1

illustrates this idea for a 3-state Markov model.

The training process maximizes the likelihood of all

frames using only the states allowed by the relevant clip-level

annotations (and the global background states). It should

result in states being used to model frames that are most

relevant to those labels, with less informative frames being

absorbed by the background models. Thus, the procedure

achieves both clustering of frames that relate to each concept

label, and produces a model that can be used to discriminate

relevant sounds from uninformative background.

2.1. Markov Model-based Clustering

The HMM is parameterized by a set of parameters, θ =
{π, A, φ} where π, A and φ indicate the prior, transition and

emission probabilities of states. We begin by considering a

single clip n. Assume that Cn denotes a K−dimensional

annotation vector for a clip n in which each component,

Cn(k) ∈ {0, 1} for k = 1, · · ·,K, indicates the presence or

absence of the kth concept tagged by a human, and the K is

the total number of concepts. Each concept can be present or

absent independently in a clip. In our system, we annotated

each training clip with 25 concepts as described in the section

3. We add 1, 2, or 4 states for the global background whose

labels are set to be true (1) for all training clips; adding more

background states allows for greater variety for this category,

which we expect to account for the majority of the data. Thus,

K is 26, 27 or 29.

The K×K- dimensional transition matrix A is controlled

by the ground truth annotation Cn of the clip n to be able to

selectively train only the parameters of states whose corre-

sponding concepts appear in Cn. The transition matrix An of

the clip n is modified from the original A so that:

An(i, j) = A(i, j), iff Cn(i) and Cn(j) == 1. (1)

All other values are set to zero. An(i, j) is then normalized

by rows to satisfy
∑K

j=1 An(i, j) = 1.

The remaining process is to estimate the parameters, θ =
{π, A, φ}, using the EM (Expectation Maximization) algo-

rithm for all N training clips. Assume that Xn denotes the

observations for the clip n comprising a set of MFCC fea-

ture vectors {xnt} for t = 1, · · ·, Tn, where Tn is the total

number of frames in the clip n and depends on the duration

of the original video. For every clip, we apply the forward-

backward algorithm on Xn, with the corresponding modified

transition matrix An, to evaluate the marginal posterior distri-

bution γ(zntk) of the latent variable zntk which indicates that

frame t of clip n was emitted by state k. We also estimate the

joint posterior distribution ξ(zn,t−1,k, zntk) of two successive

latent variables in the E-step. The parameters θ = {π, A, φ}
are updated for the M-step:

πk =
∑N

n=1 γ(zn1k)
∑K

l=1

∑N
n=1 γ(zn1l)

(2)

Ajk =
∑N

n=1

∑Tn

t=2 ξ(zn,t−1,j , zntk)
∑K

l=1

∑N
n=1

∑Tn

t=2 ξ(zn,t−1,j , zntl)
(3)

The kth’s state emission probability, p(X;φk), is modeled by

an M -component Gaussian mixture model (GMM):

p(X; φk) =
M∑

m=1

wkmN(X|μkm,Σkm) (4)

Per-component weights wkm, means μkm, and covariances

Σkm are also updated using γ(zntk). We use M = 16 for

each state. The GMMs are initialized with a set of MFCC

frames randomly selected from clips labeled with the appro-

priate concept. After learning the Markov model given the

clip-level labels, the Viterbi algorithm is used to find the most

probable sequence of states for a given sequence of MFCC

frame in each testing clip as shown in Figure 2.
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Fig. 2. Analysis of a soundtrack of a conversation at the

beach. After Viterbi decoding, each frame is assigned to one

of 27 concepts (25 primary plus two background states). Ow-

ing to the limitations of visual-based annotation, the speech

from unseen speakers (e.g. the camera operator) is often not

explicitly labeled, and so voice tends to fall into the global

background as a sound common to all clips. However cheers

and background beach noises are correctly identified.

3. EVALUATIONS

We tested our Markov clustering algorithm on the soundtracks

of 1, 873 videos downloaded from YouTube by using key-

words (queries) relevant to the definition of our 25 concepts

chosen to maximize usefulness in the final application, via-

bility of obtaining manual labels, and viability of develop-

ing automatic recognizers. The concepts are organized into

several broad classes including: activities (e.g. skiing, danc-

ing), occasions (e.g. birthday, graduation), locations (e.g.

beach, park), or particular objects in the scene (e.g. animal,

baby, boat). Most concepts are intrinsically visual, although

some, such as music and cheering, are primarily acoustic. The

downloaded videos are filtered to retain only unedited, raw

consumer videos whose averaged duration is 145 s. To en-

sure accurate labels, we manually reviewed every video and

tagged it with the concepts that it contained. The video col-

lections and labels are described in [5] in detail and available

at http://labrosa.ee.columbia.edu/projects/consumervideo/.

To evaluate frame level performance, we further anno-

tated the soundtracks of four object-related concepts (animal,

baby, boat and cheer) to indicate the precise time segments

that contain the sounds of those objects. The overall frame-

level performance on this test data is presented in table 1 in

terms of the frame-level accuracy, d′ and Average Precision

(AP). The accuracy rate is the proportion of 10 ms frames

correctly labeled; d′ is a threshold-independent measure of

the separation between the two classes (presence and absence

of the label) when mapped to two unit-variance Gaussian dis-

tributions, and AP is the Average of Precisions calculated sep-

arately for each true frame. Note that accuracy figures are

high since in most cases there is a strong prior probability

that any frame is negative (no relevant sound), so even label-

ing all frames negative would achieve high accuracy; d′ and

AP are less vulnerable to this bias.

Table 1 compares the frame-level concept classification

results of semi-supervised MIL as described above with two

supervised classifiers (SVM and Markov model) learned from

frame-level annotations. Such detailed annotations are ex-

pensive to provide but provide an upper bound on what we

hope to achieve with our less annotation-intensive MIL ap-

proach. The SVM classifier using an RBF kernel is trained on

a set of manually annotated positive and negative frames for

the corresponding concept, and then tested on other videos

with using zero as threshold for deciding whether or not a

concept is present. In the Markov model system, the GMMs

are also initialized with a set of hand-labeled true frames of

each concept. Severely biased priors between concept and

non-concept frames, e.g. 2.44% for cheer, are known to be a

challenge for SVM classifiers, so a lot of concept frames are

wrongly lumped in with the background. The Markov model

outperforms the SVM since it benefits from directly choosing

among all the concepts at the same time.

For further comparison, we also report the frame-level

performance of the ‘1G+KL with SVM’ system from [6],

which trains an SVM classifier using a symmetrized Kullback-

Leibler (KL) distance calculated on single, full-covariance

Gaussian distributions fit to MFCC features over the entire

clip. Here, to get a comparable sub-clip level time label-

ing, we divide the soundtrack into 1 s segments and classify

each one. The resulting distance-to-boundary values from the

SVM are shifted due to the change of segment’s length, so

we try several different thresholds. The “T0” column in the

table gives the results when classification is based on the stan-

dard SVM threshold of 0, which show the negative impact of

this shift. Thus, we experiment with various other set of the

threshold, shown in the subsequent columns: “T50” sets the

threshold at the 50th percentile of the values within the clip,

meaning that exactly half the labels in each test clip will be la-

beled positive. “T26S”, “T27S”, and “T29S” instead choose

the percentile as the actual number of frames detected by the

Markov clustering system with the corresponding number of

states, as an upper-bound comparison.
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Table 1. Frame-level concept classification performance on YouTube videos. The number below each concept indicates how
many of the clips tagged with the concept actually contained relevant sounds; Values in columns 4 through 15 represent means
of the frame-level performance over 5-fold cross-validated experiments: At each fold, the classifier is trained on 40% of the
data, tuned on 20%, and then tested on the remaining 40% selected at random at the clip level.

Concept Frame Supervised (frame-level labels) Semi-supervised (clip-level labels)

(# with Prior SVM Markov Model “1G+KL”+ SVM Classifier Markov Clustering

sound) (%) w/ RBF 26S 27S 29S T0 T50 T26S T27S T29S 26S 27S 29S

animal acc.(%) 74.8 98.1 98.5 99.2 36.6 72.9 98.5 98.6 99 98.4 98.5 98.9

(21/62 0.22 d′ 0.24 0.29 0.38 0.12 0.15 0.47 0.38 0.31 0.3 0.57 0.65 0.3

clips) AP(%) 0.2 0.25 0.35 0.25 0.67 0.47 0.52 0.37

baby acc.(%) 86 96.9 97.3 97.7 99.6 50.3 96.9 97.1 97.9 97 97.2 98

(43/112 0.4 d′ 1.12 1.2 1.26 1.3 0 1.1 0.65 0.71 0.59 0.93 0.92 0.96

clips) AP(%) 4.5 3 2.7 3.5 0.73 1.64 1.83 1.65

boat acc.(%) 92.7 97.3 97.7 97.9 58.8 50.7 96.5 97.1 97.6 97.1 97.6 97.9
(41/89 1.62 d′ 0.88 1.47 1.34 1.24 0.47 0.61 0.17 0.13 0.2 1.3 1.35 1.3

clips) AP(%) 5.4 12.2 11.2 9.1 2.23 9.7 10.8 9

cheer acc.(%) 46.8 94.8 95.2 95.4 97.6 52 92.7 93.2 93.5 95 95.3 95.4

(388/388 2.44 d′ 1.62 1.92 1.91 1.92 0.15 1.38 0.1 0.11 0.11 1.77 1.76 1.72

clips) AP(%) 20.2 29.5 29.5 29.8 4.37 25.4 25.5 24.1

4. DISCUSSION AND CONCLUSIONS

The results of the proposed Markov clustering based on clip-

level annotation are given in the final three columns, for sys-

tems with 26, 27, or 29 states (i.e. 1, 2, or 4 background

states). From the first column, we see that each label includes

a significant number of clips labeled as relevant that do not in

fact contain any relevant soundtrack frames (because the ob-

ject makes no sound). Since the MIL approach is founded on

the assumption that positive bags contain at least some pos-

itive examples, such incorrect annotations are a major factor

degrading performance. We see that performance varies de-

pending on the proportion of tagged clips that contain relevant

audio frames (column 2). The animal concept, which has the

worst result of d′ = 0.65, contains relevant sound in only

34% (21/61) clips. Performance improves as the proportion of

clips containing relevant sounds increases. Thus, “baby” with

43/112 = 38% relevant-sounding clips has d′ = 0.92, “boat”

(46%) has d′ = 1.35, and “cheer” (100%) has d′ = 1.76.

Another factor determining performance is the consis-

tency of representative sounds for each concept. The “ani-

mal” concept covers many kinds of animal (e.g. dog, cat, fish

etc.), and tends to have a very broad range of correspond-

ing content. By comparision, “baby” is better because bay

sounds (e.g. crying and laughing) are more specific than

animal sounds. In the case of “boat”, the relatively consis-

tent engine noise is contained in a large proportion (46%) of

relevant clips, leading to much better overall performance.

The best performance of the Markov clustering system oc-

curs for cheering segments. We infer this is because the cheer

concept is conveyed by acoustic information (leading to cor-

rect annotations), and its sound is consistent between different

clips. The performance of Markov clustering with a random

initialization (d′ = 1.76 and AP = 25.5%) is substantially

better than a supervised SVM with RBF kernel (d′ = 1.62 and

AP = 20.2%), and even is close to Markov modeling based

on manual frame-level labels (d′ = 1.92 and AP = 29.8%),

which we expect to be an upper bound. This provides the best

illustration of the success of our Markov clustering in detect-

ing local objects.

We have described detecting multiple local concepts from

global annotations using Markov models. Experimental re-

sult shows that local concepts are effectively detected by this

technique even based only on coarse clip-level labels, and that

detection performance is significantly better than existing al-

gorithms for real-world consumer recordings.
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