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Abstract
In this paper, we propose a discriminative extension to agglom-
erative hierarchical clustering, a typical technique for speaker
diarization, that fits seamlessly with most state-of-the art di-
arization algorithms. We propose to use maximum mutual in-
formation using bootstrapping i.e., initial predictions are used
as input for retraining of models in an unsupervised fashion.
This article describes this new approach, analyzes its behav-
ior, and presents results on the official NIST Rich Transcription
datasets. We show an absolute improvement of 4 % DER with
respect to the generative approach baseline. We also observe
a strong correlation between the original error and the amount
of improvement, that is, the better our predicted labels are, the
more gain we obtain from discriminative training, which we in-
terpret as a strong indication for the high potential of the exten-
sion.
Index Terms: Discriminative learning, Maximum Mutual In-
formation, Speaker Diarization

1. Introduction
The goal of Speaker Diarization is to segment audio into
speaker-homogeneous regions trying to answer the question
“who spoke when?”. Speaker diarization has utility in any
application where multiple speakers may be expected. Exam-
ples include audio and speaker indexing, information retrieval,
speaker verification (in the presence of multiple or compet-
ing speakers), to assist with speech-to-text transcription (via
speaker-dependent modeling) and, more generally, rich tran-
scription (RT).

Most state-of-the-art systems use a combination of agglom-
erative hierarchical clustering with Bayesian Information Crite-
rion (BIC) and Gaussian Mixture Models (GMMs) of frame-
based cepstral features (MFCCs), usually done in a top-down
approach, that is, to overcluster our observation x

T
1 = X ,

merge clusters and stop based on some model selection crite-
rion. The training of such systems is usually performed using
the Expectation Maximization (EM) algorithm, where we up-
date of the parameters of our model θ as to maximize the con-
ditional probability of the observed data X given the hypothe-
sized labels S, p(X|S; θ) (i.e. likelihood). This model is gen-
erative as, given a set of labels, it tries to explain or generate the
observations X as accurately as possible.

In this paper, we propose to change that paradigm and to,
instead, optimize adding discriminative methods to our infer-
ence procedure. The rest of the article is organized as follows:
Section 2 presents the agglomerative clustering approach used
as baseline as well as related work, Section 3 provides some
necessary background, and motivates the use of a particular dis-

criminative objective function, in Section 4 we provide results
on a large dataset, and give a justification on the observed per-
formance gain/loss. We conclude with Section 5, in which we
express our conclusions on the work.

2. Speaker Diarization Overview
As already explained in Section 1, the goal of speaker diariza-
tion is to segment audio into speaker-homogeneous regions with
the ultimate goal of answering the question “who spoke when?”
[1]. In contrast to speaker recognition or identification, speaker
diarization attempts to use no prior knowledge of any kind; in
particular, usually no specific speaker models are trained for the
speakers that are to be identified in the recording. This means
a speaker diarization system has to answer the following ques-
tions in an unsupervised manner:

• What are the speech regions?
• How many speakers are in the recording?
• Which speech regions belong to the same speaker?
The speaker diarization engine that we developed uses

an agglomerative clustering approach to perform both seg-
mentation of the audio track into speaker-homogeneous time
segments, and the grouping of these segments into speaker-
homogeneous clusters in one step, as detailed in [2].

The algorithm is initialized using a higher amount of clus-
ters than speakers assumed in the audio track. An initial seg-
mentation is generated by partitioning the audio track into k

segments of the same length. Using the initial segmentation,
Gaussian Mixture Models (GMMs) for each clusters are trained.
A minimum duration of 2.5 seconds is assumed for each speech
segment. Viterbi alignment is then used to combine the indi-
vidual decisions via an ergodic HMM. The algorithm then per-
forms the following loop:

• Re-Segmentation: Compute the optimal segmentation
for the given models (e.g. Viterbi path).

• Re-Training: Given the new segmentation of the audio
track, compute new Gaussian Mixture Models for each
of them using maximum likelihood training. Transitions
are not retrained, and are fixed to provide uniform prob-
abilities to jump to any state in the HMM.

• Cluster Merging: Given the new Gaussian Mixture Mod-
els, find the two models that most likely represent the
same speaker. This is done by computing the BIC score
(Bayesian Information Criterion) of each of the models
and the BIC score of a new GMM trained on the merged
segments for two clusters. If the BIC score of the merged
Gaussian Mixture Model is smaller than or equal to the
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Figure 1: The agglomerative clustering approach of the ICSI
Speaker Diarization Engine as explained in Section 2 and in
[2]. Retraining and re-segmentation ends when no more models
can be merged as of the BIC score. At the end, the number of
clusters is hoped to be equal to the number of speakers.

sum of the individual BIC scores, the two models are
merged and the algorithm loops at the re-segmentation
using the merged Gaussian Mixture Model. If no pair is
found, the algorithm stops. Note that when merging two
mixture models, the number of parameters (i.e. com-
plexity) is maintained. Thus, the ∆BIC score is just the
likelihood ratio (or log likelihood difference) in this case.

Figure 1 illustrates the steps of the algorithm.
The output consists of meta-data describing speech seg-

ments in terms of starting time, ending time, and speaker cluster
name. This output is usually evaluated against manually anno-
tated ground truth segments. A dynamic programming proce-
dure is used to find the optimal one-to-one mapping between
the hypothesis and the ground truth segments so that the total
overlap between the reference speaker and the corresponding
mapped hypothesized speaker cluster is maximized. The differ-
ence is expressed as Diarization Error Rate which is defined by
NIST1. The Diarization Error Rate (DER) can be decomposed
into three components: misses (speaker in reference, but not in
hypothesis), false alarms (speaker in hypothesis, but not in ref-
erence), and speaker-errors (mapped reference is not the same
as hypothesized speaker).

3. Maximum Mutual Information in
Speaker Diarization

Maximum Mutual Information (MMI) techniques have been
used successfully in the speech community. Such techniques
have been applied both on speech recognition [3, 4] and speaker
recognition [5] for GMM training using MMI instead of ML,
and in speaker diarization via the information bottleneck ap-
proach [6], where mutual information is used to directly cluster
the data. Our approach involves a different objective function
in place of ML, namely the mutual information between the ob-
servations X and true labels S. However, in diarization, the
true labels are not known, and because of that a bootstrapping
technique is used where, at each iteration, we assume that the
current segmentation is the correct one. A major advantage of
the method proposed here is that is can be easily used to extend
current speaker diarization algorithm that are based on agglom-
erative hierarchical clustering.

As stated in the previous section, the algorithm proposed
here ensures the update of the model to provide better likeli-
hood in each of the steps: GMM training via ML, Viterbi align-
ment with the new models, and BIC based decision that ensures
that, by merging two models with positive ∆BIC score, the

1http://nist.gov/speech/tests/rt/rt2004/fall

likelihood grows (as we keep the number of parameters fixed
throughout the iterative procedure).

Let xT
1 denote the observations of our sequence, and let

s
T
1 be the hidden state sequence. Note that the cardinality of
s is unknown, and thus the agglomerative clustering will keep
merging clusters until the delta BIC score of any two pairs is
no longer positive. Our algorithm is finding a set of parameters
θML such that:

θML = argmax
θ

p(xT
1 |sT1 ; θ)

is maximized.
This maximum likelihood approach will fit the models so

that they represent the data with high fidelity. However, in the
case of speaker recognition, or speaker diarization, many simi-
larities will be observed between speakers (given, for examples,
that both of them are males), and thus many degrees of freedom
of our GMM model will be used to capture information that is
redundant in regards of identifying and separating speakers by
their acoustic dissimilarities. Thus, a discriminative approach
similar that the one proposed in [4] will help enhance the per-
formance. The objective function then becomes:

θMMI = argmax
θ

p(sT1 |xT
1 ; θ) = argmax

θ

p(xT
1 |sT1 ; θ)

p(xT
1 |θ)f

Note that, in the MMI formulation there is a normalization
factor that appears in the denominator in comparison with ML
(which is controlled by a parameter 0 ≤ f ≤ 1 such that f = 0
corresponds to ML and f = 1 corresponds to full MMI). In
order to compute p(xT

1 |θ) we would need to use the total prob-
ability theorem, that is, to sum over all possible state sequences
s
T
1 . The sum is not tractable for the typical size of our data (T

is on the order of tens of thousands), therefore we chose to use
the approximation made in [3], which assumes that each time
frame xi is independent given θ. This is not true in our case as
our HMM model enforces a minimum state duration that does
not allow for any transition to happen at any given time. With
this simplification, we obtain (dropping θ in all terms):

Eθ,S|X [log p(xT
1 )] =

�

t

Eθ,st|xt [log p(xt)] ≡

≡
T�

t=1

S�

j=1

p(st = j|xt) log(p(xt|st = j)p(st = j)) (1)

This reformulation of our baseline algorithm to maximize
the MMI function instead of ML also makes use of the findings
on the usage of MMI for speech recognition in [4]. For purposes
of space, we will not derive the complete formulation discussed
there, but the modified version of the algorithm to update the
gaussian mean of state j and mixture m becomes:

µ
�
j =

θ
num
j − fθ

den
j +Dµj

γ
num
j − fγ

den
j +D

θ
num
j =

�

t

p(st = j|xT
1 )xt

θ
den
j =

�

t

p(st = j|xt)xt

γ
num
j =

�

t

p(st = j|xT
1 )
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γ
den
j =

�

t

p(st = j|xt)

Our starting point are the ML estimates, based solely on
numerator statistics, proceeding with the update of the param-
eters using modified Baum Welch [4], while if we set D = 0
the maximization step becomes the standard gradient descend
for MMI as in [3]. θnum

jm refers to the sum of the observations,
weighted by occupancy p(st = j|xT

1 ), for mixture component
m of state j, and γ

num
jm are the Gaussian occupancies summed

over time. Similarly for the denominator, except that the oc-
cupancies here become p(st = j|xt). D is a parameter that
selects how much we want to diverge from the initial ML esti-
mate, and is empirically set as in [4] as 5 times the maximum
value of D that would be needed for all variances to be positive
(this is found by solving a quadratic equation). Lastly, f is a
parameter that we tuned to select how much we want to keep
from the initial ML estimate as the objective function (i.e. the
objective function becomes an interpolation between ML and
MMI).

Note that we can interpret the MMI updates to be the
same as ML, except that we discount observations for which
p(st = j|xt) is high (that is, the posterior probability is already
good for the given set of parameters, or a sample that should not
align well with the model does (thus, we are adding discrimina-
tive power to the model)), and we give more importance to data
samples that are hard to classify locally, and negative weight to
those points that should not align with the current state but do.
Furthermore, there is a heuristic that we used, which is to dis-
count only if the assignment given by maxj p(st = j|xt) does
not correspond to the assignment given by maxj p(st = j|xT

1 )
(i.e., the Viterbi output does not match the local decision taken
by the models).

Lastly, in the original formulation BIC score is used to de-
cide whether we should merge two clusters, and what two clus-
ters should be merged. BIC computes an approximation of the
marginal likelihood, that is, to integrate out nuisance parame-
ters:

BIC ≈ p(xT
1 |sT1 ) =

�

θ

p(xT
1 |sT1 , θ)p(θ)dθ

As we discussed in the previous Section, this ensures that
the ML objective function is going up at every merging point,
since the number of parameters is maintained fixed across iter-
ations (note that in this case, the ∆BIC score becomes just the
likelihood function). However, in the new scenario, we need to
merge based on whether the MMI function is increased or not,
and select the cluster pair that increases the objective function
the most. Thus, we propose a modified BIC criterion as follows:

BICML(H0)(i, j) ∝

∝ − log p(xi|si)− log p(xj |sj) + λ(ki + kj) logN

BICML(H1)(i, j) ∝

∝ − log p(xi
�

j |si� j) + λ(ki + kj) logN

∆BICML(i, j) = BICML(H1)(i, j)−BICML(H0)(i, j) =

= log p(xi|si) + log p(xj |sj)− log p(xi
�

j |si� j)

where p(xi
�

j |si� j) is the likelihood of a jointly trained model
with the union of samples from clusters i and j, ki is the number
of parameters for model i, N is the total number of samples, H0

correspond to the non merging hypothesis, and H1 correspond
to the merging hypothesis. Note that since we keep the number

System Diarization Error Rate
Baseline 17.58%
MMI 15.40%
MMI+mod. BaumWelch 13.72%

Table 1: Results on the Dev07 NIST RT development set. Com-
parison of two main approaches to train MMI, previously used
in speech recognition.

System Diarization Error Rate
Baseline 07 19.11%
MMI+mod. BaumWelch 07 15.8%
Baseline 09 29.13%
MMI+mod. BaumWelch 09 24.31%

Table 2: Results on the Eval07/09 NIST RT development set.

of parameters constant, the second term of the BIC criterion
vanishes.

For the MMI case, we obtain:

∆BICMMI(i, j) = BICMMI(H1)(i, j)−BICMMI(H0)(i, j) =

= log
p(xi|si)
p(xi)f

+ log
p(xj |sj)
p(xj)f

− log
p(xi

�
j |si� j)

p(xi
�

j)f

With this modifications, the algorithm is guaranteed to find
a maximum of the mutual information between X and S, rather
than the ML of X given S. In the next section, we report how
various parameters affect the Diarization Error Rate (DER) of
the system on various datasets.

4. Experimental Results
In this section, we discuss some of the choices made to select an
optimal set of parameters, as well as what data was used for de-
velopment and what data was used for test. In particular, we did
not tune the D parameter, and we set it to be 5 times the max-
imum D needed for all variances to be positive (which works
well for speech recognition), we kept the number of iterations
done to update means and variances with starting point the ML
estimates to 6. We tuned the f parameter, and we also used the
heuristic described in the previous section (i.e. just to discount
if the local alignment does not match the Viterbi alignment) as
well as the update function using modified Baum Welch [4], or
just plain MMI [3] (D=0).

The data used was what we define as Dev07 data, which
contains several past NIST evaluations (2004/2005/2006), and
a total of 21 meetings. Results can be seen in Table 1 for the
development set, where the best parameter f was selected for
with and without using the most recent approach with modified
Baum-Welch [4]. We tested our proposed modification in the
recent 2007 and 2009 Evaluation set (there was none for 2008),
as can be seen in Table 2. Note that there is a significant im-
provement by using this technique in the Dev07 dataset, and
that it also outperforms other methods such as a non paramet-
ric Bayesian approach like the HDP-HMM. In Figure 2 we see
the error rate for three systems (baseline, MMI, and MMI with
modified Baum Welch). All of those have the heuristic turned
on, as it consistently performed better.

Furthermore, on the evaluation set there is also improve-
ment. However, the Eval09 set was difficult because of presence
of overlapped speech (for which our algorithm simply fails),
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Figure 2: DER as a function of the parameter f for three systems: baseline, MMI, and MMI with extended Baum-Welch. Observe that,
in general, the behavior is as expected, with an optimal parameter f around 0.13.

Baseline Performance Contrib. to DER improvement
Good quality (DER < 25%) 38%
Bad quality (DER > 25%) 62%

Table 3: Contribution to DER improvement based on baseline
performance (i.e. bootstrapping quality).

and thus the error due to speech activity detection is already
10%. Also, some of the meetings had a very poor performance
as some contained many speakers and fast speaker turns. There-
fore, as we use bootstrapping to add discrimination to diariza-
tion, applying discrimination on noisy labels may not only not
be beneficial but be harmful. Surprisingly, this is not the case
for this task, as can be seen in Table 3, where the decomposi-
tion of errors is shown for meetings in which our approach does
better than 25% (and thus we can expect bootstrapping to be ro-
bust), and for those that the baseline performance is worse than
25%. Although the relative improvements are generally higher
for meeting with lower absolute DER, the contribution to the to-
tal DER gain comes mostly from meetings that were inherently
hard (i.e. high baseline DER). It must be noted that the number
of meetings is small, and thus the results shown in Table 3 may
be affected by statistical noise.

5. Conclusion and Future Work
In this paper we explored a method for extending current ag-
glomerative hierarchical clustering-based speaker diarization
systems using discriminative training. In particular, we changed
the agglomerative clustering objective function from ML (gen-
erative) to MMI (discriminative), which has been applied suc-
cessfully to other speech tasks. Initial experiments and results
show significant improvement and the method seems to com-
plement the current algorithms well. A limit of the approach
is that some smoothing parameters need to be tuned in order
for the model to provide better results, usually through training
with a development set or knowledge transfer from other ma-
chine learning tasks. It must also be noted that MMI techniques
are computationally more expensive than ML, and thus cluster-
ing time was roughly three times slower than ML baseline.

One line of future research includes the tuning of parame-
ters that were fixed due to time limitations, such as the D pa-

rameter, or the number of training iterations for MMI. It would
also be useful to explore other discriminative functions instead
of MMI, and to extend this work to other unsupervised cluster-
ing techniques that could make use of bootstrapping and dis-
criminative training to enhance their prediction accuracy.
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